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Abstract

For nonlinear inverse problems that are prevalent in imag-
ing science, symmetries in the forward model are common. When
data-driven deep learning approaches are used to solve such
problems, such intrinsic symmetries can cause substantial learn-
ing difficulties. In this paper, we explain how such difficulties
arise and, more importantly, how to overcome them by prepro-
cessing the training set before any learning, i.e., symmetry break-
ing. We take the far-field Fourier phase retrieval, which is central
to many areas of scientific imaging, as an example and show that
symmetric breaking can substantially improve data-driven learn-
ing performance. We also formulate the principle of symmetry
breaking that can lead to efficient learning.

Introduction

Far-field phase retrieval (FFPR) is a nonlinear inverse prob-
lem (IP) that is central to scientific imaging [3, 28] Given Y =
|7 (X)) e RM' “M2 (R, means nonnegative reals, .7 is the over-
sampled Fourler operator, and | - \2 takes element-wise squared
magnitudes and induces nonlinearity), FFPR is about recovering
the complex-valued X € CV'*> from Y. Fourier phases are lost
in the measurement process because detectors in practical imag-
ing systems cannot record complex phases. To ensure recoverabil-
ity, M1 > 2N; — 1 and M > 2N, — 1 are necessary [9, 13]. Under
such recoverability condition, FFPR is almost everywhere injec-
tive up to three intrinsic symmetries—operations on X that leave
Y unchanged: translation, conjugate flipping, and global phase;
see Fig. 1.
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Figure 1: Illustration of the three intrinsic symmetries of FFPR:
(1) global phase shift, (ii) 2D conjugate flipping and (iii) transla-
tion. Any composition of these three symmetries, when applied
to a feasible solution X, will lead to the same measurement Y in
the Fourier domain.

In standard practice, FFPR is solved by meticulously de-
signed iterative numerical methods, e.g., the famous hybrid input-
output (HIO) method [7], in combination with the shrinkwrap
heuristic [22]. The advent of data-driven deep learning (DL) has
created numerous opportunities for novel methods for FFPR. For
example, in the end-to-end DL approach, training sets of the form

IS&T Infernational Symposium on Electronic Imaging 2024
Machine Learning for Scientific Imaging 2024

{(Y;,X;)} are used to train deep neural networks (DNNs) that pre-
dict X given Y [4,8,14,24,33,35]. Recent work [21,37] has used
pre-trained deep-generative models as plug-in priors to improve
recovery performance.

In this paper, we highlight an overlooked learning difficulty
associated with the end-to-end approach to FFPR. The difficulty
is caused by the three intrinsic forward symmetries. As we illus-
trate later, these symmetries cause the inverse function that DNNs
try to approximate in the end-to-end approach to be highly os-
cillatory. Such high irregularities cannot be effectively learned
by existing DNNs learning techniques. To tame the difficulty,
we propose a novel technique to process the training set, which
we call symmetry breaking. We show that the proposed tech-
nique can substantially improve the end-to-end learning perfor-
mance, regardless of the DNN models used. Preliminary ver-
sions of the work have appeared in the workshop paper [32] and
a preprint [31].

Methods

Symmetry breaking for learning square root To see why
symmetries can cause learning difficulties, consider a simple IP:
given y = x2, recover x. In other words, we try to learn the square-
root function, where we allow both positive and negative outputs.
To implement the end-to-end approach, we draw random num-
bers x;’s uniformly from [—3,3], and construct the training set
{xiz,xi}. We then train a 6-layer multilayer perceptron (MLP),
with 100 hidden nodes in each layer to ensure sufficient capacity
and with layer-wise batch normalization to ensure training stabil-
ity. The functions learned by the MLP are shown in Fig. 2(i) and
Fig. 2(ii), on ultra-dense and dense training sets, respectively. In
neither case, we can learn a function with reasonable generaliza-
tion. In particular, for the former case, we learn an almost trivial
function. Why more is less here?

