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Abstract 
 

The initiation of CMOS simulations involves input scene data 

composed of wavelength-specific radiance, for which the 

application of lens PSF effects necessitates monochromatic PSFs 

corresponding to each wavelength. However, most lens 

manufacturers supply clients with lens files that contain 

polychromatic PSFs. Typically, upon opening these lens design files, 

only the weights for each wavelength can be discerned. Therefore, 

the ability to decompose these polychromatic PSFs into their 

monochromatic constituents is essential to accurately apply lens 

effects in CMOS simulations and to facilitate the intricate analysis 

of light interactions within optical systems. 

To address this need, our study utilizes deep learning 

techniques to decompose polychromatic PSFs into their constituent 

monochromatic elements. Leveraging lens data obtained from 

LensNet, we construct a polychromatic PSF which serves as the 

input for our deep neural network model. This model is specially 

trained to predict the monochromatic PSFs, revealing the distinct 

characteristics of each wavelength involved. 

The effectiveness of our approach is validated through 

extensive testing and detailed visualization methods. These include 

both 2D contour plots and 3D surface plots, which confirm the 

model's capability to accurately extract the monochromatic PSFs. 

This process is not only vital for current optical analysis but also 

paves the way for future advancements in neural network 

architectures and machine learning methodologies to refine the 

extraction process. 

Keywords: Point Spread Functions (PSFs), Deep Learning, 

Optical Systems, Monochromatic Decomposition. 

Introduction 
Point Spread Functions (PSFs) are crucial in optical system 

analysis, capturing the system's response to a point source or object. 

An in-depth understanding of PSFs facilitates detailed insights into 

optical system performance, enabling the development of more 

precise and sophisticated designs. However, typical input scenes for 

CMOS simulations [1] start with radiance data across various 

wavelengths, requiring the application of wavelength-specific 

monochromatic PSFs. While most optical systems encounter light 

of multiple wavelengths, forming a polychromatic PSF[2], lens 

manufacturers commonly provide files with polychromatic PSF 

applied, offering only wavelength weighting information. This 

necessitates a method to extract the underlying monochromatic 

PSFs to accurately simulate lens effects on the scene data. 

Decomposing these polychromatic PSFs into monochromatic 

components provides an opportunity to explore the details 

embedded within each wavelength [3]. This decomposition is 

challenging due to the complex interplay of wavelengths in the 

formation of the polychromatic PSF. Therefore, conventional 

analytical methods have been found to be insufficient, demanding 

the need for more sophisticated techniques. 

With the recent advancements in machine learning and 

artificial intelligence, we propose a novel method leveraging deep 

learning to decompose polychromatic PSFs into their 

monochromatic counterparts. Deep learning provides a promising 

avenue to handle the high-dimensional, non-linear nature of this 

decomposition problem. The primary objective of this study is to 

train individual deep neural networks for each wavelength that can 

effectively estimate the corresponding monochromatic PSFs from a 

given polychromatic PSF. 

 

 
             (a)                                                    (b) 

Figure 1. Wavelength Setting Screen in OpticStudio and Cross-Sectional 
Contours of Polychromatic PSFs. 

(a) Wavelength Setting interface of Ansys OpticStudio, where lens 
manufacturers provide lens design files with weighted wavelengths to deliver 
polychromatic Point Spread Functions (PSFs) to their clients. 

(b) Cross-sectional contours of monochromatic PSFs at different wavelengths, 
with the weighted monochromatic PSFs combined to form the three-
dimensional cross-sectional contour of the Polychromatic PSF. 

 

In the domain of optical design, the standard practice for lens 

manufacturers is to supply polychromatic Point Spread Functions 

(PSFs) with lens files, represented in Figure 1(b), which aggregate 

light interactions across various wavelengths. Nonetheless, clients 

frequently require access to the individual monochromatic PSFs 

within these composite files for precision-focused applications. 

Recognizing this industry gap, our research presents a methodical 

approach that employs deep learning to deconstruct polychromatic 

PSFs into their monochromatic components. This paper outlines the 

process of generating these PSFs, the intricacies of neural network 

design and training, and the techniques for visualizing the detailed 

monochromatic PSFs. This innovative strategy is poised to 

revolutionize optical system analysis and significantly advance lens 

design capabilities, catering to the specialized needs of clients and 

setting a new standard in optical system optimization. 

