
Real-time Cattle Intake Monitoring using Stereo Vision
Prajwal Rao1, McKinley N Flinders2, Dennis Buckmaster3, Amy R Reibman1, Jacquelyn P Boerman2

1 Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, U.S.
2 Department of Animal Sciences, Purdue University, West Lafayette, U.S.
3 Agriculture and Biological Engineering, Purdue University, West Lafayette, U.S.

Abstract
Accurate measurements of daily feed consumption for dairy cat-
tle is an important metric for determining animal health and feed
efficiency. Traditionally, manual measurements or average feed
consumption for groups of animals have been employed which
leads to human error and overall inconsistent measurements for
the individual. Therefore, we developed a scalable non-invasive
analytics system that leverages depth information derived from
stereo cameras to consistently measure feed offered and report
findings throughout the day. A top-down array of cameras faces
the available feed, measures feed depth, projects depth to a 3-
dimensional (3D) mesh, and finally estimates feed volume from
the 3D projection. Our successful experiments at the Purdue Uni-
versity Dairy, that houses 230 cows, demonstrates its robustness
and scalability for larger operations holding significant potential
for optimizing feed management in dairy farms, thereby improv-
ing animal health and sustainability in the dairy industry. 1

Introduction
Large cattle farms lack complete automation for monitoring tasks
such as logging per-animal feed consumption. Cattle feed is com-
posed of forages such as corn silage and hay crop silages, as
well as concentrates like corn grain, soybeans, feed byproducts
and minerals and vitamins which play a crucial role in improving
daily gain, milk yield, and overall animal health. Additionally,
varying composition of the feed mixture yield different textures
and densities that affect traditional ways that feed is measured.
Traditionally, feed is measured by manually weighing the total
amount of feed offered (Fo) to a group of animals and the total
amount of feed refused (Fr). The difference Fo −Fr is total in-
take for the group, and the total intake is divided by the number
of cows to obtain an estimate of individual cow intake. This lack
of individual measurements provides inaccurate information for
pinpointing specific health and efficiency metrics.

In this paper, we develop a robust analytics platform leveraging
stereo cameras to process and obtain accurate feed volumes, and
present them in a timely manner on a dashboard for farmers. Our
completely automated system efficiently uses both the camera
hardware and its host computer processing power.

Our system uses an OAK-D Power over Ethernet camera con-
nected to a laptop using a network switch. The camera faces the

1This research was supported by Purdue University’s Colleges of Agri-
culture and Engineering Collaborative Projects Program 2022, and by the
intramural research program of the U.S. Department of Agriculture, Na-
tional Institute of Food and Agriculture, Inter-Disciplinary Engagement in
Animal Systems, Grant # 2022-10737.

feeding area covering two feed bunks in its field of view. From the
camera, we extract the depth, convert it to a pointcloud represen-
tation, and then calculate the feed volume of the mesh generated
from the pointcloud. Additionally, we provide a platform to store
and visualize data for inference.

We have designed our system with the following goals:

• Non invasive - We estimate volume without disturbing the
feed pile, which is achieved by having a top-down camera
that views two feeding bunks simultaneously.

• Reproducible, reliable and accurate - We design a data
collection component that enables us to reproduce existing
volume estimates and enables us to explore the impact of
algorithmic parameters. We accomplish this by saving only
the information necessary to achieve these goals.

• Real-Time - Our pipeline is completely real-time. Process-
ing, visualizing, and storing data is done in parallel leverag-
ing multiprocessing queues.

• Scalable - Since one power-over-ethernet (POE) switch can
drive multiple cameras, our system can process multiple
feeding bunks at once.

• Cost Effective - Keeping low hardware cost in mind, one
single host machine can drive multiple cameras using a sin-
gle POE switch.

With our setup, we have collected 2 sets of 12 hours of data over
two days, and we evaluate our estimates against real world mea-
surements obtained by manually weighing feed. Our experiments
demonstrate that our system is a viable approach to obtaining ac-
curate estimates of available feed.