The culprit is the intrinsic sign symmetry {+x,—x} — x%.
Imagine that we had sampled every point in [—3,3] when con-
structing the training set, so the “function” induced by the train-
ing set is x> — {+=x, —x}, where the output is an equivalence class
induced by the sign symmetry. Practically, we only have a finite
training set, with random sampling we will not see both (x?,+x)
and (x2, —x) in the training set for any x € [—3,3]. But we can
see (x%,xl) and (x%7 —xp) in the training set where x,x, > 0, and
x1,x7 are close. This implies that due to intrinsic sign symmetry,
we can see, perhaps in many cases of the training set, that y; and
v, are close, but their desired outputs differ in sign, and hence far
away. Such a close-inputs-distant-outputs property implies that
the target function determined by the training set is oscillatory, at
least locally. Especially, the larger the training set, the more os-
cillatory the function can be. In the extreme case, any given DNN
gives up fitting the data due to the high oscillations, i.e., what we
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Figure 2: Our proposed symmetry breaking process substantially improves end-to-end learning on the square root problem. Top row:
learning results on the raw training set with ultra-dense sampling (i) and dense sampling (ii), vs. on the training set after symmetry
breaking; Bottom row: illustration of the three desired properties after symmetry breaking, without which the end-to-end learning can
still suffer: (iv) non-smallest, (v) non- connected, and (vi) non-representative.

have seen in Fig. 2(i).

Taming the difficulty is easy: we can process the training set
into {x2,[x;|} (or {x?,—|x;|}), i.e., fixing the sign of the outputs.
We call this a symmetry breaking process. Symmetry breaking
leads to a much smoother target function and hence much easier
for the DNN to learn (see Fig. 2(iii)).

Although the symmetry-breaking process seems natural,
there is a principle behind: imagine the continuous case again
where we sample every point in [—3,3]. The training set after
the symmetry breaking is representative—every point in the out-
put space is represented up to the sign symmetry, smallest—we do
not have more than necessary data points in the processed training
set, and connected—to minimize potential oscillation in the target
function. The three principles are illustrated in Fig. 2(iv)-(vi).

Symmetry breaking for phase retrieval A central question
now is how to derive an effective symmetry-breaking algorithm
for FFPR, which has three symmetries. First of all, just to con-
firm these symmetries can cause similar oscillation issues like our
square root example: consider Fig. 1(iii), i.e., the translated copy.
The distance between its 2D conjugate flip version and itself is
large, although they have exactly the same measurement. A per-
turbation argument like we did in the square-root example implies
that we can easily face a similar close-inputs-distant-outputs is-
sue.

Breaking the symmetries in the object domain seems hope-
less: conjugate 2D flipping and non-zero content translation
induce irregular equivalent sets in the object space that are
hard to represent. Fortunately, the three symmetries can be
equivalently represented in terms of the complex phase ¢'® in
the Fourier domain. Let 2 denote the oversampled Fourier
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transform of X. Now 1) for 2D translation, any allow-
able! 2D translation 71,#, € Z induces the change 2 (k{,k;) —
expli2m(kity /My + katy /M) Z (k1,k2); 2) conjugate 2D flip-
ping induces the change 2" — %, i.e., change to the complex
phase €% — ¢719; and 3) global phase transfer induces the change
2 — % 2. The change due to 2) is a global sign flipping in the
angle space of ®, and due to 3) is a line shifting in the angle
space of ®. The equivalent sets are easy to represent in the angle
space, but we take an equivalent representation in the complex
phase space to avoid the tricky issue of dealing with the 27 peri-
odicity in the angle space. However, finding a way to represent
the equivalent sets of 1) is still tricky, whether considering it from
the angle or the phase space.

So our overall strategy is a hybrid of rigorous symmetry
breaking for global phase shift and 2D conjugate flip in the com-
plex phase space, and heuristic “symmetry breaking” for trans-
lation in the original space—our later experiments show that this
combination is effective. To break 2D translation, we propose
simply centering the non-zero content as a heuristic. To break
global phase shift and 2D conjugate flip, we perform the geomet-
ric construction in the angle space and then translate it back to the
phase-space representation. To save space, we omit the intuition
behind the construction and directly present the results as follows.

Consider the following set in the phase domain S¥1*M: (the
space of ¢'®), where S denotes the 1D complex circle:

H={QeCMM . Q(11)=1,

1
Q(1,2) € S4,Q(i, j) € SV other index (i, j)}, W

Here, S the upper half circle. Formally, 7 can be understood

IThe nonzero content cannot translate outside the boundaries.
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as a set
{1} S, S - S
S S S - S
. . . (2)
s s S

S M1><M2
‘We can prove the following:

Proposition 1 Consider the conjugate flipping and global phase
transfer symmetries only. The set J is a connected, smallest
representative in the phase domain S with a negligible set A =
{1} x{w € S: Im(@) = O}M >M—1,

To apply this, we work with end-to-end DNNs that directly pre-
dict the N x N, target in the object domain. We first center the
nonzero content inside X ;’s in the training set and then take the
oversampled Fourier transform and perform the symmetry break-
ing as implied by Proposition 1 in the complex phase space.
For any phase matrix Q, the symmetry breaking goes naturally
as follows: first a global phase transfer is performed to make
Q(1,1) = 1, and then a global angle negation is performed, i.e.,
6 — —0 if the second angle is negative. Here, we assume the an-
gle has been transferred to the range of (—m,x]. We summarize
the whole pipeline in Algorithm 1.

