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Abstract
This paper proposes a pixel-wise parameter estimation

framework for Event-based Vision Sensor (EVS) characterization.
Using an ordinary differential equation (ODE) based pixel la-
tency model and an autoregressive Monte-Carlo noise model, we
first identify the representative parameters of EVS. The parameter
estimation is then formulated as an optimization problem to mini-
mize the measurement-prediction error for both pixel latency and
event firing probability. Finally, the effectiveness and accuracy of
the proposed framework are verified by comparison of synthetic
and measured event response latency as well as firing probability
as function of temporal contrast (so-called S-curves).

Introduction
The Event-based Vision Sensors (EVS) [1–5], sometimes

also referred to as Dynamic Vision Sensors (DVS), capture our
world from a completely different perspective compared to clas-
sical CMOS Image Sensors (CIS). In EVS, each pixel indepen-
dently detects whether the logarithmic luminance changes beyond
defined relative thresholds in an asynchronous manner (Fig. 1a).
This enables sparse, low-latency, and low-power image acquisi-
tion. This paradigm change requires novel models, characteriza-
tion techniques as well as model parameter estimation.
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Figure 1. a) analog EVS pixel circuit schematic, b) temporal contrast mea-

surement timing diagram, and c) fire probability "S-curve" and timestamp

distributions [10]. Nominal contrast threshold (NCT) is the scene contrast

required to yield 50 % trigger probability.

Figure 2. The proposed setup. The parameter estimation is formulated as

an optimization problem to minimize the measurement-prediction error.

As EVS sensors are novel, so is their characterization. Com-
monly used characterization methods measure e.g. the average
time from a contrast step to an event trigger or the average event
trigger probability for a given temporal contrast step (Fig. 1 b
& c). These methods, unfortunately, provide no predictive value
as the resulting sample averages depend largely on measurement
conditions such as sensor contrast threshold, temporal contrast
step, or timing aspects such as the time used to determine whether
an event was observed. Therefore, a model-based approach is
needed. Simulators to emulate event sensors have been pub-
lished in recent years [6, 7], however, these describe sensors only
phenomenologically and do lack careful calibration against sim-
ulation and characterization. Only recently, a physically based
model has been proposed and reasonable resemblance to simu-
lated and measured observations was demonstrated [8, 10]. This
paper builds upon the physical model published in [10]. It an-
alyzes the relevance of the employed model parameters, deter-
mines key parameters, and then promotes an optimization-based
model parameter estimation method.

Figure 2 illustrates the proposed experimental characteriza-
tion setup EVS used for parameter estimation. Our sensor is mod-
eled based on an ordinary differential equation (ODE) pixel la-
tency model and an autoregressive Monte Carlo noise model [10].
The model was derived using common circuit modeling tech-
niques. Comparisons between measurements, simulations, and
model demonstrated good resemblance and thus the validity of
the approach [10].

In this work, we deduce that the most significant pixel model
parameters are the temporal contrast threshold (CTH), the cou-
pling capacitance (CC), and source follower bias current (IBSF).
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Figure 3. Simplified log-amplifier schematic a) and SF schematic b) and

their respective small signal circuits in c) and d), respectively.

Other model parameters are assumed to match our prior expecta-
tions from design. Our goal in characterization is then to find the
pixel-wise parameter values that can best align the model with the
real sensor data for both event response latency and event firing
probability. We formulate this model parameter estimation as an
optimization problem and then minimize the loss function based
on the relative error between the model prediction and the actual
measurement weighted in the L2 norm. We jointly account for
pixel latency and event firing probability. We validate the quality
of the parameter extraction method using the simulation model as
this provides a ground truth. Finally, we apply the method to real
measurements.

Circuit Modelling
Assuming that all transistors operate in saturation and weak

inversion and that the inverting amplifier in the feedback loop of
the logarithmic amplifier has an idealized affine-linear behavior,
and neglecting its additional pole, we can model the large signal
response through simple ordinary differential equations [10]. The
logarithmic amplifier follows:

d∆VFE(t)
dt

+
A · ID1(t0)
[1+A] ·CC

· exp
(

ζ +A
A ·ζ ·VT

·∆VFE(t)
)

=
A

[1+A] ·CC
· IPD, (1)

where ∆VFE describes the relative signal change at the output of
the logarithmic amplifier with respect to the signal at the last
sampled reference luminance level. A is the open-loop gain of
the inverting amplifier, ID1 is the current through the transistor
whose source is connected to the photodiode operating the linear-
to-logarithmic conversion. IPD is the photocurrent, CC is the
feedback capacitance between the input and output of the log-
amplifier, ζ is the transistor subthreshold slope parameter and VT
is the thermal voltage.