Related Work
Volume Estimation for Cattle Feed
Previous techniques [11] have introduced the use of machine vi-
sion with a near-infrared laser illuminator to detect a constellation
of points that are then converted to a 3-dimensional representa-
tion. However, this technique relies on sweeping the camera over
the feed pile that has been placed in a specialized enclosure to
capture an array of points in its field of view. Then, the feed
is made accessible to the cows. In another study, [4] focus on
feed measurement over 5-second intervals by measuring the inter-
frame depth difference between when the cow is eating (cowin),
and when it has stopped eating (cowout). Feed is measured by cal-
culating the difference between two cowout frames over a region
of interest.

In our paper, we also apply depth processing to estimate the vol-
ume of feed available. However, in our system, we directly mea-

https://doi.org/10.2352/EI.2024.36.6.IRIACV-278
© 2024, Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2024
Intelligent Robotics and Industrial Applications using Computer Vision 2024 278--1

sure volumes at the feeding area rather than using a separate appa-
ratus for feed measurement [11]. Additionally, we combine real-
time depth estimation with a capture system and a visualization
dashboard. This combination creates a powerful experimental
framework that enables experiment construction and validation.
In addition, our technique extends the depth sensing capabilities
of the camera sensor by enabling real-time output while minimiz-
ing the computational load on the connected computer CPU.

Depth Processing using DepthAI
Existing work on feed estimation has demonstrated that using
depth is a feasible approach to accomplish our task. We use
DepthAI, a library provided by Luxinos (OAKD-PoE manufac-
turer) that provides useful APIs for depth estimation, object de-
tection, and camera control. DepthAI uses nodes that individually
provides a specific functionality as a building blocks. In partic-
ular, the stereo depth node calculates the disparity from the pre-
processed left and right images of the camera, and routes it as a
stream. We construct these node blocks for our use case, which is
to compute disparity with filtering. To calculate disparity (defined
as the distance in pixels between the pair of images for every pixel
in the left and right pair), DepthAI captures images from the left
and right cameras that form a stereo pair and matches each pixel
of the pair using:

depth =
f ocal lengthpx ×baseline

disparitypx
. (1)

Here the f ocal length in pixels can be calculated from

f ocal length =
widthpx ∗0.5

tan
(
h f ov∗0.5∗ π

180
) . (2)

To obtain h f ov and v f ov, we can use

h f ov = 2∗ 180
π

∗ arctan
(

width∗0.5
fx

)
; (3)

v f ov = 2∗ 180
π

∗ arctan
(

height ∗0.5
fy

)
. (4)

The focal length (fx and fy) are provided by the intrinsic matrix
(K) [13] of the camera.

K =

 fx s x0
0 fy y0
0 0 1

 . (5)

More information about calculating these values for our camera
can be found in [3].

Real-Time Processing
Our use of queues and multiprocessing helps to obtain near-
instant analysis of data, while making optimal use of the avail-
able resources of the camera and computer. Since DepthAI is
designed to stream depth estimates from the camera image stream
using queues, we incorporate the same principles for the rest of
the system. To pass data between multiple processes through
queues, we have to ensure that the data that we operate on are

serializable [10]. In this work, we leverage a number of libraries
for processing: DepthAI, Open3D, and Plotly. DepthAI is used
to obtain depth data from the camera, Open3D for processing 3-
dimensional (3D) data, and Plotly for visualization and interac-
tive dashboards. However, some datatypes, such as meshes in
Open3D, are not serializable, and therefore we process them in
our main process and spawn separate processes for other oper-
ations. Additionally, every process runs at different speeds; for
example, the camera outputs frames at a much faster rate than our
main process which works on the data. Consequently, we grab
only the latest frame from DepthAI, thus skipping older frames.