Algorithm 1 Procedure of symmetry breaking for FPR

Input: Forward mapping f(X) = |.Z(X)|?* and randomly sam-
pled input data points D = {X ;} C CN1 >N
Qutput: Symmetry breaking training dataset
1: Centering the nonzero content inside X ;’s in the original in-
put space. This heuristically breaks 2D translation symmetry.
2: Taking the oversampled Fourier transform of X to get 2.
3: Decompose each element of 2" into polar form: 2" (k;,k;) =
p(ki,ko)e®k1k2) with the phase Q(ky,ky) = e®kik2)
4: Breaking symmetry in the phase domain with the simple al-
gorithm @ described below.
5: while X ; € D do @ as the following:
6: Performing global phase transfer to make Q(1,1) = 1:
Q(k] ,kz) — Q(l, I)Q(kl ,kz)
7: if Q(1,2) € S; then

8: Q(ki,k2) < Q(k1,k2)
9: else if Q(1,2) ¢ S, then
10: Q(kl,kz) — Q(kl,kz)
11: end if

12: end while
13: Applying forward mapping f on each point X; and form

7 (X ;) |2,Xj)}, which is a symmetry

a new training set {(|-
breaking set.

Experiments
Evaluation dataset We use a simulated Bragg CDI (BCDI)
crystal dataset as described in [38] to construct our training, vali-
dation, and test sets.

We first quickly review the data generation process: (1) Ran-
dom convex and nonconvex rounded polygons are generated; (2)
Magnitudes inside the polygons are set to 1, and those outside
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set to 0, to simulate the uniform magnitudes in practical crys-
tal samples; (3) Complex phases inside the polygons are derived
by first placing randomly distributed crystal defects and then pro-
jecting the resulting two-dimensional displacement fields onto the
corresponding momentum transfer vectors. A variety of polygon
shapes and defect densities are included in the dataset to ensure
its diversity. The complex-valued images are placed in 128 x 128
black backgrounds; see the last column of Fig. 3 for samples.

In our experiment, we resize the complex-valued images into
32 x 32 to save computation, and perform 2x oversampled Fourier
transforms to generate the phaseless measurements. We generate
4 training sets of varying sizes: 500, 1000, 1500 and 5000. More-
over, we independently generate a fixed 500-sample validation set
and a 500-sample test set. The original training sets are designated
as “before breaking”, and those after preprocessing following Al-
gorithm 1 are designated as “after breaking”.

Experiment setup We choose two DNN backbones, UNet [4]
and SiSPRNet [35] that have been used in end-to-end methods for
FFPR. Since our argument about learning difficulty is about the
training set, and also our symmetry breaking is only performed on
the training set, we expect uniform improvement in performance
due to the symmetry breaking, regardless of the DNN backbones
used. To make these models compatible with our problem size,
we adjust the number of decoder and encoder layers in both mod-
els. We train both models using standard MSE loss. For base-
line, we pick HIO+ER+Shrinkwrap [22], a gold-standard method
used in BCDI. To evaluate recovery quality, we use the symmetry-
adjusted MSE (SA-MSE) as defined in [32], modulo the intrinsic
symmetries.

Results We present the results from three settings: (1) SA-MSE
evaluated on the training dataset using the final models (Table 1),
(2) SA-MSE evaluated on the training dataset with the best vali-
dated model (Table 2), and (3) SA-MSE evaluated on the test set
with the best validated model (Table 3).

Table 1: Summary of reconstruction quality in terms of the SA-
MSE loss for FFPR on the training set using the model ob-
tained at the final training epoch. For each of the experi-
ments, the models are trained on the dataset with 500, 1000,
1500 and 5000 data points from the simulated 2D crystal dataset
both before and after symmetry breaking. The SA-MSE loss for
HIO+ER+Shrinkwrap is 0.0449.

