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Abstract
The Magic Lantern project describes itself as ”Magic

Lantern is a free software add-on that runs from the SD/CF card
and adds a host of new features to Canon EOS cameras that
weren’t included from the factory by Canon.” In doing so, they
have provided APIs, documentation, and the means to run code on
many Canon EOS interchangeable lens cameras, and also useful
well-documented interchange formats for data extracted via that
access. The current work describes how these facilities can be
applied by researchers to develop new imaging techniques on a
professional/prosumer camera platform.

Specifically, this work covers an attempt to use the Magic
Lantern development tools to manipulate a cameras’ Embedded
Direct Memory Access engine (EDMAC) to perform on-the-fly
frame diffing, and/or to the use of the project’s MLV format for
raw sensor data streams to extract data from the relatively large,
high-performance sensor of a prosumer camera as input for al-
ternative processing pipelines.

Introduction
Modern digital cameras contain sophisticated computer sys-

tems, comprising a CPU, a sensor with typically many ADC chan-
nels for readout, a relatively large RAM, one or more storage de-
vices, various special hardware function units such as encoders for
specific image formats, and the bussing and DMA (Direct Mem-
ory Access) devices to move data between the parts.

These cameras, therefore, function as cameras by virtue of
the software loaded into them. In the case of Canon devices, the
native software is built on a Canon developed RTOS (Real Time
Operating System referred to as “DryOS” [1] with various com-
puter platform features and camera-specific functionality imple-
mented on top. DryOS appears to implement the µIT RON RTOS
kernel specification, and also exposes some POSIX and DOS-like
interfaces - for example, when configured to boot from an external
storage device, it attempts to launch a file named autoexec.bin,
a fact which is very important when attempting to load you own
code on a camera.

DryOS has been used across the Canon line since around
2007; the older related CHDK (Canon Hack Development Kit) [2]
project targeting Canon’s fixed-lens cameras is also based around
reverse engineering of Canon’s interfaces, though CHDK gener-
ally limits itself to calling Canon functions, while ML focuses
on higher-end interchangeable-lens cameras, and directly manip-
ulates hardware configuration registers. In fact, though they are
independent projects with entirely separate code bases, Magic
Lantern originally derives from the reverse engineered documen-
tation of the CHDK project, and they continue to share informa-
tion. Magic Lantern operates as a program that runs along side
the vendor software; the only modification made to the original
system is setting the BOOTDISK flag in the onboard Flash, so the
camera will attempt to load code from autoexec.bin in the root

of the CF or SD card.
The Magic Lantern project [3] is a community developed,

Open Source (GPL Licensed) project which has developed a de-
velopment framework and extensive collection of software which
is loaded into the camera by the aforementioned process to load
user code from attached storage. The Magic Lantern community
is chiefly focused on adding video recording features and capabil-
ities to available cameras. Specifically, the project was initiated
by Trammell Hudson in 2009 to add extended video features to
the 5D Mark II, and management of the project transitioned to
A1ex in late 2010. As the understanding of the camera internals,
set of supported cameras, and community expanded, it has also
extended camera capabilities for general shooting like focus peak-
ing, zebra highlights, and live histograms, added useful shooting
modes like intervalometer, motion detect, and automatic exposure
bracketing, and a wide variety of other features. Magic Lantern
also provides a set of sophisticated developer tools for inspecting
camera behavior, and several methods to run custom code on the
camera including a scripting interface in the Lua programming
language, and a module system to load custom compiled code.

As academics, our interests in Magic Lantern can take sev-
eral forms. The first source of academic interest in Magic Lantern
is quite similar to the main ML community interest; the possi-
bility of modifying a (relatively) capable commercial camera to
behave in new ways to construct research prototypes. Because of
the exposed internal memory structures and full programming en-
vironment, the functional units of the camera can be freely recon-
figured up to the limits of the reverse-engineered understanding
and/or capabilities of the hardware.

A second interest for research applications is the sophisti-
cated scripting interface exposed by Magic Lantern. The afore-
mentioned Lua scripting and loadable compiled module interfaces
allow researchers to both arrange programmatic capture to use
the camera as an apparatus for experiments, and also program-
matically operate the camera to study its properties. Simple ap-
plications of custom code may include programmed timelapses,
motion detection, exposure stacking for focus or dynamic range,
etc. but as it is a complete programming environment, the possi-
ble functionality is limited only by the resources present in the de-
vice. The authors of this paper and a number of their collaborators
have previously made extensive use this functionality on smaller
CHDK-enabled cameras to support a number of research projects;
in [4] it was used to produce programmatically controlled series
of exposures to study camera behavior, in [5] it was used to coax
cameras to export a novel image encoding, and in [6] it was used
to perform photoplethysmography in-camera.