Proposed Methodology 
In optical systems, understanding the propagation and 

diffusion of light is paramount. One key tool for interpreting this 
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behavior is the Point Spread Function (PSF), which typically 

encapsulates polychromatic information due to the multi-

wavelength nature of the incident light. Separating this 

polychromatic PSF into its constituent wavelength-specific, 

monochromatic PSFs is a challenging yet crucial problem in optical 

science. This difficulty arises from the complex interactions of 

different light wavelengths within the optical system, and the 

inability of traditional methods to effectively extract wavelength-

specific information from the mixed data[2]. 

This paper proposes a methodology for decomposing 

polychromatic PSFs into their monochromatic counterparts using 

deep learning techniques. Deep learning, with its powerful ability to 

model intricate patterns and structures, provides an ideal framework 

for tackling this complex problem. The objective of this research is, 

therefore, to leverage these techniques to model and predict 

monochromatic PSFs from a given polychromatic PSF, effectively 

separating the inherent wavelength-specific information. 

The methodology commences with the creation of 

polychromatic PSFs from individual monochromatic PSFs, each 

corresponding to a selected wavelength. These wavelengths, 

carefully chosen as 400, 475, 550, 625, and 700 nm, represent a 

broad spectrum of light. Each monochromatic PSF is weighted 

according to its contribution to the polychromatic PSF, with the 

weights summing up to one, thereby ensuring the preservation of the 

intensity information of the overall polychromatic PSF. 

The constructed polychromatic PSFs, as depicted in Figure 2, 

are utilized as input data, while the corresponding monochromatic 

PSFs serve as output targets, thus forming a robust dataset for the 

training and testing of deep learning models. As shown in Figure 2, 

a Fully Connected Neural Network (FNN) is employed to learn the 

relationship between these monochromatic PSFs and the 

polychromatic PSF. These models, which are comprised of fully 

connected deep neural networks with multiple layers, undergo a 

meticulous training and optimization process through iterative 

learning. Upon completion of training, these models are adept at 

predicting the monochromatic PSFs from the given polychromatic 

PSFs, and their performance is assessed based on the accuracy of 

these predictions. Consequently, this methodology unveils a 

promising path for the effective decomposition of PSFs in optical 

science. 

 
Figure 2. Multistep Process for Deriving Monochromatic PSFs from 
Polychromatic PSF Using LensNet and FNN. 

 

Data Preparation  

In the proposed methodology, the preparation of data is a vital 

initial step, as it forms the basis for all subsequent analysis and 

model training. The generation of polychromatic Point Spread 

Functions (PSFs) is a critical aspect of this stage. With the help of 

LensNet[4], a deep learning-based system for optimizing lens 

designs, an infinite quantity of lens training data can be obtained. 

LensNet's capability to generate lens designs based on specific user-

input parameters allows the creation of a comprehensive dataset, 

providing a robust foundation for the deep learning models we 

intend to develop. 

 

The second step in data preparation is the selection and 

weighting of wavelengths. Light, being polychromatic, consists of 

various wavelengths, each of which contributes differently to the 

overall PSF. For the purpose of this study, five specific wavelengths 

(400, 475, 550, 625, and 700 nm) were chosen to represent a broad 

spectrum of light. These wavelengths were weighted based on their 

contribution to the polychromatic PSF, ensuring the preservation of 

intensity information. 

Next, the process involved the construction of training and test 

datasets. The synthesized polychromatic PSFs served as input data 

for the models, while the corresponding monochromatic PSFs acted 

as output targets. This configuration offered an intricate dataset, 

wherein the models could learn the complex relationships between 

the polychromatic and monochromatic PSFs, laying the groundwork 

for reliable and accurate predictions. 

 
Figure 3. LensNet Interface for Initial Lens Design Parameters and Results. 

 

In summary, the preparation of data involved generating an 

expansive set of polychromatic PSFs, strategically selecting and 

weighting wavelengths, and constructing comprehensive training 

and testing datasets. These preparatory steps were critical in the 

successful development of deep learning models that could predict 

monochromatic PSFs from polychromatic ones effectively. The 

extensive and varied dataset, prepared with the aid of LensNet, 

served as a robust platform for training the deep learning models, 

ultimately enabling the separation of PSFs into their wavelength-

specific counterparts. 

 

Deep Learning Model Architecture  
The process of training the model to learn the relationship 

between polychromatic and monochromatic PSFs is a two-step 

procedure. Initially, the polychromatic PSF is created by 

accumulating the weighted monochromatic PSFs. Then, using this 

information, the deep learning model is trained to predict the 

monochromatic PSFs. 

