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Abstract
Camera spectral sensitivity (CSS) establishes the connec-

tion between scene radiance and device-captured RGB tristim-
ulus values. Since the spectral sensitivity of most color imaging
devices typically deviates from that of human vision or a stan-
dard color space and also noise is often introduced during the
process of photoelectric signal conversion and transmission, the
design of an efficient CSS with noise robustness and high color
fidelity is of paramount importance. In this paper, we propose a
CSS optimization method with noise consideration that designs
theoretically an optimal CSS for each noise level. Additionally,
taking practical considerations into account, we further extend
the proposed method for a universally optimal CSS adaptable to
diverse noise levels. Experimental results show that our opti-
mized CSS is more robust to noise and has better imaging perfor-
mance than existing optimization methods based on a fixed CSS.
The source code is available at https://github.com/xyu12/Joint-
Design-of-CSS-and-CCM-with-Noise-Consideration-EI2024.

Introduction
Camera spectral sensitivities (CSSs) are functions of wave-

length describing the sensitivity of light detection for color fil-
ters and image sensors [1]. A digital color camera measures
scene radiance as three primary pixel values: red, green, and
blue (RGB) [2]. We refer to those measured RGB pixel values as
camera RGB pixel values. The color space of device-dependent
camera RGB is generally different from a standard sRGB color
space [3, 4]. Therefore, we need to convert the camera RGB to
the sRGB. This conversion is called color correction.

It is well-known that the performance of color reproduction
via color correction strongly depends on the CSS. In [5, 6], the au-
thors proposed an optimization algorithm of the CSSs assuming a
noise-free situation, where the CSSs are optimized by minimizing
the squared difference between estimated sRGB and true sRGB.

In practice, we need to take into account the effect of noise,
because the measured pixel values include noise and it is ampli-
fied by the color correction process [7, 8]. There is a trade-off
relationship between color reproduction performance and noise
amplification. If we focus on the color reproduction performance
only, the noise is severely amplified. Tan et al. introduced a met-
ric that evaluates color reproduction performance by taking into
account the noise amplification [9]. They also proposed a color
correction method based on their metric. Gong et al. empirically
showed that a broader CSS is more robust against noise but has
lower color reproduction performance [10].

Inspired by those works [9, 10], we propose a CSS design
method to improve color reproduction performance with the con-
sideration of noise amplification. To simplify the problem, we

assume a three-sensor case to avoid the effect of demosaicking in
a single-sensor case with the Bayer color filter array [11].

In this paper, we first show an optimization method of the
CSS for a certain noise level by minimizing the metric by Tan
et al. [9]. Then, considering that it is infeasible to replace CSS
for every noise level in practice, we also show an optimization
method of the CSS for multiple noise levels. Experimental com-
parisons demonstrate that the CSS optimized by our method out-
performs existing CSSs.

Preliminaries
The color of a pixel recorded by a digital camera depends

on three physical factors: the spectral power distribution of the
illuminant, the spectral reflectance of the object, and the CSS [6].
Consequently, the pixel value ρ can be modeled as

ρk =
∫

ω

Ck (λ )S (λ )R(λ )dλ , k ∈ {R,G,B} , (1)

where the subscript k denotes the color channel, λ indicates the
wavelength defined on the visible spectrum ω (broadly speaking,
400nm to 700nm). The functions Ck (λ ), S (λ ), R(λ ) represent
the CSS of the k-th color channel, the spectral distribution of the
illuminant, and the spectral reflectance of the object, respectively.

For optimization, we consider a discrete version of Eq. 1 as

ρk = cccT
k · xxx, k ∈ {R,G,B} , (2)

where xxx is a discretized irradiance vector, S (λ )R(λ ), with a cer-
tain interval of the wavelength (10nm in our experiments), ccck is
the corresponding discretized k-th CSS vector, and T represents
the transpose operation.

We consider i.i.d. Gaussian noise [13] and use a simple lin-
ear color correction [14]. Let XXX be a matrix where each column
contains the irradiance vector xxx of one pixel in the image and all
the pixels are stacked in the column direction. Similarly, let QQQ be
a matrix containing color-corrected sRGB values of all the pixels.
Then, the estimated sRGB via color correction QQQ is written as

QQQ = MMM
(

CCCT XXX +ZZZ
)
, (3)

where CCC is a CSS matrix containing the CSSs of three color chan-
nels, ZZZ is an i.i.d. Gaussian noise matrix, and MMM is 3× 3 color
correction matrix (CCM).