Another other major academic interest for MagicLantern is
the insight it provides into the internal design of a (relatively)
modern camera system. Camera manufacturers do not gener-
ally intentionally provide low-level access to the camera or its’
embedded computer system, or even document its features, over
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concerns about licensing and competition. The reverse engineer-
ing efforts required to create community modifications like Magic
Lantern expose that information. Close knowledge of the work-
ings of widely available camera systems allow researchers and
photographers alike to reason about both the resulting images and
the potential capabilities of a camera in ways that a black-box
treatment does not, even if they are not aiming to expand or alter
the functionality.

The ML software also allows an enormous degree of live
instrumentation into the running camera. For example, a built-in
feature allows one to view the memory map and utilization, the
process tables of both ML and Canon’s native software, as in Fig.
1, and a wide variety of other logging and monitoring, several of
which are applied later in this work.

Figure 1. Process table of Canon native processes

The authors of this paper are not affiliated with Canon nor are
we the developers of Magic Lantern. We are long-time users who
have been trying to adopt/adapt the Canon + Magic Lantern target
to support various computational photography research projects.

In the specific case of the EOS M used as an example in this
paper, the embedded computer is a Canon DIGIC5 chipset. A
rough diagram of the relevant architecture is shown in Fig. 2. On
the computer front, two processor cores are ARM5TE 32-bit pro-
cessors, and total RAM is approximately 256MB. The “Image
Preprocess” and “JPCORE” blocks represent memory-mapped
fixed-function hardware for RAW processing and JPEG en/de
coding (names derived from firmware strings), the SDCON/SD
Card blocks represent the interface to the SD card, and the ED-
MAC is a sophisticated DMA engine which will be discussed
in its own section below. Some devices - such as the onboard
FlashROM that contains the built-in software, and the various IO
devices for reading buttons, blinking LEDs, and interfacing lens
mechanics are not included in this diagram, though they are also
memory-mapped devices. Strings internal to the firmware refer to
those IO devices as the “MPU” and “LPU” for the medium and
low speed devices, respectively.

Another relevant detail of the low-level memory behavior of
Canon cameras is that the native RAW pixel format for 14- bit
Canon cameras is packed in a somewhat convoluted way, shown
in figure 3. This means efficient processing of the native format
involves working on 224-bit (least common multiple of 14 and
32) blocks, necessitating some interesting bit-twiddling and/or

Figure 2. Rough layout of DIGIC 5 SoC

specific hardware support, some of which is accomplished by
the aforementioned Image Preprocessing hardware, but much of
which is managed by the EDMAC discussed in the following sec-
tion.

Figure 3. The packed layout of Canon 14-bit RAW encoding

EDMAC
One of the major accomplishments of the ML project has

been the reverse engineering of the EDMAC ”Engine DMA Con-
troller”, where ”DMA” in turn means ”Direct Memory Access”,
device present in Canon Digic SoCs. This functionality was not
available for the first several years of the project, but even a partial
understanding of it has enabled a great deal of the functionality
now supported by ML.

The initial reverse engineering work was performed by a1ex
in late 2016 [7]. Shortly after the initial behavior and strings
were documented, it was back-matched to a patent, [8] initially
filed by Canon in 2003. The EDMAC name and much of the re-
lated terminology in the reverse-engineered documentation is de-
rived directly from strings in the firmware, and later more terms
were matched to the patent, so unlike many systems whose public
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understanding is based on reverse engineering, the terminology
more-or-less lines up between Canon published documentation
and public reverse engineering.

The EDMAC is a sophisticated point-to-point data transfer
engine, which can be programmed to move data not only between
memory regions, but also to and from various hardware devices.
For example, on many camera models EDMAC channel 0 is con-
nected to the raw read-out of the sensor [9], while channel 3 is
connected to a hardware JPEG encoder/decoder.

The ML project now contains a loadable module which con-
tains a great deal of live and logging instrumentation for the run-
ning EDMAC; it can provide a live view of current EDMAC ac-
tivity as in Figure 4, logging at regular intervals to allow study
of EDMAC activity during specific operations, and automatically
identify unused EDMAC channels which can potentially be re-
purposed.

