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Abstract
PCB defect segmentation aims to localize the defects in

printed circuit boards (PCBs). While this problem has a great
industrial impact, few datasets are publicly available. It is also
challenging to predict the defects that appear during manufac-
turing. To address the former challenge, we curate a large
dataset with various defective categories of imbalanced distribu-
tion, reflecting real-world conditions. The problem of unsuper-
vised PCB anomaly segmentation (UAS), where no labeled defect
data is available during training, is then investigated. We propose
an efficient prompt tuning method to address PCB-UAS. Specifi-
cally, a pretrained large foundational segmentation model (SAM)
is adapted to PCB-UAS by the introduction of a few learnable
adapter layers. SAM is frozen during training and only the addi-
tional adapter parameters are learned. To overcome the lack of
labeled defect images for training, we propose to create synthetic
defect images that mimic the real ones. Experiments highlight
that the proposed method can outperform baselines by 7 points
with 16.6 times less learnable parameters.

Keyword: PCB Defect, Anomaly Segmentation, Large Foun-
dational Models, Industrial Defect Segmentation

Introduction
Detecting and segmenting defects in industrial settings is a

crucial challenge for advancing automation in various industries,
often applied to electronics and PCB manufacturing [1, 4, 7, 2,
20, 23, 16]. By detecting and segmenting the PCB defects, we can
identify defects in circuitry, soldering defects, misalignments, or
any irregularities in the assembly process, which includes inspec-
tion for shorts, opens, or any other anomalies that might affect the
functionality or reliability of the electronic components.

While this is a task of wide interest in the industry, very few
labeled datasets are available due to the large variation in PCBs
and their defects, making labeling defect locations costly. In ad-
dition, prior works [29, 17] also assume that defect categories are
balanced distributed, which is impractical for real-world scenar-
ios. To address these problems, we curated a novel dataset of
PCB images with diverse defects and imbalanced distributions.
Furthermore, to better align with the industrial setting, where seg-
mentation labels are challenging to obtain, the proposed dataset
contains only the labeled test set for evaluation, but not the train-
ing set.

To address the lack of labeled data during training, we inves-
tigate the problem of PCB unsupervised anomaly segmentation
(UAS) in this work. We first synthesize images with pseudo-
defect using prior knowledge of PCB defects. This is imple-
mented by pasting these synthesized defects, including lines, dots,
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Figure 1. Overview of the proposed PROS approach. The top part of

the figure shows the data synthetic pipeline, and the bottom part shows the

model architecture of the proposed PROS network.

and circles, on normal PCB images, as shown in Figure 2. Since
these pseudo-defects are synthesized, the ground truth segmenta-
tion map is automatically available, and no further annotation is
needed. Note that the pseudo-defects are generated only during
the training stage.

With the availability of pseudo-defects, the UAS task then
becomes a supervised task, which could be solved with stan-
dard segmentation models [26, 11]. However, we observed that
it does not address the UAS task by training the standard seg-
mentation models from scratch or pre-training the segmentation
models on existing datasets (like ImageNet [14]). As a result,
we explore the possibility of using large foundation models like
Segment Anything (SAM) [21] for this PCB defect segmentation
task. SAM [21] is a foundation model for image segmentation,
which is pretrained on millions of masks and can segment all ob-
jects in a scene or segment an object given a query. Since SAM is
pretrained on millions of mask, we hypothesize that it can pro-
vide generalizable representations and can be adapted to UAS
using few extra learnable module. To examine this hypothesis,
we propose a novel and efficient architecture to segment pseudo-
anomalies using the generalized feature from SAM. This is im-
plemented by inserting a few learnable adapters between SAM’s
decoder layers, as shown in Figure 1. More specifically, we only
optimize the adapters while keeping other parts of the SAM model
frozen. We refer to the proposed framework as Pcb pROmpt Sam
(PROS). Since PROS only contains few parameters, it can be op-
timized on the synthesized pseudo-anomalies. Experiment shows
that PROS can generalize to real-world defects, which are never
observed during training.

In conclusion, this work has three contributions as follows.
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First, we explored the topic of PCB UAS, which is crucial for
industrial application, but received limited attention in the exist-
ing literature. Second, we proposed a novel dataset featuring a
broader range of defects and a more realistic distribution, mirror-
ing real-world scenarios better than earlier datasets. Third, we
proposed an innovative and effective framework PROS aimed at
refining the SAM foundational segmentation model using synthe-
sized defects. Finally, experiments demonstrate the efficiency and
effectiveness of our proposed method on real defects.

Figure 2. Illustration of the normal image, synthesized defects, and the

corresponding ground truth.

Related Work
In this section, we discuss prior works on defect datasets and

unsupervised anomaly segmentation methods.