The source-follower is designed to avoid kick-back from the
switched capacitor circuit performing the difference detection. It
is modeled as:

d∆VO1(t)
dt

=
1

CLSF
·
[

IBSF

−ISF(t0) · exp
(

ζ ·∆VO1(t)
ζ ·VT

− ∆VFE(t)
ζ ·VT

)]
, (2)

with ∆VO1 being the relative output signal change, ISF is the cur-
rent through the source-follower transistor and IBSF is its bias cur-
rent. CLSF is the load seen by the source-follower.

It can be shown that the logarithmic amplifier has an analyt-
ical solution to a step-response in photocurrent Iphoto-0 → Iphoto-1:

∆v =
∆VFE

VT · A·ζ
ζ+A

= ln
(

Iphoto-1

Iphoto-0
· 1

1+Cscene · exp[−[t − t0]/τ]

)
,

(3)

with the time-constant τ = 1+A
A · A·ζ

ζ+A · VT·CC
Iphoto-1

. Assuming that the
bandwidth limitation of the log-amplifier is more significant than
the source-follower, an analytical response can be found as:

∆VO1(t)≈
1
ζ
·∆VFE(t) (4)

Figure 3 depicts the small signal equivalent circuits used to
derive the noise model. For small photocurrents corresponding to
low-light conditions, the shot noise of the photocurrent and tran-
sistors dominates over e.g. flicker noise assuming the operating
range of interest is not at very low frequencies. We thus approxi-
mate the noise to follow shot noise processes resulting in the fol-
lowing autocorrelation functions RFE, FE, and RO1, O1 which are
injected at the input and output of the source-follower circuit [10]:

RFE, FE(∆t) = ζ · kB ·T
CC

· e−
|∆t|

CC/gmG1

+ζ · kB ·T
CPD ·CC · CC+CL

[CC+CPD]2

· e
− |∆t|

CPD · CC+CL
CC

/gmG2 (5)

RO1, O1(∆t) =
kB ·T
CLSF

· e−
|∆t|

CLSF/gmG−SF (6)

Here, kB is the Boltzmann constant, CPD is the photodiode
capacitance and CL is the load capacitance seen by the inverting
amplifier. gmG1 = ID1

ζ ·VT
, gmG2 = Ib

ζ ·VT
, and gmG-SF = IBSF

ζ ·VT
are the

small-signal gains of the log-amplifier transistor, the transistor of
the inverting amplifier driven with bias Ib and the source follower.
In our event vision simulator, these autocorrelation functions are
used to create Monte Carlo trials using autoregressive processes.
This allows the synthesis of training data for algorithm develop-
ment from ground truth high-speed video data. Furthermore, this
enables the evaluation of parameter extraction methodologies as
conversely to actual measurements, the underlying model param-
eters are known apriori.

Joint Parameter Estimation
From Eq. 1 it can be seen that for A ≫ ζ changes in A and

CC are indistinguishable, so we assume A to follow the expecta-
tion from design and focus on estimating CC. Assuming a settled
starting condition ISF(t0) = IBSF such that there is no displace-
ment current flowing through CLSF, one can see from Eq. 2 that
the impact of IBSF and CLSF are indistinguishable. Thus we focus
on estimating IBSF. We empirically determined that the impact of
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Figure 4. Pixel response latency vs. luminance as function of CC, IBSF and CTH.

ζ is minor resulting in CTH, CC, and IBSF being the most signifi-
cant parameters which we aim to estimate. Figure 4 shows latency
variability as function of these three key parameters.

Given the effective 1.5bit output of an EVS pixel (’increase’,
’decrease’, or ’no event’), we can essentially only observe trigger-
ing probability distributions or time-stamp distributions as well as
moments of these distributions. Reference [10] focused on utiliz-
ing average time stamps to derive model parameters. Assuming
that the log amplifier is the latency bottleneck, the analytical step-
response solutions can be rearranged to determine the noise-free
time-stamp for a temporal contrast step:

tevent = τ · ln
(

Cscene · [1+C∞]

Cscene −C∞

)
, (7)

with Cscene =
Iphoto-1−Iphoto-0

Iphoto-0
and C∞ = exp

[
Vthreshold

VT·G

]
− 1, the com-

parator threshold Vthreshold, and the difference detector gain G
[10]. It was shown in [10] that at sufficient temporal contrast, this
noise-free time-stamp is close to the noise-affected time-stamp.
From Eq. 7, it can be seen that in order to derive τ and C∞ a
combination of contrast changes Cscene as well as reference level
changes Iphoto-0 are required to yield independent measurements.

Conversely to [10] in this work we not only utilize the trigger
latency but also the event trigger probability to extract model pa-
rameters. This helps to balance the matching of extracted param-
eters for both key observables. However, this requires the model
to consider the stochastic properties of the EVS pixel which we
model using Monte-Carlo trials.

