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Abstract 

Starch plays a pivotal role in human society, serving as a vital 

component of our food sources and finding widespread applications 

in various industries. Microscopic imaging offers a straightforward, 

efficient, and precise approach to examine the distribution, 

morphology, and dimensions of starch granules. Quantitative 

analysis through the segmentation of starch granules from the 

background aids researchers in exploring their physicochemical 

properties. This article presents a novel approach utilizing a 

modified U-Net model in deep learning to achieve the segmentation 

of starch granule microscope images with remarkable accuracy. 

The method yields impressive results, with mean values for several 

evaluation metrics including JS, Dice, Accuracy, Precision,  

Sensitivity and Specificity—reaching 89.67%, 94.55%, 99.40%, 

94.89%, 94.23% and 99.70%, respectively. 

1. Background 
Natural starch mainly exists in plants, playing a critical role in plant 

growth and metabolism. It serves as a vital source for various human 

products, including food, clothing, and paper, contributing 

significantly to our bioeconomic value. Starch granules are 

composed of two glucan polymers, namely amylose and 

amylopectin [11]. These granules generally exhibit circular, 

elliptical, oval, or polyhedral shapes, with most having  random 

overlapping distributions within the 1-100𝜇𝑚 range [6]. However, 

the morphology, size, and distribution of starch granules vary 

among different plant species, resulting in distinct physicochemical 

properties. These variations have implications for diverse 

applications in industrial products and human health, such as 

resistant starch that can improve colon health and regulate blood 

glucose levels. This natural starch is mainly derived from potato 

tubers due to the characteristics of large round granules with a 

smooth surface [2]. Researchers may sometimes need to modify 

starch granules according to product requirements. Therefore, the 

exploration of starch is a significant task for researchers, ensuring 

its adaptability to various applications. 

To deepen our comprehension of starch granule properties, 

conducting quantitative analysis and evaluation involving 

distribution, morphology, and size is essential. Image segmentation 

algorithms can help segment starch granules from the background. 

Guo et al. [4] developed an improved watershed segmentation 

algorithm, they used GVF field analysis and Fuzzy c-means method 

to reduce over-segmentation. However, various deep learning 

methods based on convolutional neural network (CNN) 

improvements are insensitive to image noise and contrast during 

feature learning, which is superior to earlier machine learning and 

traditional imaging techniques [13]. Therefore, deep learning 

methods have made great achievements in the field of image 

segmentation. 

Ronneberger et al. [12] proposed a U-Net model based on CNN, 

capable of not only classifying and locating each pixel for 

segmentation but also achieving relatively high accuracy with only 

a small amount of data. Gu et al. [3] applied a CE-Net model which 

added the inception structure to U-Net to prevent more information 

loss during image segmentation and proved to be superior to U-Net. 

Alom et al. [8] combined U-Net, Residual Network and Recurrent 

Neural Network (RNN) to develop RU-Net and R2U-Net, 

enhancing the segmentation performance. Jonathan et al. [7] applied 

a Fully Convolutional Network (FCN) that can accept inputs of any 

size and combine shallow and deep feature information to achieve 

more accurate segmentation results. Badrinarayanan et al. [1] 

employed a Seg-Net Model, significantly reducing the number of 

parameters while outperforming the FCN model. Wang et al. [14] 

proposed the integrated Zoom-In-Net to highlight suspicious 

regions for segmentation. Moeskops et al. [10] presented an 

automatic segmentation of anatomical MR brain images into 

multiple classes method using multi-scale CNN, achieving accurate 

segmentation details as well as spatial consistency. Fausto et al. [9] 

showed a V-Net implementation based on FCN for 3D image 

segmentation. Zhou et al. [15] proposed a U-Net++ model that 

allows the network to automatically learn different layer features 

and reduce parameters through pruning. 

Therefore, this article will present the application of the U-Net 

model to accomplish the segmentation of starch granules through 

deep learning methods.  

