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Abstract
Recently, many deep learning applications have been used

on the mobile platform. To deploy them in the mobile platform,
the networks should be quantized. The quantization of computer
vision networks has been studied well but there have been few
studies for the quantization of image restoration networks. In pre-
vious study, we studied the effect of the quantization of activations
and weight for deep learning network on image quality following
previous study for weight quantization for deep learning network.

In this paper, we made adaptive bit-depth control of input
patch while maintaining the image quality similar to the floating
point network to achieve more quantization bit reduction than pre-
vious work. Bit depth is controlled adaptive to the maximum pixel
value of the input data block. It can preserve the linearity of the
value in the block data so that the deep neural network doesn’t
need to be trained by the data distribution change.

With proposed method we could achieve 5 percent reduction
in hardware area and power consumption for our custom deep
network hardware while maintaining the image quality in subejc-
tive and objective measurment. It is very important achievement
for mobile platform hardware.

Introduction
Deep neural networks (DNNs) have become the state-of-the-

art in the computer vision and sequence modeling problems like
image classification, object detection, speech recognition. How-
ever, they usually suffer from high cost computation and memory
costs with a huge amount of parameters. For example, Krizhevsky
et al’s research [1] and Simonyan et al’s approach [2] show huge
amount of parameters and deep layers. So it’s very difficult to
deploy deep networks on the mobile platforms that have limited
power and computation resources.

This led to plentiful reserch that focus on model size and in-
ference time of DNNs without degradation of performance. Ap-
proches in this researches consist of a few categories.

First, there are researches that design efficient architecture
to exploit computation and memory like MobileNet, SqueezeNet,
and DenseNet. There is also an approach like DPA Net [38]
to make efficient network by taking image restoration algorithm
analysis using distortion prior. Also DPA Net [38] tried to exploit
the property of the priors.

Second, pruning, one of network compression method is the
removal of irrelevant units (weights, neurons or convolutional
filters)[5]. Network compression methods implicitly or explicitly
aim at the systematic reduction of redundancy in neural network
models while at the same time retaining a high level of task accu-
racy [4].

Lastly, quantization is the reduction of the bit-depth of
weights or activations, which is particularly desirable from a hard-
ware perspective[6].

Network quantization for vision applications like classifica-
tion, image segmentation and object detection has drawn great
attention of researchers [1] [2] [7] [8] [9]. Approaches for low-bit
quantization of neural networks have been made for these appli-
cations. There are binary weight networks [10] [11] and ternary
networks [12] [13] [14]. But owing to requirement of high bit-
depth and high resolution there are few prior art on quantization
of image restoration problems like demosaicing, super resolution
and deblurring, etc. Seo et al [39] showed the effect of the weight
quantization as the bit-depth changes.

In this paper, we made adaptive bit-depth control of input
patch while maintaining the image quality similar to the floating
point network to achieve more quantization bit reduction than pre-
vious work. Bit depth is controlled adaptive to the maximum pixel
value of the input data block. It can preserve the linearity of the
value in the block data so that the deep neural network doesn’t
need to be trained by the data distribution change.

With proposed method we could achieve 5 percent reduction
in hardware area and power consumption for our custom deep net-
work hardware while maintaining the image quality in subejctive
and objective measurment. It is very important achievement for
mobile platform hardware.

The bit depth control adaptive to the maximum input block
data changes only precision. For low code data, full precision
is used because human is more sensitive to value change at low
code. For high code data, less precision is used, but subjective
quality does not drop much. So in the point of subjective quality,
ABC can maintain the quality in the most of cases.

Also maximum data checking algorithm is very simple.
When MSB bits are checked then checking process is done. Over-
all added algorithm HW or code can be very small.

Figure 1. Adaptive bit depth control : Bit depth is controlled adaptive to the

maximum pixel value of the input data block.

Releated works
In this work we focus mostly on quantization for demosaic-

ing that is one of the image restoration and image signal processor,
so we will brifly review related works.

Demosaicing of bayer color filter array has been extremely
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studied. [15], [16].There are various conventional approches,
such as color difference based interpolation [17], [18], frequency
domain filtering [19], [20], [21], and reconstruction methods [22],
[23]. But for new other patterns, other effort like hand-crafted al-
gorithms should be applied to solve it. So there is also universal
approach [24].