Method
System Components
To accomplish our aforementioned goals, our system is divided
into four main components: Data Collection, Storage, Algorithm
and Visualization. These are illustrated in Figure 1.

Figure 1: System Components

Data Collection
Our data collection component has been designed to serve two
purposes: infer estimates from the available feed, and allow for
the reproduction of computational experiments. It operates in tan-
dem with other processes and can be configured to store any de-
sired amount of data by modifying the configuration. More detail
about this configuration can be found in our Configuration Sec-
tion.

Storage
For storage, we use an external drive that can store more than a
years’ worth of data. Additionally, we have provided an option
to store the data in the same schema to a MongoDB server [15].
With our experiments, we concluded that the speed of the system
is unaffected by these storage choices.

Algorithm
The algorithm is designed to fulfill four main goals: speed, flex-
ibility, extensibility, and concurrency. To achieve these goals,
we leverage multiprocessing to create parallel processing of each
code blocks, and FIFO (First In First Out) Queues to move data
between each process. In our system, we have established three
processes: Compute, Save, and Visualization. All the code is
tested with python3.9 [8] but should operate with other versions
as well.

Our volume computation system can be subdivided into two main
blocks: the Capture process, and the Estimation process. To en-
sure continuous operation throughout the day, it is crucial to de-
sign an efficient system that is robust enough to operate continu-
ously throughout a day. An overview of the algorithm is shown in
Figure 2.

We found that it is not feasible to execute each block of Figure 2
serially because of the different processing speeds of each block.
Therefore, we designed the system to execute some processes in

278--2
IS&T International Symposium on Electronic Imaging 2024

Intelligent Robotics and Industrial Applications using Computer Vision 2024

parallel. Specifically, we run our Compute process as the main
process, and our Visualization and Save processes as child pro-
cesses.

Figure 2: Overview of the Algorithm

Figure 3: Compute process

Given depth data from the camera, our Compute process is de-
signed to compute the corresponding volume estimates. We sep-
arate the Compute process into a Capture process and an Estima-
tion process. The Capture process first captures the data from the
camera; this includes the depth and color in a specific schema as
shown in Schema 1. Then, our Estimation process computes the
volume estimates with the depth information.

Compute Process
The Compute process is the main process which governs of all the
processing required for depth-to-pointcloud, pointcloud prepro-
cessing, depth-to-mesh, and mesh-to-volume computation. This
process accepts the video feed from the queue handler as shown
in Schema 1 and calculates its respective volumes.

Capture process
We use the OAKD-PoE [7] camera for capturing video data. This
camera is comprised of three sensors: Left (grayscale), Right
(grayscale), and center (color). The left and right camera video
stream is used to calculate our depth estimates and the color cam-
era stream can be used to detect objects (person, cow, etc) which
occlude the feed pile. Additionally, along with the camera ar-
ray, the OAKD-PoE also has 2 LEON CPU cores for process-
ing, an Image Signal Processor used for image processing, and
16 SHAVE cores for vector processing such as for neural network
operations. More information about the camera hardware can be
found in [5]. The camera is powered by a POE (Power-Over-
Ethernet) switch which is in turn connected to the computer. Both
power and data are transferred through an Ethernet port using an
RJ45 Cable [16].

In the Capture process, before we start processing, we have to es-
tablish our floor distance (from the camera) either automatically
or manually in our configuration. This step has to be done just

once after the camera is set up. We provide three different op-
tions: RANSAC, manual, and camera API. RANSAC (Random
sample consensus) is an automated method to estimate the floor
distance. However, RANSAC requires the floor to appear in a sig-
nificant region of the image to obtain accurate estimates. Manu-
ally, we can either set the floor in our configuration (by measuring
the distance between the camera to the floor at the barn). Finally,
it is possible to use the depth estimator from the camera API to
estimate the distance to the floor, after we have chosen a region of
the image that contains only the floor.