Figure 4. First screen of EDMAC live monitoring

The specification of the memory regions to read or write
from in the EDMAC is also quite sophisticated; it supports x and
y block size, stride, count, and offset arguments, special sizes for
last blocks in sequences, and it supports these specifications for
both the source and the destination region, allowing it to transfer
and transform memory regions of complicated shape and size with
minimal CPU involvement. A variety of useful camera behaviors
- like cropped sensor readout - are performed using this mecha-
nism. The EDMAC DMA transfer behavior can be described in C
as shown in Fig. 5, taken directly from the QEMU-based devel-
opment tools built by the ML project.

Visually, this produces access patterns like those in Fig. 6
illustrating an access pattern with xn= 3, yn= 2, xb ̸= xa, yb ̸= ya,
and differing positive values for o f f 1a and o f f 1b which affect
the stride in the X direction. Negative offsets are also legal; it
would cause the tiles to overlap rather than skip.

MLV
Another relevant accomplishment of the Magic Lantern

project has been the creation of the MLV (Magic Lantern Video)
format and associated tooling. The MLV format is, essentially,
a container for sequences of raw frame data read directly from
the sensor, as well as standardized ways of writing out support-
ing metadata, and optionally synchronized audio blocks. The
format is specified as a roughly 200-line LGPL licensed header

for (int jn = 0; jn <= yn; jn++)
{

int y = (jn < yn) ? ya : yb;
int off2 = (jn < yn) ? off2a : off2b;
for (int in = 0; in <= xn; in++)
{

int x = (in < xn) ? xa : xb;
int off1 = (in < xn) ? off1a : off1b;
int off23 = (in < xn) ? off2 : off3;
for (int j = 0; j <= y; j++)
{

int off = (j < y) ? off1 : off23;
cpu_physical_memory_write(dst , src

, x);
src += x;
dst += x + off;

}

Figure 5. EDMAC DMA Transfer Behavior

Figure 6. EDMAC Memory Layout, with Offsets

mlv_structure.h.
The initial “RAWv1.0” design was chiefly experimental. The

more widely used specification, implemented by the MLV_Rec and
MLV_Lite modules and all the major post-processing tooling is
considered internally to be “RAWv2.0.” Later developments have
not altered the on-disc format, but have focused on optimizing the
implementation, maximizing utilization of the camera hardware
to extract as much data as possible within the available sensor,
memory, and (critically) storage bandwidth. Most camera-side
development has been focused on the MLV_Lite module since it
was forked by David Milligan around 2016 [10].

On the EOS M used for testing, the SD bandwidth has an
empirical limit of around 60MB/s, which means - best case - full
14-bit RAW MLVs can be captured for longer than the handful of
seconds it takes to fill the camera’s internal buffers at a resolution
of roughly 1728x692 at 30FPS, and then only if one finds an SD
card that happens to sustain the maximum observed speed. This
resolution is not terribly impressive by modern standards, but an
14-bit RAW video from a ultra-compact body released in 2012 is
quite an accomplishment. Unfortunately, the SD standards are not
terribly uniformly implemented, so finding a card that will negoti-
ate to the proper mode involves either locating an exact match to a
card verified to do so by another user, or extensive trial-and-error.

The chief optimization of the on-camera MLV tooling is that
it uses the EDMAC (above) to perform all the data motion; the
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sensor read-out is DMA on the EDMAC. The SD card write out
is DMA on the EDMAC. The cropping is DMA on the EDMAC.
The MLV capture tooling also works around various platform lim-
itations, such as the 4GB file size limit on the FAT32 format
volumes used on the SD cards in (most) cameras with integrated
support for multi-file encoding.

An ecosystem of processing and conversion tools have
formed around the MLV specification. Examples include ML-
VApp [11], a MLV processing tool initiated by ilia3101 (Ilia
Sibiryakov), a sophisticated, open-source, community-built tool
for processing the resulting MLV files. MLVApp supports the
native formats produced by the various ML supported camera
models, and allows a user to post-process and manipulate the
RAW video in various desirable ways; sophisticated Demosaic-
ing, highly parameterized exposure analysis and manipulation for
toning and look, various forms of RAW correction for dead pix-
els and noise reduction, and conversion to a wide variety of con-
ventional output video formats. It is distributed under a GPL3
license, and is built chiefly in C++ using the Qt toolkit. Many of
its features are the result of community members adding specific
functionality they desired, and/or hooking code from other open
source developments, such as the librtprocess [12] tools derived
from the open source RAW still processing software RawThera-
pee.