Deep learning approaches to demosaicing has been applied
[25], [26], [27], [28]. Previously, many researches focused on the
bayer CFA demosaicing, but there are researches on Quad bayer
pattern and Nona pattern demosaicing also [29], [30]. Deep learn-
ing methods have better image quality in complex CFA pattern
demosaicing although they require high computation cost.

Especially we focus on RGBW CFA and its demosaicing.
There are conventional algorithms like [33], [34] and deep learn-
ing approaches like [35], [39], [40]. Here our approach is related
to deep learning RGBW demosaicing.

To deploy deep network on mobile platform, quantization is
needed usually. There are two types of quantization methods. It is
often desirable to reduce the model size by quantizing weights and
activations post-training, without the need to re-train/fine-tune the
model. These methods, commonly referred to as post-training
quantization, are simple to use and allow for quantization with
limited data [31].Quantization-aware training simulates quantiza-
tion during training so that the quantization parameters can be
learned together with the model using training data [32].

Problem statement
Deplyment on a mobile platform such as mobile phone re-

quires quantization of network. There have been many studies on
quantization for the DNN of vision processing like classification,
segmentation, face detection and so on. But there are few studies
on quantization for DNN of image restoration like demosaicing,
denoising, deblur and super resolution. Conventional AI platform
or AI hardware support just fixed bits like 8 bit or 16 bit integer
operations and activations, but for customized AI hardware, bit
reduction is directly connected to the reduction of hardware area
and power.

In this paper, we made adaptive bit-depth control of input
patch while maintaining the image quality similar to the floating
point network to achieve more quantization bit reduction than pre-
vious work. Bit depth is controlled adaptive to the maximum pixel
value of the input data block. It can preserve the linearity of the
value in the block data so that the deep neural network doesn’t
need to be trained by the data distribution change.

Figure 2. For processing at mobile platform, block processing is assumed.

Figure 3. RGBW demosaicing with deep learning network

Proposed method
In this paper, we made adaptive bit-depth control of input

patch while maintaining the image quality similar to the floating
point network to achieve more quantization bit reduction than pre-
vious work. Bit depth is controlled adaptive to the maximum pixel
value of the input data block. It can preserve the linearity of the
value in the block data so that the deep neural network doesn’t
need to be trained by the data distribution change.

Basic idea is shown in Fig. 1, And for mobile platform pro-
cessing the block data processing is assumed because the memory
is limited in that kind of platform shown in Fig. 2. After process-
ing in neural network system, then the data should be recovered to
the original bit so that the inverse process is applied to the result
data and the dihtering is used.

Here the bit depth control adaptive to the maximum input
block data changes only precision. For low code data, full preci-
sion is used because human is more sensitive to value change at
low code. For high code data, less precision is used, but subjective
quality does not drop much. So in the point of subjective quality,
ABC can maintain the quality in the most of cases.

Also maximum data checking algorithm is very simple.
When MSB bits are checked then checking process is done. Over-
all added algorithm HW or code can be very small.

Like the preivous work we had experiments to find which
bit is most adequate for the quantization of image restoration net-
work.There are two quantizations in the network showed in Fig.
4, one is weight quantization and the other one is feature map
(activation) quantization. Here we set the weight bit as 8 bit and
watched how bit-depth of quantization for activations affects im-
age quality. Here we used only post training quantization to see
the direct effect of quantization on image quality.

Figure 4. Quantization in deep network

We used Tensorflow as a base quantization tool and our
quantized model architecture is based on their quantization net-
work architecture. But to design a custom deep network hard-
ware, we proposed our noble approach to reduce hardware area
and power without degradation of image quality. First one is in
our hardware we applied the adequate bit-depth in the feature map
and second one is we used layer folding approach to fold quanti-
zation layers and prelu layer. Our folding approach can be used
with other relu-like activations also.

r = S(q−Z) (1)

where r - real number, q - quantized number, S - scaling factor, Z
- zero point. The basic quantization scheme is the affine mapping
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of integer q to real number r. In our approach to make hardware
simple and reduce hardware size, we used symmetric quantization
so that Z is zero.

S3q(i,k)
3 =

N

∑
j=1

S1q(i,j)
1 S2q(j,k)

2 (2)

q(i,k)
3 = M

N

∑
j=1

q(i,j)
1 q(j,k)

2 (3)

Quantization of convolution can be written as the above equation.
And M is requantization scaling factor.