2. Methods 

2.1.  Existing Algorithm of The Deep Learning-
Based Segmentation 
We employed the U-Net architecture as described in [12], 

comprising three components: down-sampling (encoding process), 

up-sampling (decoding process), and skip connections. The down-

sampling allows the model to compress input image features, 

preserving key information and serving as an encoder. Up-sampling 

transforms low-resolution feature maps into high-resolution ones  

and outputs a segmented image of the original size. The skip 

connection fuses the pixel-level features of the image with the 

semantic-level features to achieve pixel-level semantic 

segmentation. Additionally, we utilized the same convolution to 

keep the image size unchanged after convolution process. Figure 1 

illustrates our 4-layer U-Net model designed for starch granules 

segmentation. 

2.2.  Improvements 
In starch granule images, the low variability in contrast between the 

foreground part (starch granules) and the background is beneficial 

for segmentation accuracy. However, challenges arise due to the 

blurred edges of starch granules, particularly when dealing with 

overlapping granules. To address this, we apply Gaussian blur with 

a kernel size of (7,7) and sigmax set to 0 to eliminate noise from the 

image and utilize the Canny edge detection algorithm to get the  
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                                  Figure 2a. Before removing noise 

         Figure 2c. After removing noise                             

edges of the starch granules. The obtained edge channel is then 

added to the original RGB image to get a 4-channel image. Figure 

2a and Figure 2b depicts the image before noise removal and Figure 

2c and Figure 2d show the image after noise removal. Figure 3 

shows 4-channle image after employing edge detection. 

 

 

Figure 1. An illustration of 4-layer U-Net model for starch granules 
segmentation 

2.3.  Implementation Details 
The U-Net segmentation model was implemented using the PyTorch 

framework and tested on a server equipped with an Intel® Xeon® 

Silver 4314 CPU (2.40 GHz; 503 GB RAM) and two NVIDIA 

A100-PCIE GPUs (40GB GPU RAM). The initial learning rate was 

set to 0.01, gradually reduced through supervised decay with a 

coefficient of 0.1. An Adam optimizer was selected to train the 

proposed model with a batch size of 5. 

              Figure 2b. Before removing noise  

                 Figure 2d. After removing noise 

                         

                         

                           

Figure 3. RGB-edge (4-channels image) 

3. Results 

3.1.  Datasets 
We performed in situ analysis by observing iodine-stained tissue 

sample under a light microscope and capturing images with a high-

resolution camera. This method is straightforward, efficient, and 

relatively accurate.  

After acquiring the starch granule images, manual labeling was 

performed to create the ground truth dataset. Figure 4a and 4b 

depicts the microscopic image and corresponding ground truths. 

Each of 20 (1360x1024 pixel) starch granule images was cropped 

into 6 (512x512 pixel) images, resulting in a total of 120 images, 
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constituting a 3-channel dataset. Manual labeling was then 

conducted on these 120 images to generate a ground truth dataset. 

Subsequently, noise reduction and edge detection techniques were 

applied to obtain  a 4-channel dataset. The dataset was split, with 

100 images allocated for the training set, 10 for the validation set, 

and another 10 for the test set. Figure 5 illustrates the data processing 

flow.  

 

 

Figure 4a. Microscopic Images  

 

Figure 4b. Ground Truths 

 
Figure 5. Data Processing 

3.2.  Performance Measurement 
We chose Accuracy (ACC), Precision (PREC), Sensitivity (SE), 

Specificity (SP), Dice similarity coefficient (DSC), and Jaccard 

similarity (JS) as our evaluation metrics. The first four metrics are 

frequently employed for classification objectives, whereas the latter 

pair, DSC and JS, rely on the ground truth (GT) and are utilized for 

assessing the regional likeness between the segmentation outcomes 

and GT annotations. ACC, PREC, SE, SP, DSC, and JS are defined 

as follows: 

ACC = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁+ 𝐹𝑃
 (1) 

PREC = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

SE = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

SP = 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4) 

DSC = 
2 × 𝑇𝑃

2 × 𝑇𝑃+ 𝐹𝑁 + 𝐹𝑃
 (5) 

JS = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (6) 

In the performance comparisons metric table, the upward arrow  

indicates that the larger the value, the better the performance. The 

downward arrow   means the opposite. The best results are 

highlighted in bold.  