Another approach to accessing MLV data is MLVFS [13],
also initiated by David Milligan of MLV_Lite. It mounts a MLV
file as a virtual file system using the FUSE (File System in
UserSpace) facility on UNIX-like systems, which allows the in-
dividual frames of the MLV stream to be accessed as though they
area directory of DNG format RAWs, and consumed by any soft-
ware which can operate on DNGs.

Limitations
The current list of camera models supported by Magic

Lantern are the Canon 5D Mark III, 5D Mark II , 6D , 7D,
60D, 60Da , 50D, 700D / Rebel T5i , 650D / Rebel T4i , 600D
/ Rebel T3i , 550D / Rebel T2i, 500D / Rebel T1i, 1100D /
Rebel T3 and EOS M, as enumerated on the current builds page
at https://builds.magiclantern.fm/, with a few ports in
progress. The newest of these cameras came out in 2012-2013,
as platforms after the DIGIC5+ generation have not yet been ade-
quately reverse engineered to build a working port.

Even those cameras which are supported will have features
which are not fully exploitable. As an example of attempting to
make use of a not-fully-understood feature, the original applica-
tion that lead to this work was an interest in using the subtraction
channel apparently available the EDMAC to perform on-the-fly
frame diffing, for use in ongoing research projects. It can be
experimentally verified, using the extensive introspection tools
included in ML, that the EDMAC has some sort of subtraction
mechanism. This mechanism is exposed in the camera UI for
“Long Exposure Noise Reduction.”

Actually making use of the subtraction mechanism presents
two issues: the setup for two-reader one-writer EDMAC opera-
tions - like subtract - is not publicly documented, and the location
of the subtraction engine in a particular camera is not stubbed into
the ML code.

The second problem is relatively straightforward; a camera
with ML active can log EDMAC activity at user-controlled inter-

vals, and on the EOS M a comparison of the logs from a series
of otherwise identical exposures, with “Long Exposure Noise Re-
duction” active and without reveals that EDMAC channel 20 is
activated only when the subtraction mechanism is active.

The first problem, however, proved to be beyond reason-
able effort for the experiment at hand. Though two-reader-one-
writer EDMAC functions are visible in the logs, the existing
ML code calling EDMAC functions primarily uses it to im-
plement a fast memcpy(), or other one-reader-one-writer func-
tions. When an EDMAC operation is configured, there are
calls to StartEDmac(ChanN, 0); to configure a channel for
writing and StartEDmac(chanN, 2); to configure a channel
for reading. This leads to the natural conclusion that calling
StartEDmac(ChanN, 1); might plumb a second reader, but
making calls of that form doesn’t appear to do anything other than
hang the camera.

Conclusions
As compelling as the low-level access afforded by the ED-

MAC is, and despite Magic Lantern’s successes at reverse engi-
neering Canon’s camera architecture, it is still likely a bad idea to
use the direct hardware access afforded by ML as a development
target for research.

The supported cameras are aging - on the order of a decade
at this point - the understood functionality is spotty. The proces-
sor and memory resources available on-camera are fairly feeble,
so any applications that aren’t simply remixes of existing func-
tionality will be unreasonably awkward or impossible.

That said, scripting behaviors which are essentially remixes
of existing functionality are likely to work well. Scripted shooting
to permute camera parameters to study camera or lens behavior
are very straightforward to set up, as are event-triggered shooting
or programmed exposure sequences to study the subject of the
photograph, all of which are compelling applications not exposed
in most commercial cameras.

Another potential win for researchers is the use of the MLV
format to export RAW data for later processing when doing work
involving the low-level pixel-format, such as algorithms for de-
mosaicing.

Overall, using ML for research can be a very frustrating ex-
perience. The cameras it supports are now old, but they were
relatively high-end consumer cameras when they were released,
and the ML software infrastructure cleanly exposes more of their
inner workings than can be accessed using any other software en-
vironment on any comparable or newer cameras from any major
brand. If newer cameras were supported, and especially if the
project were to be given a bit of help directly by Canon, the level
of access provided by ML would be compelling for a very wide
range of research projects – and very appealing as a platform for
third-party software developers.

Unfortunately, no manufacturer of high-end consumer cam-
eras has yet come to appreciate the potential value of providing
an open API for running applications in the camera. Perhaps the
failure of Digita [14], which failed largely because it was simply
too early, continues to discourage manufacturers from making an
open API for camera apps? We look forward to the day that cam-
era apps for high-end cameras become as easy to write as smart-
phone apps.
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