Methodology
Figure 1 illustrates the overall imaging pipeline and the loss

function for our optimization. Our optimization is a data-driven
approach, where we utilize a dataset of hyperspectral images. We
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Figure 1. The overall flow of our method for the joint design of camera spectral sensitivity and color correction matrix with noise consideration. The parameter µ

is determined by assuming the BM3D denoising [12] in our proposed method.

use the hyperspectral images as scene irradiance maps that are
the products of lighting and reflectances. A camera RGB image
is then obtained by multiplying an irradiance map with the CSS.
After adding Gaussian noise, a CCM is applied to obtain the esti-
mated sRGB image. Based on this pipeline, the CSS and the CCM
are jointly optimized to minimize a loss function, which consists
of two terms: the metric by Tan et al. [9], and a CSS constraint,
which is a practical constraint of the CSS that the sensitivity of
each wavelength should be within a specified value range. Fur-
thermore, considering the final image reconstruction performance
including denoising, we add the parameter µ to simulate the de-
noising effect in the optimization. This part will be explained in
detail later.

In our method, we first introduce bias error and variance er-
ror based on the metric by Tan et al. [9]. Then, we simultaneously
optimize the CSS matrix CCC and the CCM MMM for a certain noise
level. Finally, we consider a multi-noise level case.

Assuming that there is no correlation between signal and
noise, the metric by Tan et al. [9] can be expressed as

Eσ (CCC,MMM) =
1
N
∥QQQ−YYY∥2

F =
1
N
∥MMM

(
CCCT XXX

)
−YYY∥2

F +σ
2∥MMM∥2

F ,

(4)

where YYY is a matrix containing true sRGB values of a pixel in
each column, N is the number of the pixels in the image, and σ is
a noise level, i.e. a standard deviation of the noise. The first term
in Eq. 4 of εb = 1

N ∥MMM
(
CCCT XXX

)
−YYY∥2

F represent a bias error. The
second term of εv = σ2∥MMM∥2

F represent a variance error.

Individual optimization for single-noise-level case
Let σ be a given noise level. Here, we simultaneously opti-

mize the CSS and the CCM for the given noise level. Before ap-
plying optimization, we need to consider a physical restriction of

the CSS. Because the color filters are placed in front of the image
sensor and block some parts of light, the resultant CSSs should
not be beyond the sensitivity of the unfiltered monochrome image
sensor, which is typically called white sensitivity [15]. Thus, we
add this maximum sensitivity constraint to Eq. 4 as

Jσ (CCC,MMM) = Eσ (CCC,MMM)+LW (CCC), (5)

where LW (CCC) represents what we call the white constraint of the
CSS. This constraint is formulated as

LW (CCC) =∑
k, j

ℓw(ck j) , ℓw(ck j) =

{
0, 0 ≤ ck j ≤W j
∞, else

, (6)

where k represents the color channel, j represents the index of the
discrete wavelength, ck j is the corresponding element of CCC, and
W j is the spectral sensitivity of the unfiltered monochrome image
sensor at the corresponding wavelength. This constraint gives an
infinite cost if the element of the CSS, i.e., the sensitivity of each
wavelength, is out of the range of [0, W j].

An optimal CSS depends on the noise level. Thus, in the first
step, we jointly design an optimal CSS and CCM for a certain as-
sumed noise level (σ = 0,2,5,8,10,20,30 ). In our experiments,
the pixel values are normalized within the range [0,1], so the ac-
tual noise level needs to be divided by 255, respectively. Even
though, for the sake of linguistic simplicity, we shall continue to
express the noise level as described above in this paper. We jointly
optimize the loss function in Eq. 5 regarding the CSS CCC and the
CCM MMM by a proximal gradient descent (PGD) algorithm [16],
given in the following Algorithm 1. As a result, we derive the
optimal CSS and CCM corresponding to each distinct noise level.

Common optimization for multi-noise-level case
In pursuit of optimal image reconstruction performance, de-

signing the CSS individually for each noise level is theoretically
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Algorithm 1 PGD Algorithm for the Joint Optimization

1: Initialize CCC0 and MMM0 respectively with an existing CSS and
an initial CCM obtained by least squares solution.

2: Notice that iter denotes the default value of iterations, and the
prox() function is employed to constrain the intensity of CCCi

within LW (CCC).
3: Learning rate of CSS and CCM are defined by lrC and lrM ,

as well as utilizing gradC and gradM to denote the gradient
of Eq. 5 with respect to CCC and MMM.