M =
S1S2

S3
=

SwSi
So

(4)

where Sw is scaling of weight, Si is scaling of convolution input
and So is scaling of convolution output. This is the scaling term
to calculate quantized integer output. There are two quantization
layers before and after prelu layer. To fold quantization layer and
prelu layer, we changed So as output scaling of prelu instead of
convolution output scaling. For positive output we used this as it
is while for negative output, it is multiplied by α like below.

M = α
SwSi

So
(5)

In Fig. 6 left network diagram shows original quantized net-
work and right diagram is folded quantization and prelu layers.

In this work like 3D graphics architecture testing environ-
ment(GATE) [3] that models graphics hardwrae architecture, we
also implemented the network inference environment that models
custom network inference hardware.

And we used our own network called DePhaseNet that we
proposed in the previous research [40]. Its features are multi-level
network with multi-phase inputs to adopt various phase schemes
and correlations.

Experimental results
We made experiments by preparing pairs of RGBW CFA

pattern images and ground truth RGB images. The network was
trained on MIT dataset and HDR+ Burst Photography Dataset
[36] seperately. We measured our algorithm on Kodak dataset
[37] and real RGBW-K (kodak) image. We examined the effect
of activation quantization bit depth for original 10 bit, LSB 2 bit

Figure 5. Symmetric quantization

truncated 8 bit and adaptive bit depth control applied 8 bit seper-
ately.

In Table. 1 and Fig. 8, objective image quality evaluation
results on various bits for 10 bit RGBW input are provided. For
activation bit-depth 10 bit and 9 bit, ABC 8 bit shows best score
and with activation 9 bit, the quality is almost similar to those for
activation 12 bit.

Results for quantization in HDR+ dataset, PSNR [dB] for origi-
nal 10 bit, LSB truncated 8 bit and ABC 8 bit

bit 10 bit truncated 8
bit

ABC 8 bit

A12 42.454 42.204 42.309
A11 42.25 42.049 42.292
A10 33.038 41.623 42.125
A9 22.329 40.109 41.741

Subjective evaluation of experimental results show that we
could see more quantization noises are shown in lower bit depth.

In kodak dataset, 9 bit is optimal and there is difference be-
tween lower bit and 9 bit, but there’s no noticeable difference be-
tween 9 bit and float. Image results are shown in Fig. 9 and Fig. 10
for previous work.

And we made tests on 10 bit real RGBW-K raw images, and
we could see clear advances of ABC in Fig. 11. For quantized
network output results on RGBW image for activation 9 bit ABC

Figure 6. left one is original quantized network and right one is prelu and

quantization layers are folded

Figure 7. DePhaseNet
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8 bit has much better. quality compared to the original 10 bit.
With proposed method we could achieve 5 percent reduction

in hardware area and power consumption for our custom deep
network hardware.

Conclusion
In this paper, we made adaptive bit-depth control of input

patch while maintaining the image quality similar to the floating
point network to achieve more quantization bit reduction than pre-
vious work. Bit depth is controlled adaptive to the maximum pixel
value of the input data block. It can preserve the linearity of the
value in the block data so that the deep neural network doesn’t
need to be trained by the data distribution change.

With proposed method we could achieve 5 percent reduction
in hardware area and power consumption for our custom deep net-

Figure 8. Results for quantization in HDR+ dataset, PSNR [dB] for original

10 bit, LSB truncated 8 bit and ABC 8 bit

Figure 9. Quantized network output results on Kodak image number 9: (a)

- 6 bit; (b) - 7 bit; (c) - 8 bit; (d) - 9 bit; (e) - 10 bit; (f) - 11 bit; (g) - 16 bit; (h) -

float.

work hardware while maintaining the image quality in subejctive
and objective measurment. It is very important achievement for
mobile platform hardware.

Our algorithm can be applied so that HW area and power
can be reduced, but also it can be applied to SW platform and the
overall power consumption can be reduced owing to reduction of
processing bit depth.

Our noble approach reduced hardware area and power con-
sumption without degradation of image quality in subjective and
in objective criteria. So that it is essential in design of custom
deep network hardware and software platform.

Figure 10. Quantized network output results on Kodak image number 10:

(a) - 6 bit; (b) - 7 bit; (c) - 8 bit; (d) - 9 bit; (e) - 10 bit; (f) - 11 bit; (g) - 16 bit;

(h) - float.

Figure 11. Quantized network output results on RGBW image for activation

9 bit : (a) - ABC 8 bit; (b) - original 10 bit
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