Queue handler
Our camera outputs a sequence of frames as separate streams
for Right, Left and Center sensors depicted in Figure 4. These
streams have to be synchronized based on their Message ID;
this is handled by the queue handler. The queue handler re-
ceives information from each stream and constructs a message
composed of a set of {color, left, right, depth, msgID,

timestamp}. See Schema 1.

(a) RGB (b) Depth

(c) Left (d) Right
Figure 4: Sample image data from camera

{
"msg": {

"colorize": "color_img1",

"rectified_left": "left_img1",

"rectified_right": "right_img1",

"depth": "depth_in_mm1",

"sequence": "msg_sequence_number1",

"time": "timestamp1"

},
"msg": {

"colorize": "color_img2",

"rectified_left": "left_img2",

"rectified_right": "right_img2",

"depth": "depth_in_mm2",

"sequence": "msg_sequence_number2",

"time": "timestamp2"

},
}

Schema 1: Sample Data from camera

IS&T International Symposium on Electronic Imaging 2024
Intelligent Robotics and Industrial Applications using Computer Vision 2024 278--3

(a) Top View (b) Side View (c) Another View
Figure 5: Initial Pointcloud

Estimation process
An open-source library, Open3D [17], is used for 3D data pro-
cessing such as pointclouds and meshes. We pass the depth data
from the msg queue (Qmsg) depicted in Schema 1 into Open3D to
obtain a pointcloud. A sample pointcloud of our feedpile is shown
in Figure 5. Subsequently, this pointcloud data is then processed
to extract only our target region (here the feed). Then, it is down-
sampled using voxel downsampling, and finally the outlier points
are removed. With this preprocessed and cropped pointcloud, we
set the (x,y,z) coordinate system to the center of the base of our
cloud. While the base can also be predicted using RANSAC [12],
here we manually set a global base value using the config file.
This is to ensure that the pointcloud does not shift up and down
due to the small changes in the prediction of the base at differ-
ent instances. Now, our pointcloud represents the pile of feed as
shown in Figure 6. Next, we convert the feed pointcloud to a Tri-
angle mesh representation and calculate the floor points using the
Delaunay triangulation [14] method.

(a) Top View (b) Side View (c) Another View
Figure 6: Processed Pointcloud

Finally, to measure the volume of the feed pile, we apply Equation
(7) to sum the volume under every triangle (see Equation 6) of the
mesh using simple 3D-geometry.

volume under triangle = (z1 + z2 + z3)
(x1y2−x2y1+x2y3−x3y2+x3y1−x1y3)

6 . (6)

Here (x1,y1,z1), (x2,y2,z2), (x3,y3,z3) are the vertices of the tri-
angle in Cartesian coordinates such that z1 ≤ z2 ≤ z3. Therefore,
for n triangles,

volume o f mesh =
n

∑
i=1

volume under trianglei (7)

{
"sequence": "msg_sequence_number",

"timestamp": "msg_timestamp",

"depth": "depth_in_mm",

"color": "color_img",

"rectified_right": "right_img",

"rectified_left": "left_img",

"volume": "volume_meter_cubed"

}

Schema 2: Sample queue (Qshow, Qsave) data sent to Save, and
Visualization processes

Finally, we create two queues - the show queue (Qshow) and the
save queue (Qsave) from Qmsg. Each queue has a copy of the data
along with the volume in cubic meters (m3) which is then passed
to the next two processes. A sample queue structure is depicted
in Schema 2.

Visualization Process
A visualization dashboard is crucial for managing the data gener-
ated from the cattle barn environment as it provides a platform
for real-time monitoring and data analysis of specific parame-
ters. With a real-time dashboard, one can monitor changes in barn
lighting throughout the day and also compare how these changes
affect volume estimates by comparing camera frames at two time
points. Additionally, overall failures in the system can be caught
in an instant hence improving monitoring efficiency. Factors like
lighting play a significant role in estimation accuracy. So by pro-
viding a clear, real-time overview of these variables, the dash-
board allows us to make timely, informed decisions regarding de-
viations in feed volumes. Furthermore, the dashboard enhances
operational efficiency by automating monitoring processes and
can be configured to send alerts as and when needed.