UNet SiSPRNet
Sample Before After Before After
500 0.1806 0.0171 0.1868 0.0269
1000 0.0491 0.0115 0.1474 0.0210
1500 0.0609 0.0106 0.0697 0.0191
5000 0.0165 0.0060 0.0460 0.0120

First, we examine how symmetries affect training perfor-
mance from Table 1. We observe that symmetry breaking uni-
formly improves the SA-MSE loss across the two backbone mod-
els, often by an order of magnitude. This is consistent with
the symmetry-induced learning difficulty we expected. More-
over, in terms of SA-MSE loss, training on the raw training
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Figure 3: Visual comparison of reconstruction results by different methods on 2D simulated crystal data. Columns 1 and 2 are the results
for UNet and SiSPRNet trained on the 5000-sample dataset before symmetry breaking, columns 3 and 4 are the results for these two
networks trained on the 5000-sample dataset after symmetry breaking.
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MSE loss for FFPR on the training set using the model with the
smallest validation loss. For each of the experiments, the models
are trained on the dataset with 500, 1000, 1500 and 5000 data
points from the simulated 2D crystal dataset both before and after
symmetry breaking. The SA-MSE loss for HIO+ER+Shrinkwrap
is 0.0449.

UNet SiSPRNet
Sample Before After Before After
500 0.1341 0.0219 0.1525 0.0270
1000 0.0665 0.0236 0.1474 0.0212
1500 0.0672 0.0215 0.0701 0.0199
5000 0.0360 0.0187 0.0463 0.0147

Table 3: Summary of results in terms of SA-MSE loss for FFPR
based on the test dataset. For each of the experiments, the models
are trained on the dataset with 500, 1000, 1500 and 5000 data
points from the simulated 2D crystal dataset both before and after
symmetry breaking. The SA-MSE loss for HIO+ER+Shrinkwrap
is 0.0436.

UNet SiSPRNet
Sample Before After Before After
500 0.1210 0.0448 0.1412 0.0426
1000 0.1057 0.0460 0.1389 0.0357
1500 0.1056 0.0385 0.0733 0.0336
5000 0.0580 0.0326 0.0568 0.0255

sets often performs even worse than the non-data-driven baseline
HIO+ER+Shrinkwrap, despite the large capacity of the backbone
models we choose. This suggests that symmetry breaking is a cru-
cial step to take to maximize learning efficiency for data-driven
FFPR.

Tables 2 and 3 suggest the performance boost due to sym-
metry breaking on the training sets carries on to their respec-
tive test sets, i.e., test performance is uniformly improved after
symmetry breaking. Note that without symmetry breaking, the
test performance is always worse than that of non-data-driven
HIO+ER+Shrinkwrap baseline, whereas after symmetry break-
ing, we can start to see the advantage of data-driven methods:
they outperform the baseline method.

Fig. 3 visually compares the recovery results before and after
symmetry breaking on several randomly chosen test samples. Be-
fore symmetry breaking, both backbone models typically only re-
cover roundish shapes, losing the boundary details. After symme-
try breaking, for all of the visualized samples, we observe much
improved magnitude recovery, especially of the boundary details.
The estimated phases also reveal sharper details, again confirming
the anticipated performance benefits of symmetry breaking.

Related work

Recently, there have been intensive research efforts on solv-
ing IPs using deep learning [2, 19, 23,36]. The end-to-end ap-
proach is attractive not only because of its simplicity but also be-
cause (i) we do not even need to know the forward models, so long
as we can gather sufficiently many data samples and weak system
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properties such as symmetries—e.g., this is handy for complex
imaging systems [10, 17]; (ii) or alternatives have rarely worked,
and a good example is Fourier PR [7,29].

Besides these, the end-to-end deep learning approach has
been empirically applied to a number of problems with sym-
metries, e.g., blind image deblurring (i.e., blind deconvolu-
tion) [6, 30], real-valued Fourier phase retrieval [29], 3D surface
tangents and normal prediction [5, 11], nonrigid structure-from-
motion [16, 34], PDE IPs [15, 18, 27], blind source separation
[20], single image depth estimation. The difficulty of learning
highly oscillatory functions by DNNss is also found in DL for solv-
ing partial differential equations [1,26].

For FFPR, recent work has also tried to integrate DL mod-
ules with the traditional regularized data-fitting framework [12,
25]. However, HIO is still needed to produce good initialization,
and their methods mostly only perform local refinement.
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