4: CCC0 = Initial CSS,MMM0 = MMMLS, i = 0, where MMMLS is the least
square solution of Eq. 5 for CCC =CCC0.

5: while i ⩽ iter do
6: CCCi = prox

(
CCCi−1 − lrC ×gradC

)
7: MMMi = MMMi−1 − lrM ×gradM
8: i = i+1
9: end while

10: return CCCi, MMMi

advantageous. However, it is infeasible to change the CSS for
each noise level in practice. Thus, we extend the previous sec-
tion’s approach to a multi-noise-level case.

Although we cannot easily change the CSS in hardware, we
can easily change the CCM in software. Thus, we propose to op-
timize one CSS matrix CCC and multiple CCM MMMσσσ iii corresponding
to the set of assumed noise levels. The loss function is denoted as

J (CCC,{MMMσσσ iii}) = ∑
σi

Eσi (CCC,MMMσσσ iii)+LW (CCC), (7)

which can be resolved using the PGD algorithm akin to that out-
lined in Algorithm 1. Consequently, this approach will yield
one optimal CSS for all assumed noise levels along with optimal
CCMs corresponding to each distinct noise level.

Joint optimization taking denoising into account
Currently, we have provided precise definitions for the loss

functions in both optimization methods we described before. As
defined in Eq. 4, we assign equal weight to the first term of bias er-
ror εb and the second term of variance error εv in the optimization
process, which is in adherence to our proposed imaging pipeline.
However, empirical experiments revealed that variance error pre-
dominantly influences optimization outcomes, which will result
in the image reconstructed with our optimized CSS exhibiting a
high signal-to-noise ratio but compromised color reconstruction
quality, as elucidated in the subsequent section. This observation
can be attributed to the absence of a denoising process within the
assumed imaging pipeline. Nevertheless, conventional denois-
ing algorithms often disrupt the linear transformation between the
estimated sRGB values and the corresponding spectral radiance,
thereby complicating the representation in the form of an opti-
mization function. Consequently, we introduce a parameter µ to
emulate the function of a denoising algorithm. With this parame-
ter, Eq. 4 can be reformulated as

Êσ = εb +µ · εv . (8)

As illustrated in Fig. 1, to facilitate a more intuitive assess-
ment of the imaging reconstruction quality of the aforementioned

optimization methods, we employ the BM3D denoising algo-
rithm [12]. We determine the parameter µi for varied noise levels
by evaluating the error between noise-free and denoised images
by utilizing hyperspectral image patches. The loss function and
the optimization algorithms are the same as those discussed in the
preceding sections except for the introduction of the parameter µ .

Experimental Results

Datasets and evaluation details
In our optimization, we require hyperspectral images or sam-

ples to form XXX in Eq. 4. For this purpose, we used the spectral
reflectance data of 96 color patches of SG ColorChecker [17] and
the CIE D65 illuminant. Consequently, the size of XXX becomes 31
by 96, where each column represents a 31-band irradiance vector
for each color patch with the spectral range from 420nm to 720nm
with intervals of 10nm.

Using the CSS and the CCM optimized with the 96 color
checker samples, we evaluated their performance for two scenar-
ios. The first evaluation was performed using the same 96 color
checker samples, where the samples were rearranged to an image
form with 100× 100 pixels for each sample, as shown in Fig. 1.
This is the ideal condition that the data used for optimization and
testing are the same and thus can be used to confirm the theo-
retical correctness of our optimization. The second evaluation
was performed using real hyperspectral images of the TokyoTech
dataset [18]. The dataset contains a total of 30 scenes. We used
the last 10 scenes for the evaluation and the remaining 20 scenes
for estimating the parameter µ in the case including denoising.
The second experiment can be used to confirm the robustness of
our optimization for real-world scenarios.

Designed optimal CSSs
We selected the CSS of Sony IMX265 CMOS sensor (The

CSS data were obtained from https://thinklucid.com/)
shown in Fig. 2 (a) as an initial CSS for our optimization as well as
the white constraint. We jointly designed the CSS and the CCM
for the assumed noise levels. Figure 2 (b) shows the optimized
CSSs in the single-noise-level case for the noise levels of 0, 10,
and 30. We can observe that the CSSs for higher noise levels (e.g.,
10 and 30) tend to be a broader shape. Figure 2 (c) shows the op-
timized CSS in the multi-noise-level case. From the results of
both individual and common optimization methods, we can con-
firm that the shape of the CSS curves becomes wider to counteract
the offset of the adverse effects of increased noise levels on image
reconstruction quality.