The dashboard runs on the local network which can be accessed
by phone or laptop on the same network. A sample visualization
is shown in Figure 7. We present the volume vs time graph on the
top left to view changes in volumes as the cow consumes feed.
In addition, on the top right we have a 3D representation of the
processed pointcloud at the selected timestamp, and at the bottom,
we have the respective images from the camera - crop area, color,
depth, left and right grayscale of the camera view.

Our visualization process is spawned using the inbuilt multipro-
cessing [6] library in python3.9 which runs in tandem with the
estimation. We visualize the data from Qshow and categorically
view color and grayscale (left and right) video using OpenCV [2]
python library. For the depth, we first normalize the frame in the
range [0,255], perform histogram equalization, and add an col-
ormap prior to visualization. Additionally, we have an on-click
save operation which assists users to compare color, depth, and
volume estimates between two or more timestamps.

Finally, we have designed our dashboard to be interactive. Hov-
ering over timestamps in the volume vs time graph updates point-
cloud of the region of interest, and their color, depth, left, and
right frames.

Save Process
Unlike the visualization process, the save process is driven by Ad-
vance Python Scheduler [1], an external library written in python.
The advantage of this scheduler is that it can be configured to run
parts of python code at a pre-defined time instant. For example, a
function can be run every 20th minute of the day, or every minute
every alternate hour. This chronological job can be set using the
configuration file. The saved data from Qsave can be stored by
setting the folder location in the configuration file.

Configuration
We provide an external configuration file config.ini to control pa-
rameters for the Capture and Estimation process. Settings we con-
sider are distance from the camera to the floor (base dist real),

278--4
IS&T International Symposium on Electronic Imaging 2024

Intelligent Robotics and Industrial Applications using Computer Vision 2024

Figure 7: Analytics dashboard

pixel size of grayscale camera (pixel size), pixel size of color
camera (pixel size color), focal length (focal length),
crop bounds (crop min bound, crop max bound), output save
location (save path), number of frames to save (save range),
and saving frequency (day, hour, minute). For saving frequency,
we use a cron-style configuration [9] to maintain platform consis-
tency. A sample configuration is shown in Schema 3.

[DEFAULT]

record_time = 300

base_dist_real = 2.93

queue_clear_interval = 60

[depthai.config]

pixel_size = 3e-6

pixel_size_color = 1.55e-6

focal_length = 2.35e-3

[open3d.config]

crop_min_bound = [-0.2, -0.6, 2.0]

crop_max_bound = [0.6, 0.2, 3.0]

[save.config]

save_path = savedata/

save_range = 50

no of minutes

day = *

hour = *

minute = *

Schema 3: Configuration File

Experiments
For our experimental setup, our goal was to measure volume given
depth data collected from the camera. We also explore how light-
ing and shape of the feed pile affects our measurement. All data

was gathered in the Purdue University Dairy Research Farm. Two
diets of feed were used in the experiment: Ration-1 and Ration-2.
Their densities were experimentally measured to be 0.325 Kg/L,
and 0.323 Kg/L.

For each diet, we use five feed volumes (100, 80, 60, 40, 20 L).
Table 1 shows the measured volumes and weights for the five dif-
ferent volumes of the two types of feed. Additionally, for our
experiments, we also test two different lighting scenarios, and the
presence and absence of a divot in the feed pile. The two lighting
conditions are achieved by switching on and off a light mounted
above the feed.

Our volume-estimation system is initiated to operate throughout
the experiment. During the experiment, the feed is first manually
measured with a scale that can measure up to 600 Kg with an error
margin of ±0.05 Kg. Then the weighed feed is manually placed
on the floor of the feeding bunk where our system estimates the
volume. Data is recorded and volume is estimated for each feed
pile individually for a 5-minute duration. Thus, the experiment
has 40 distinct conditions based on the arrangements of the feed
pile: Ration-1 and Ration-2, 5 volumes, light on and light off, and
without divot and with divot.