Defect Datasets
Defect segmentation has been a crucial task in the indus-

try to ensure the quality and reliability of manufacturing. Ac-
curate segmentation allows for targeted analysis and correction
of specific defect types, improving production efficiency. Multi-
ple public defect datasets [5, 6, 39, 31, 19, 3, 37] are proposed
in the literature over the past few years and covers different cate-
gories, including daily objects [5, 6, 39] and texture [31]. Unlike
other defect categories, there are less PCB defect segmentation
dataset [1, 4, 7, 2, 20, 23, 16]. Moreover, most of the prior datasets
contains balanced sample across classes, which is not commonly
seen in the real world applications. As shown in Table 1, we are
the first work to consider the skew data distribution for PCB de-
fect dataset.

Unsupervised Anomaly Segmentation (UAS)
The goal of UAS is to localize the defect in the image dur-

ing inference, without seeing any defective image during training.
Early works [27, 12, 10, 22, 38, 13, 30, 18] can be coarsely cate-
gorized into three categories, including student-teacher methods,
flow based methods and reconstruction based methods. Student-
teacher methods [38, 13, 30] contain a pretrained teacher en-
coder (i.e. pretrained on ImageNet) and a student encoder. During
training, both the teacher encoder and student encoder consumes
the normal images and the difference between their output are
minimized. During inference, the prediction differences between
the student and the teacher encoder suggests the anomaly region.
Flow based methods [33, 28, 25] aim to regularize the distri-
bution of encoder output, when consuming the normal training

# of Images # of Categories Color Imbalanced
DeepPCB [29] 8853 6 No

Peking-PCB [17] 1386 6 Yes
Ours (PROS) 10261 10 Yes V

Table 1. Comparison of the prior datasets with the proposed
dataset.

images. More specifically, the distribution of encoder output are
encouraged to be, for example, a Gaussian distribution using nor-
malizing flow [25]. During inference, the encoder output of an ab-
normal image will be out-of-distribution. Reconstruction based
methods [35, 24, 36, 34, 32] seeks to project the input image
(both normal and abnormal image) to the normal image manifold.
This is implemented by minimizing the reconstruction difference
between input normal image and the reconstruction output dur-
ing training. During inference, the region with large reconstruc-
tion differences are considered as anomalies. Unlike these earlier
works, we adopt the large segmentation model for the UAS task.

Method
In this section, we propose the PROS framework for the PCB

UAS task. PROS is a lightweight framework optimized on the
pseudo-anomalies. The entire framework is illustrated in Figure 1,
and more details are provided below.

Architecture
To address the UAS problem, we propose to leverage the

generalized feature from a large foundational model SAM [21].
SAM contains an image encoder, a prompt encoder, and a mask
decoder. The image encoder extracts the image embedding using
the vision transformer [15] . The mask decoder is based on DETR
[8] and MaskFormer [9], to predict semantic and instance-level
segmentations. Please refer to the SAM [21] paper for additional
details.

To leverage the powerful pre-trained knowledge in SAM, we
insert K learnable adaptation module to SAM. More specifically,
each learnable adaptation module is a fully connected layer and
is inserted at each transformer layer of SAM decoder. During
training, we freeze the majority part of the SAM model and only
tune the additional parameters. This efficient design allows SAM
to detect PCB defects with only a few learnable parameters.

Training with Synthetic Data
Gathering a large dataset with annotated information is im-

practical in industrial settings for two key reasons. Firstly, defects
in the manufacturing industry are inherently rare occurrences,
making it challenging to assemble a sufficiently large and diverse
labeled dataset. Secondly, the annotation process requires domain
expertise, often unavailable on public crowd-sourcing platforms
commonly used for labeling extensive datasets. These challenges
emphasize the difficulty in obtaining labeled data at scale for in-
dustries dealing with infrequent defects and specialized knowl-
edge requirements.

To overcome these challenges, we employed the prior knowl-
edge that the majority of defects on PCBs are dots, lines, and cir-
cles. We synthesized these defects by using OpenCV and pastes
these defects onto regular images. During the pasting, we blur
these synthesized defect with different transparency. Since these
pseudo defects are synthesized, this allows us to derive the po-
sitions and categories of the defects automatically. As shown in
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Architecture Pretrained Dataset Training Loss # of Learnable Parameters (M) Mean IOU
UNet N/A BCE 31 38.24
UNet MRI Images BCE 7.8 0.85
UNet ImageNet BCE 14.3 39.52

Siamese UNet N/A BCE 42.8 38.89
Siamese UNet Diff N/A BCE 31 39.08

UNet N/A Soft Dice 31 38.26
UNet MRI Images Soft Dice 7.8 0.87
UNet ImageNet Soft Dice 14.3 38.17

Siamese UNet N/A Soft Dice 42.8 39.05
Siamese UNet Diff N/A Soft Dice 31 39.13

UNet N/A Cross Entropy 31 39.07
UNet MRI Images Cross Entropy 7.8 10.3
UNet ImageNet Cross Entropy 14.3 38.38

Siamese UNet N/A Cross Entropy 42.8 38.66
Siamese UNet Diff N/A Cross Entropy 31 39.15

Ours (PROS) SAM Dataset Cross Entropy 0.47 46.02
Table 2. Comparison of the proposed method PROS with prior works. PROS requires fewer parameters to learn and achieves
better performance.