In this work we used grid search optimization per pixel:

C∗
C-i, j, I

∗
BSF-i, j,C

∗
TH-i, j = argmin

CC,IBSF,CTH

Ji, j, (8)

with the per-pixel cost function Ji, j:

Ji, j =

w∑
∀k

∥∥∥∥∥ τk
i, j − τmodel(CC, IBSF,CTH)

τk
i, j

∥∥∥∥∥
2

+(1−w)∑
∀k

∥∥∥∥∥NCT k
i, j −NCTmodel(CC, IBSF,CTH)

NCT k
i, j

∥∥∥∥∥
2
 .

(9)

w denotes the weight balancing the contributions to the loss func-
tion between pixel response latency and NCT. We empirically
found that w = 0.5 yields good results for our range of interest.
τmodel and NCTmodel are the mathematical models for latency and
NCT estimated through Monte-Carlo trials. k are all measure-
ments mutually distinct in scene contrast and/or nominal lumi-
nance level and i, j are the pixel coordinates. The cost function
uses normalized latency and NCT in order to achieve good per-
formance for a large dynamic range.

Method Validation
To validate the effectiveness of the proposed cost function,

we employ camera simulation for which we have apriori knowl-
edge of the ground truth parameters. Figure 5 shows the loss
curves in which for each curve only one of three parameters is

Figure 5. Loss curves of the proposed objective function with one free parameter and the other two fixed.
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Figure 6. Pixel-wise distributions of estimated parameters CC, IBSF, CTH. The parameters here are normalized to the expected value.

swept from the optimality condition. In general, we have no guar-
antee of convexity. Thus we empirically validated convergence
in the parameter range of our interest. Furthermore, global opti-
mization techniques help to avoid getting stuck in a local optima.
We do employ grid search. It can be observed that the slope of the
cost function can be very small. Thus noise can have a consider-
able impact on the parameter estimation and a sufficient amount
of Monte-Carlo samples ought to be used to mitigate this issue.
Again this can be empirically validated using camera simulation
for a given expected parameter range of interest.

Experimental Results
The proposed parameter extraction methodology (Eq. 9) is

now applied to measurements using the sensor published in [9].
A region of interest (ROI) of 100×100 in the center of the image
plane is selected for characterization. In order to yield indepen-
dent measurements, we generate various temporal contrast steps
as well as varying reference luminance levels Lref:

Cscene ∈

{
{[100%,110%,120%, ...,200%} for pixel latency
[2%,4%,6%, ...,40%] for NCT

(10)

and

Lref ∈ {15lx,130lx,310lx,700lx,910lx}. (11)

Figure 6 shows the estimated parameter distributions. CC
and CTH roughly resemble normal distributions, whereas IBSF ex-
hibits large variability and shows an almost bimodal distribution.
This is because IBSF has a limited impact in the Lref range. The
latency of the source follower only dominates the overall latency
at ⪆ 1000lx [9].

The extracted model parameters were used to plot expected
latency curves and sample trigger probability curves vs. temporal
scene contrast. The resemblance of the model and measurements
is depicted in Figure 7 for selected pixel. For low luminance lev-
els, the latence model slightly overestimates the latency. This
can be improved either by adjusting the cost function to place
more emphasis on this region or by introducing more degrees
of freedom than the simplified single-pole approximation given
by the ordinary differential equation model. The firing probabil-
ity curves also show reasonable resemblance vs. measurements

Figure 7. Pixel latency comparison between the measurement and our

model using the estimated parameters under different illuminances and tem-

poral contrast for two sampled pixels.

Figure 8. S-curves comparison between the measurement and our model

using the estimated parameters for 200 sampled pixels.

Figure 9. NCT comparison between the measurement and our model using

the estimated parameters for 20 sampled pixels.
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as can be seen in Figure 8 where a population of 200 measured
curves is compared to 200 model curves. A slight change in slope
of the S-curve can be observed which can be attributed to the sim-
plistic noise model. We compute the NCT values of 20 pixels
based on the extracted model parameters and overlay these with
their measured values and also find a good resemblance in Fig-
ure 9.

Conclusion
This work presents perspectives on parameter extraction of

a physical EVS pixel model. Conversely to [10] a joint optimiza-
tion approach to account for pixel latency and firing probability
is employed. The optimization incorporates the stochastic nature
of the pixel operation using Monte Carlo trials. The model was
validated using the device simulator as the ground truth model pa-
rameters are known apriori. The model was then used to extract
parameters from measured devices and a comparison of latency
and estimated firing probabilities is given for a range of measure-
ment conditions proving that the model has predictive value.
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