Table 1: Weight Samples Measured
Diet Volume(L) Density(Kg/L) Weight(Kg)

Ration-1

100 0.323 32.3
80 0.323 25.84
60 0.323 19.38
40 0.323 12.92
20 0.323 6.46

Ration-2

100 0.35 35.0
80 0.35 28.0
60 0.35 21.0
40 0.35 14.0
20 0.35 7.0

IS&T International Symposium on Electronic Imaging 2024
Intelligent Robotics and Industrial Applications using Computer Vision 2024 278--5

Diet Volume Ground Truth
Light and Divot conditions

Off/without On/without Off/with On/with

Ration-1

100 100.0 97.7 88.5 82.9
80 87.7 85.4 76.2 65.0
60 71.4 65.7 47.0 45.6
40 52.1 49.6 36.3 33.3
20 32.4 25.5 27.3 21.5

Ration-2

100 113.4 98.8 99.9 96.1
80 87.7 80.8 76.1 71.9
60 69.2 63.08 49.7 44.9
40 42.9 39.2 36.7 27.8
20 29.0 26.4 23.9 25.7

Results
Our results are shown in Table 2. The two diets, Ration-1 and
Ration-2, are weighed in subsets of 100, 80, 60, 40, and 20L
each, as shown in the Volume Ground Truth column. The last
four columns are the system estimates of volume with the differ-
ent lighting and divot configurations. In these columns, the first
set of two columns compare light off and on without a divot in
the feed. The last two columns compare light off and on with a
divot. Uncontrollable variables such as sunlight impact our esti-
mates. For example, the 100L volumes differ between Ration-1
and Ration-2 when light is off and no divot. Additionally, when
we compare with and without divot for one type of feed density,
we observe that estimates are better for lower volumes as com-
pared to higher volumes. This discrepancy is caused by two as-
pects of the visual appearance of larger piles. First, these piles
tend to appear flatter due to the presence of the divot, and sec-
ond, the system has difficulty accurately estimating volume at the
center of the divot.

Conclusion
Our proposed system presents a cost-effective automatic strategy
to measure volumes of cattle feed using a readily available cam-
era system. Leveraging machine vision in commercial farms has
significant potential for monitoring health, production, and effi-
ciency. In this paper, we presented a non-invasive system that
enables the monitoring of feed consumption in commercial farms
using cost-effective hardware. To facilitate reproducibility, we de-
veloped a data collection component that securely stores the nec-
essary observations. Additionally, we have created a interactive
visualization dashboard for real-time monitoring and analysis.

We are continuing to evaluate our system at the Purdue Univer-
sity Dairy Research Farm. For our next steps, we will incorpo-
rate cow-detection, feeding pattern estimation, and identification
into our architecture. Additionally, in our field trials, we have
observed that measurements in an actual barn are challenging be-
cause of different lighting conditions throughout the day. There-
fore, we will continue to explore the implications of lighting and
camera configuration on the accuracy of our depth estimates.

References

[1] Apscheduler. https://apscheduler.readthedocs.io/en/3.

x/.
[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software

Tools, 2000.

[3] Disparity map. https://docs.luxonis.com/projects/

api/en/latest/components/nodes/stereo_depth/

#calculate-depth-using-disparity-map.
[4] J. Lassen, J.R. Thomasen, and S. Borchersen. Repeatabilities of in-

dividual measures of feed intake and body weight on in-house com-
mercial dairy cattle using a 3-dimensional camera system. Journal
of Dairy Science, 106(12):9105–9114, 2023.