Comparasions with other methods
The case without denoising. We compared our proposed

methods with Tan et al. method [9] applied to existing Sony CSS.
Tan et al. method only optimizes CCM for each noise level and
does not change the CCS. For all the methods, we followed the
imaging pipeline introduced in Fig. 1 to perform the color cor-
rection on the camera RGB image with added noise. To confirm
the theoretical correctness of our optimization methods, we here
excluded the denoising process and the parameter µ from the op-
timization process. Thus, the evaluation here was performed be-
tween resultant noisy sRGB images and ground-truth noise-free
sRGB images.
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Figure 2. Optimized CSSs using the 96 color patch samples of SG ColorChecker. (a) shows the initial Sony CSS. (b) shows the optimized CSSs by our

individual optimization method for each noise level. (c) shows the optimized CSS by our common optimization method for multiple noise levels.

Table 1: Numerical comparisons on SG ColorChecker dataset,
where Individual (wo) and Common (wo) respectively de-
note the individual optimization and the common optimization
methods without utilizing parameter µµµ and denoising.

Metric
Noise

Sony CSS
Individual Common

level (wo) (wo)

CPSNR

0 35.45 45.86 33.80
2 34.34 39.70 33.44
5 31.03 33.69 31.93
8 28.19 30.50 30.09

10 26.70 29.05 28.94
20 22.13 24.82 24.65
30 19.77 22.41 22.08

Avg. 28.23 32.29 29.28

TPSNR

0 35.45 45.86 33.80
2 34.34 39.70 33.44
5 31.03 33.69 31.93
8 28.19 30.50 30.09

10 26.70 29.05 28.94
20 22.13 24.82 24.65
30 19.77 22.41 22.08

Avg. 28.23 32.29 29.28

We used color peak signal-to-noise ratio (CPSNR) and the-
oretical peak signal-to-noise ratio (TPSNR) to evaluate the final
image reconstruction performance of different methods. TPSNR
is calculated as

T PSNR = 10× log10

(
1

Eσ/3

)
, (9)

where Eσ is calculated by Eq. 4 given the CSS and the CCM. TP-
SNR represents theoretically/computationally derived PSNR for
the evaluated scenes.

Table 1 and 2 summarize the numerical comparisons on
the SG ColorChecker dataset and the TokyoTech dataset, respec-
tively. Both CPSNR and TPSNR metrics represent higher is bet-
ter. Table 1 shows the results for SG ColorChecker data and
shows that the proposed individual optimization method signif-
icantly outperforms the method by Tan et al. with Sony CSS at
each noise level. The proposed common optimization method that
designs a universally optimal CSS for multiple noise levels also
performs much better than the baseline Sony CSS in the cases of
high noise levels. Notice that the individual optimization method
independently designs CSS and CCM for each noise level, thus
it naturally achieves the best performance for the evaluation us-
ing SG ColorChecker. Meanwhile, the more practically meaning-

Table 2: Numerical comparisons on TokyoTech dataset, where
Individual (wo) and Common (wo) respectively denote the in-
dividual optimization and common optimization methods with-
out utilizing parameter µµµ and denoising.

Metric
Noise

Sony CSS
Individual Common

level (wo) (wo)

CPSNR

0 37.46 48.27 32.70
2 34.94 39.72 31.67
5 30.76 33.37 29.61
8 27.84 29.57 27.92
10 26.38 27.77 26.98
20 22.09 23.27 23.65
30 20.06 21.53 21.62

Avg. 28.51 31.93 27.74

TPSNR

0 37.46 48.27 32.70
2 34.94 39.73 31.68
5 30.77 33.38 29.61
8 27.85 29.58 27.93
10 26.39 27.78 26.99
20 22.10 23.27 23.66
30 20.06 21.53 21.63

Avg. 28.51 31.93 27.74

ful common optimization method also outperforms the baseline,
proving the superiority of our method.

Table 2 shows the results for the TokyoTech dataset and
shows similar trends to Table 1. Specifically, under conditions
of elevated noise levels exceeding 20, the common optimization
demonstrates superior imaging performance in comparison to the
individual optimization, emphasizing the role of our optimization
function in improving the robustness for real-world scenarios.

In Table 1 and 2, it can be distinctly observed that CPSNR
and TPSNR are nearly equal under identical optimization condi-
tions. This observation underscores the efficacy of the mathemat-
ical models we have proposed, as they exhibit a robust fit to the
imaging pipeline we have presented, even when applied to rela-
tively small 96-patch data for optimization.