3.3.  Quantitative Evaluation 
We explored the optimal number of layers for the U-Net model 

structure in starch granule image segmentation. Our results reveal 

marginal differences in metrics across models with varying numbers 

of layers. Table 1 demonstrates that the 4-layer model exhibits 

superior performance in the JS, DSC, and SE metrics, with values 

of 89.23%, 94.30%, and 93.83%, respectively. Additionally, the 5-

layer model achieves higher scores in ACC, PREC, and SP,  with 

values of 99.47%, 95.35% and 99.73%, respectively.  

Table 1: Quantitative performance comparisons (mean ± 95% 
confidence interval) for various layer models using six metrics.  

Model JS(%) DSC(%) ACC(%) PREC(%) SE(%) SP(%) 

3-layer 
89.17 
±1.59 

94.26 
±0.89 

99.38 
±0.12 

95.04 
±1.30 

93.54 
±1.58 

99.71 
±0.09 

4-layer 
89.23 
±1.56 

94.30 
±0.87 

99.38 
±0.13 

94.81 
±1.42 

93.83 
±1.24 

99.70 
±0.11 

5-layer 
88.93 
±1.60 

94.13 
±0.9 

99.47 
±0.12 

95.35 
±1.18 

92.98 
±1.57 

99.73 
±0.09 

Subsequently, we discovered that utilizing 4-channel images 

(incorporating noise reduction and edge detection channel) will 

expedite the training process. Figure 6 presents a comparison of the 

time taken, as well as the validation dice and loss metrics, between 

3-channel and 4-channel datasets. 

 
Figure 6. Validation dice and loss metrics comparison between 3-channel 

images (without edge channel) and 4-channel images 

Table 2 compares the segmentation performance of 3-channel and 

4-channel models across six metrics. The 4-layer model using 4-

channel images demonstrates superior performance in the JS, DSC, 

ACC, SE and SP, achieving values of 89.23%, 94.30%, 99.38%, 

93.83%, and 99.70%, respectively. The 4-layer model using 3-

channel images achieves a higher score in PREC, with a value of 

94.89%. Figure 7d illustrates the enhanced ability of the 4-channel 

model in detecting the edges of starch granules. Figure 8 presents  
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 Figure 7a. Starch Microscopic Image      Figure 7b. Ground Truth Image                   

the Dice and loss metrics throughout the training and validation 

phases for a 4-layer model trained on a 4-channel image dataset. 

Table 2: Quantitative performance comparisons (mean ± 95% 
confidence interval) for 3-channel and 4-channel utilizing six 
metrics.  

Model JS(%) DSC(%) ACC(%) PREC(%) SE(%) SP(%) 

3-
channel 

88.85 
±1.71 

94.08 
±0.97 

99.36 
±0.12 

94.89 
±1.30 

93.32 
±1.35 

99.70 
±0.09 

4-
channel 

89.23 
±1.56 

94.30 
±0.87 

99.38 
±0.13 

94.81 
±1.42 

93.83 
±1.24 

99.70 
±0.11 

 

 

Figure 8. Dice and loss metrics during training and validation for a 4-layer 
model using 4-channel images 

Loss Functions 

We further explored the performance of applying various loss 

functions and compared their performance across six matrix using a 

4-layer model trained on 4-channel image dataset. Mean Squared 

Error (MSE) loss and Binary Cross-Entropy(BCE) loss emerged as  

top contenders. MSE loss calculates the average of squared 

differences between the actual and predicted values: 

MSE Loss = 
1

𝑛
∑ (ŷ𝑖 − 𝑦𝑖)𝑛

𝑖=1            (7) 

BCE loss represents cross-entropy loss, commonly used in binary 

classification task: 

BCE loss= - 
1

𝑛
∑ (𝑦𝑖 ∙ log(𝑦�̂�) + (1 − 𝑦𝑖) ∙ log(1 − �̂�𝑖))𝑛

𝑖=1         (8) 

where yi   is true target value for the i-th sample, �̂�i   is the predicted 

value for the i-th sample. 
Table 3 presents a quantitative comparison of the segmentation 

performance between BCELoss and MSELoss using a 4-layer 

model trained on 4-channel dataset across six metrics. The 

MSELoss function demonstrates superior performance in all six 

matrix: JS, DSC, ACC, PREC, SE and SP,  achieving values of 

89.67%, 94.55%, 99.40%, 94.89%, 94.23% and 99.70%,  

Figure 7c. Segmentation Result                 Figure 7d. Segmentation Result       
Generated by 3-channel Model                  Generated by 4-channel Model 

respectively.  