 

Creation of Polychromatic PSF 
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The first step in our procedure involves the aggregation of 

various monochromatic Point Spread Functions (PSFs) into a 

singular polychromatic PSF. This is performed by assigning 

appropriate weights to each of these monochromatic PSFs, 

reflecting their corresponding contributions to the final 

polychromatic PSF. This contribution is determined by the 

wavelength of the monochromatic PSF and is captured in the 

following mathematical formulation: 

 

Let's denote: 

At any given location (x, y) within the optical system, the 

monochromatic Point Spread Function (PSF) for a specific 

wavelength λ can be denoted by 𝑃(𝑥, 𝑦, λ), with 𝑤(𝜆) representing 

the weight assigned to each wavelength, indicating its contribution 

to the overall PSF. As Figure 4 illustrates, the resultant 

polychromatic PSF, 𝑃(𝑥, 𝑦) is obtained by summing these weighted 

monochromatic PSFs according to the formula: 

 

𝑃(𝑥, 𝑦) = ∑  

𝑁

𝑖=1

𝑤(𝜆𝑖)𝑃(𝑥, 𝑦, 𝜆𝑖) (1) 

 

Here, N stands for the total number of wavelengths considered, 

and the summation iterates over all wavelengths from 1 to N, 

creating a comprehensive mapping of how various wavelengths 

contribute to the final polychromatic PSF within the optical system.

 
Figure 4. Contour Representation of Monochromatic to Polychromatic PSF 

Transformation. 

 

Model Architecture 
The model we employ to tackle our problem is a fully 

connected neural network, also known as a multi-layer perceptron 

(MLP)[5], as illustrated in Figure 5. In this architecture, the input x 

is transformed through a series of computations in multiple layers 

to produce an output.

 
Figure 5. Neural Network Architecture and Optimization Algorithm. 

 

The first hidden layer's output, ℎ1 is calculated by applying 

the Rectified Linear Unit (ReLU) activation function 𝜎 to the 

input's weighted sum: 

 

ℎ1 = 𝜎(𝑊1 ⋅ 𝑥 + 𝑏1) (2) 

 

Subsequently, the process continues in the second hidden 

layer, which provides output  ℎ2, and is defined as: 

 

ℎ2 = 𝜎(𝑊2 ⋅ ℎ1 + 𝑏2) (3) 

 

Finally, the output layer yields the final model output 𝑦 using 

the formula: 

 

𝑦 = 𝑊3 ⋅ ℎ2 + 𝑏3 (4) 

 

Here, 𝑊1 , 𝑊2 , and 𝑊3  are the weight matrices for the first, 

second, and output layers, respectively, while 𝑏1, 𝑏2, and 𝑏3  are the 

corresponding bias vectors. These parameters are fine-tuned during 

the training phase, employing optimization techniques like the 

Adam Optimizer[6], to enhance the model's performance in 

predicting outcomes. 

 

Loss Function 
To optimize the performance of our neural network, it is 

essential to have a metric that reflects how well the model is 

predicting outcomes. For this purpose, we employ a loss function, 

specifically the Mean Squared Error (MSE) in the case of regression 

tasks[7]. The MSE offers a clear indication of the model's accuracy 

by comparing the network's predictions with the true output values. 

 

The MSE is computed as the average of the squares of the 

differences between the predicted outputs, denoted as  𝑦pred and the 

true outputs, denoted as  𝑦true . For our particular application, this 

can be mathematically represented as:    

 

𝑀𝑆𝐸 =
1

𝑛
∑  

𝑛

𝑖=1

(𝑦true 𝑖 − 𝑦pred 𝑖)
2

 (5) 

 

Here, the subscript 𝑖 indexes the samples in our dataset, and 

𝑛 is the total number of samples. 

 

In the context of our optical systems problem, 𝑦true 𝑖
 refers to 

the actual reshaped monochromatic PSF, while 𝑦pred 𝑖
 is the 

network's estimate for the same. The total loss, 𝐿, is calculated by 

summing the MSE across all individual samples, which serves as a 

feedback mechanism to guide the training of the network by 

minimizing this loss. 

Optimization Problem 
The parameters of the neural network are adjusted through an 

optimization process that seeks to minimize the loss function. The 

update rule for a single weight W in the network using the Adam 

optimizer is as follows: 

 

In the first step, we calculate the gradients g of the loss 

function with respect to the weights W: 

 

𝑔 = ∇𝑊𝐿 (6) 

 

Then, we update the running averages of the gradients m and 

the squared gradients v: 

 

𝑚 = 𝛽1𝑚 + (1 − 𝛽1)𝑔 (7) 
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𝑣 = 𝛽2𝑣 + (1 − 𝛽2)𝑔2 (8) 

 

Finally, the weights are updated using the following rule: 

 

𝑊 = 𝑊 − 𝛼
𝑚

√𝑣 + 𝜖
 (9) 

 

Here, α is the learning rate, 𝛽1 and 𝛽2 are exponential decay 

rates for the moment estimates, ε is a small constant for numerical 

stability, and g is the gradient of the loss function with respect to the 

weights. 