Figure 2, the ground truth is available without additional manual
annotation.

Experiment
This section discusses the details of the dataset and presents

the experimental results of the proposed PROS on the UAS task.

Dataset and Metric
Our proposed dataset contains 10261 images, which com-

prises 10 defect types with imbalanced distribution as shown in
Figure 4. To analyze the dataset distribution, we adopt the imbal-
anced factor β , which is defined as β =

maxc{Nc}
minc{Nc} . For our dataset,

the imbalance factor is around 271, which is skewer than most of
the imbalanced dataset considered in the long-tailed literature.

To measure the performance of PROS and the baselines, we
adopt the dice score, which is defined as

DICE =
2|GT ∩PRED|
|GT |+ |PRED|

, (1)

where GT is the ground truth defect segmentation and PRED is
the predicted defect area.

Implementation Details
To train PROS, we use the pretrained SAM model from its

official github. More specifically, we use the SAM with the Vit-
Base image encoder. Each input image is scale to 256×256 before
feed into the SAM encoder. We trained PROS with Pytorch for 10
epochs using batch size of 4. We use AdamW optimizer and the
learning rate is set to 0.0001. The entire training is conducted on
the a Titan Nvidia GPU.

Quantitative Results
We first introduce a set of baselines for the PCB-UAS task.

Both the baselines and PROS are trained only on synthesized de-
fect images. As shown in Figure 3, we consider the UNet [26],
Siamese UNet, and Siamese UNet Diff [11] architectures. For

Figure 3. Baseline architecture. (Left) UNet can be trained from scratch or

initialized with weight pretrained on ImageNet images or MRI images. (Mid-

dle) Siamese UNet takes both the normal image and the defect image as

input. The image features of the normal image and defect image are con-

catenated and passed to the UNet decoder. (Right) Siamese UNet Diff. is

similar to Siamese UNet, but it uses the difference of intermediate features

of two images for segmentation.

the UNet baselines, it can be trained from scratch or pretrained
on MRI or ImageNet datasets. Three different losses are used for
each baseline, including the binary cross entropy (BCE) loss, soft
dice loss and the cross entropy loss.

Table 2 summarizes the benefits of the proposed PROS ap-
proach. The table compares the dice score between the baselines
and PROS on the labeled test set of the proposed dataset. PROS
significantly outperforms the baselines by about 7 points. Fur-
thermore, since PROS is built upon the foundational model SAM,
it requires only 0.47M learnable parameters, which is 16.6 times
less than the baselines.

Ablations on Number of Adapters
We conduct ablation experiments by varying the number of

layers for inserting the learnable adapters. As shown in Table 3,
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Figure 4. Imbalance sample distribution of the proposed dataset across

different defect categories.

Insert K adapters
K=12 K=11 K=9 K=7 K=4 K=1

# of Param. (M) 3.76 3.46 2.86 2.26 1.37 0.47
Mean IOU 21.78 30.46 34.36 35.87 42.7 46.02

Table 3. Ablation of the mean IOU and number of learnable
parameters with respect to the number of adapters.

the weakest performance is observed when adapters are inserted
into all decoder layers of SAM (i.e. K = 12). By reducing the
number of adapters, the performance of PROS increases. This
suggests that the model tends to overfit on the synthesized defects
for large K and cannot generalize to real defects.

Qualitative Results
Figure 5 shows some quantitative results of the proposed

PROS on these four input images. Note that these four images
are sampled from the test set, which contains real defects. The
results show the strong generalizability of PROS on real defects.

(a) Normal Image (b) Defect Image (c) Annotate Ground Truth (d) Prediction Result

Figure 5. Qualitative results of PROS on the real defects, which are not

seen during training.

Conclusion and Future Work
In this work, we consider the problem of PCB anomaly seg-

mentation with unsupervised scenarios (PCB-UAS), which has
a great industrial impact. We first curate a large dataset with

various defective categories of imbalanced distribution, reflect-
ing real-world conditions. The problem of unsupervised PCB
anomaly segmentation (UAS) is investigated, where no labeled
defect data is available during training. We propose an effi-
cient fine-tuning method to address PCB-UAS. Specifically, a pre-
trained large foundational model (SAM) is adapted to PCB-UAS
by introducing a few learnable adapter layers. SAM is frozen
during training, and only the additional adapter parameters are
learned. To overcome the lack of labeled defect images for train-
ing, we propose to create synthetic defect images that mimic the
real ones. Experiments highlight that the proposed method can
outperform baselines by 7 points with 16.6 times less learnable
parameters. Comprehensive experiments showcase the effective-
ness of the proposed framework. We expect this work could pave
the way for a novel research direction in PCB defect detection
with limited annotation.
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