Table 3: Quantitative performance comparisons (mean ± 95% 
confidence interval) for various loss function using six metrics.  

Loss 
Function 

JS(%) DSC(%) ACC(%) PREC(%) SE(%) SP(%) 

BCELoss 89.23 
±1.56 

94.30 
±0.87 

99.38 
±0.13 

94.81 
±1.42 

93.83 
±1.24 

99.70 
±0.11 

MSELoss 89.67 
±1.32 

94.55 
±0.74 

99.40 
±0.12 

94.89 
±1.34 

94.23 
±1.01 

99.70 
±0.1 

 

 

Comparative Models Our U-Net model was also compared with 

nnU-Net [5]. To be fair, out U-Net implementation and nnU-Net 

were trained and tested on the same data with same environment 

configuration.  

 

Quantitative Results The segmentation performance of two models 

on starch dataset is detailed in Table 4. The nnU-Net model yields 

the best performance in the JS, DSC and SE metrics, achieving 

values of 89.84% , 94.64%  and 95.01%, respectively. Moreover, 

our 4-layer model utilizing MSELoss function achieves the higher 

score in the ACC, PREC and SP, with values of 99.40%, 94.89% 

and 99.70%, respectively. 

Table 4: Quantitative performance comparisons (mean ± 95% 
confidence interval) between out U-Net and nnU-Net 
segmentation models using six metrics.  

Model JS(%) DSC(%) ACC(%) PREC(%) SE(%) SP(%) 

4-layer 
 

89.67 
±1.32 

94.55 
±0.74 

99.40 
±0.12 

94.89 
±1.34 

94.23 
±1.01 

99.70 
±0.1 

nnU-Net 89.84 
±1.01 

94.64 
±0.56 

99.40 
±0.10 

94.31 
±1.34 

95.01 
±0.83 

99.67 
±0.08 

 

4. Discussion 
 

Our image-augmentation based U-Net model obtained good 

segmentation results, which demonstrate the effectiveness of deep 

learning in segmenting starch granules. This is also due to the strong 

contrast and low variability between the foreground and background 
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in  starch granule images. However, on the one hand our model still 

needs improvement. Nevertheless, there is room for improvement. 

The evaluation metrics, including mean JS and mean Dice, fall 

below 90% and 95%, respectively, potentially due to the common 

occurrence of overlapping or sticking starch granules. Addressing 

this challenge requires a distinct boundary to facilitate the separation 

of starch granules with different sizes and shapes. Furthermore, in 

our starch granule images, the background area surpasses the 

foreground area, creating a data imbalance that may hinder the 

extraction of small foreground regions. The use of Binary Cross 

Entropy Loss and Mean Squared Error Loss in this context are not 

conducive to effectively segmenting unbalanced samples, 

necessitating the exploration of a loss function that emphasizes the 

foreground. Additionally, in deep learning methods, manual 

annotation is time-consuming, posing challenges for image 

preprocessing. Finding more efficient annotation strategies could 

alleviate this issue.  

5. Conclusion 
 

Deep learning has found wide applications in different fields, 

including image enhancement [16], image retrieval [17], image 

segmentation [18], and speckle reduction [19]. Compared with 

traditional machine learning models]20][21], deep learning can 

obtain high accuracy in different applications. This paper employed 

a deep learning approach to segment microscopic images of starch 

granules. And we successfully extracted starch granules from the 

background using the classification and localization features of the 

U-Net model, and obtained high accuracy, illustrating the 

effectiveness of the deep learning method.  
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