[5] Luxinos hardware. https://docs.luxonis.com/

projects/hardware/en/latest/pages/rvc/rvc2/

#hardware-blocks-and-accelerators.
[6] Multiprocessing. https://docs.python.org/3/library/

multiprocessing.html.
[7] OakD-POE. https://shop.luxonis.com/products/

oak-d-poe.
[8] Python 3.9. https://www.python.org/downloads/release/

python-3913/.
[9] Larry Reznick. Using cron and crontab. Sys Admin, 2(4):29–32,

1993.
[10] Serializable. https://docs.python.org/3/library/pickle.

html.
[11] A.N. Shelley, D.L. Lau, A.E. Stone, and J.M. Bewley. Short com-

munication: Measuring feed volume and weight by machine vision.
Journal of Dairy Science, 99(1):386–391, 2016.

[12] Wikipedia contributors. Random sample consensus — Wikipedia,
the free encyclopedia. https://en.wikipedia.org/w/index.

php?title=Random_sample_consensus&oldid=1182022297,
2023. [Online; accessed 10-February-2024].

[13] Wikipedia contributors. Camera resectioning — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?

title=Camera_resectioning&oldid=1196552085, 2024.
[Online; accessed 10-February-2024].

[14] Wikipedia contributors. Delaunay triangulation — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.

php?title=Delaunay_triangulation&oldid=1198183130,
2024. [Online; accessed 10-February-2024].

[15] Wikipedia contributors. Mongodb — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=

MongoDB&oldid=1202299498, 2024. [Online; accessed 12-
February-2024].

[16] Wikipedia contributors. Registered jack — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=

Registered_jack&oldid=1195447078, 2024. [Online; accessed
10-February-2024].

[17] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern
library for 3D data processing. arXiv:1801.09847, 2018.

278--6
IS&T International Symposium on Electronic Imaging 2024

Intelligent Robotics and Industrial Applications using Computer Vision 2024

https://apscheduler.readthedocs.io/en/3.x/
https://apscheduler.readthedocs.io/en/3.x/
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#calculate-depth-using-disparity-map
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#calculate-depth-using-disparity-map
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#calculate-depth-using-disparity-map
https://docs.luxonis.com/projects/hardware/en/latest/pages/rvc/rvc2/#hardware-blocks-and-accelerators
https://docs.luxonis.com/projects/hardware/en/latest/pages/rvc/rvc2/#hardware-blocks-and-accelerators
https://docs.luxonis.com/projects/hardware/en/latest/pages/rvc/rvc2/#hardware-blocks-and-accelerators
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://shop.luxonis.com/products/oak-d-poe
https://shop.luxonis.com/products/oak-d-poe
https://www.python.org/downloads/release/python-3913/
https://www.python.org/downloads/release/python-3913/
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/w/index.php?title=Random_sample_consensus&oldid=1182022297
https://en.wikipedia.org/w/index.php?title=Random_sample_consensus&oldid=1182022297
https://en.wikipedia.org/w/index.php?title=Camera_resectioning&oldid=1196552085
https://en.wikipedia.org/w/index.php?title=Camera_resectioning&oldid=1196552085
https://en.wikipedia.org/w/index.php?title=Delaunay_triangulation&oldid=1198183130
https://en.wikipedia.org/w/index.php?title=Delaunay_triangulation&oldid=1198183130
https://en.wikipedia.org/w/index.php?title=MongoDB&oldid=1202299498
https://en.wikipedia.org/w/index.php?title=MongoDB&oldid=1202299498
https://en.wikipedia.org/w/index.php?title=Registered_jack&oldid=1195447078
https://en.wikipedia.org/w/index.php?title=Registered_jack&oldid=1195447078

	Abstract
	Introduction
	Related Work
	Volume Estimation for Cattle Feed
	Depth Processing using DepthAI
	Real-Time Processing
	Method
	System Components
	Data Collection
	Storage
	Algorithm
	Compute Process
	Capture process
	Queue handler
	Estimation process
	Visualization Process
	Save Process
	Configuration
	Experiments
	Results
	Conclusion