Figure 3 visually compares the output noisy sRGB images.
In both Fig. 3 (a) and (b), the top row shows the output sRGB
images and the bottom row shows the RMSE maps compared with
the ground truth. The darker the color of the RMSE map, the
lower the error between the output and ground-truth images.

In Fig. 3 (a), owing to the homogeneous color distribution
and straightforward structure of the test image, superior image re-
construction quality is readily attainable. Our proposed methods
conspicuously surpass the baseline in visual performance. Con-
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Figure 3. Visual comparisons and RMSE maps of noisy sRGB images

without including denoising and utilizing µ (wo), where the noise level is 30.

trastingly, in Fig. 3 (b), given the comparatively intricate color
distribution in the TokyoTech dataset, our optimization outcomes
exhibit inaccuracies in reproducing image color, even when con-
fronted with a high signal-to-noise ratio. Considering that there
exists a trade-off between noise robustness and color reconstruc-
tion performance during the CSS optimization process, a broader
CSS is more robust against noise but has lower color reproduc-
tion. In the interim, it is well-established that the color correction
process amplifies image noise, thereby accentuating the predom-
inant influence of the variance error defined in Eq. 4 during joint
optimization. In light of the confluence of these influencing fac-
tors, it proves challenging for the optimization method we have
introduced to ensure the color reconstruction quality of the im-
age under conditions of elevated noise levels, notwithstanding its
comparative superiority over the baseline.

The case with denoising. Motivated by the suboptimal per-
formance observed in color reconstruction in the preceding sec-
tion, it became evident that, throughout the optimization proce-
dure, the variance error εv assumes a dominant role, exhibiting
magnitudes dozens of times larger than the bias error εb, thus
we employed the parameter µ to properly weight these two er-
ror terms.

Table 3 and 4 summarize the numerical comparisons of the
denoised images on the two different datasets. It can be markedly
observed that, after taking the denoising factor into account, our
optimization method is significantly superior to the baseline. In
high noise level cases, the common optimization method has dis-
tinct advantages. While the common optimization method lags
behind the individual optimization in low-noise-level conditions,
its emphasis on designing a CSS adaptable to multiple noise lev-
els has proven its superior imaging reconstruction performance in
practical scenarios. Notably, across various noise stages, it out-
performs the Tan et al. method, which only optimizes the CCM
with noise consideration while utilizing a fixed Sony CSS.

Table 3: Numerical comparisons on SG ColorChecker dataset,
where Individual (w) and Common (w) respectively denote the
individual optimization and the common optimization methods
with parameter µµµ utilized and denoising included.

Metric
Noise

Sony CSS
Individual Common

level (w) (w)

CPSNR

0 35.45 45.86 39.92
2 35.43 45.41 39.91
5 35.17 44.04 39.84
8 34.20 42.33 39.67
10 33.13 41.18 39.50
20 27.46 35.90 37.70
30 23.96 32.91 35.05

Avg. 32.11 41.09 38.80

Table 4: Numerical comparisons on TokyoTech dataset, where
Individual (w) and Common (w) respectively denote the indi-
vidual optimization and common optimization methods with
parameter µµµ utilized and denoising included.

Metric
Noise

Sony CSS
Individual Common

level (w) (w)

CPSNR

0 37.46 48.27 40.35
2 36.20 43.08 38.59
5 34.68 39.45 36.82
8 33.37 37.33 35.66
10 32.43 36.26 35.07
20 28.05 31.29 32.88
30 25.40 28.33 31.16

Avg. 32.51 37.71 35.79

Figure 4. Visual comparisons and RMSE maps of denoised images with

the parameter µ utilized (w), where noise level is 30

The outstanding performance of the common optimization
method in color reconstruction can be illustrated sufficiently in
Fig. 4. Through the visual comparison, it becomes evident that the
proposed common optimization method significantly outperforms
other methods, especially in high-noise-level cases.

Conclusion
In this paper, we have proposed a method to derive a theoret-

ically optimal CSS. We have first introduced an individual opti-
mization method for jointly designing CSS and CCM in single-
noise-level cases. Additionally, taking practical considerations
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into account, we further have extended the method to derive a
commonly optimal CSS for the multi-noise-level case. Simultane-
ously, considering the color reproduction performance of the op-
timized CSS, we have incorporated a weighting parameter µ into
the optimization function, simulating the denoising algorithm’s
role in the assumed imaging pipeline. Experimental comparisons
have demonstrated that the CSSs optimized by our methods out-
perform existing CSSs among a wide range of noise levels.
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