 

Training Procedure 
The training process is illustrated in Figure 6, which shows the 

training progression of neural network models for PSF 

decomposition over iterations. It involves iterating through the 

dataset multiple times. Each complete pass through the dataset is 

called an epoch. The number of epochs is a hyperparameter that 

defines the number of times that the learning algorithm will work 

through the entire training dataset. 

 

 
Figure 6. Training Progression of Neural Network Models for PSF 

Decomposition Over Iterations. 

 

The model parameters are updated for each mini-batch B of 

samples from the dataset. Let's denote the loss for the 𝑗th sample in 

the 𝑖th  mini-batch as 𝐿𝑖𝑗. Then, the total loss for the mini-batch is: 

 

𝐿𝑖 =
1

|𝐵𝑖|
∑  

𝑗∈𝐵𝑖

𝐿𝑖𝑗 (10) 

 

The model parameters θ are updated for each mini-batch to 

minimize the total loss  𝐿𝑖  : 
 

𝜃 = 𝜃 − 𝛼∇𝜃𝐿𝑖 (11) 

 

Here, α represents the learning rate, and |𝐵𝑖| indicates the size 

of the  𝑖th  mini-batch. In each epoch, this process is repeated for 

every mini-batch. The Adam optimization algorithm, known for its 

efficiency in handling sparse gradients and adaptive learning rate 

optimization, is employed. It updates model parameters using the 

first and second moments of the gradients, thereby enhancing the 

convergence speed and performance of the deep learning model, 

especially in complex tasks like PSF decomposition. 

Multiple Models for Multiple Wavelengths 
Lastly, we need to train a separate model for each 

wavelength[8]. Let's denote the parameters of the model for the  

𝑖th wavelength as 𝜃𝑖  and the output data (reshaped monochromatic 

PSFs) for the  𝑖th wavelength as 𝑦𝑖. 

 

The loss for the 𝑖th model and 𝑗th sample is 𝐿𝑖𝑗 and the total 

loss 𝐿𝑖  for the 𝑖th model is: 

 

𝐿𝑖 =
1

𝑛
∑  

𝑛

𝑗=1

𝐿𝑖𝑗 (12) 

 

The optimization problem for each model can be expressed 

as: 

 

𝜃𝑖
∗ = arg 𝑚𝑖𝑛

𝜃
 𝐿𝑖 

 

(13) 

𝜃𝑖
∗ = arg 𝑚𝑖𝑛

𝜃
 𝐿𝑖 (14) 

 

The model parameters 𝜃𝑖  are updated for each sample to 

minimize the total loss 𝐿𝑖, similar to the process described in the 

"Training Procedure" section: 

 

𝜃𝑖 = 𝜃𝑖 − 𝛼∇𝜃𝑖
𝐿𝑖 (15) 

 

Here, α is the learning rate, 𝐿𝑖 is the total loss for the  𝑖th model, 

and 𝜃𝑖  are the parameters of the  𝑖th model. This update rule ensures 

that the model for each wavelength is tuned to minimize its specific 

loss, leading to a set of models that can each reconstruct a 

monochromatic PSF from a polychromatic PSF as defined by Eq. (1)  

Each of these models is trained independently, allowing for 

parallelization of the training process. This can significantly speed 

up the training time when multiple processing units are available. 

 

 
Figure 7. Comparison of Original and Estimated Monochromatic PSFs Across 
Wavelengths. 

At the end of the training process, as illustrated in Figure 7, 

we have N models each corresponding to a different wavelength. 

When a new polychromatic PSF is presented, each model applies its 

learned mapping to reconstruct the monochromatic PSFs. The 

aggregation of these reconstructions then gives a complete picture 

of the monochromatic PSFs that contributed to the polychromatic 

PSF. 
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This methodology thus combines the strengths of deep 

learning with the inherent characteristics of the optical systems to 

efficiently and effectively solve the inverse problem of 

reconstructing monochromatic PSFs from a polychromatic PSF. 

 

PSF Decomposition Analysis 
In this chapter, we delve into the performance evaluation of 

our neural network tasked with decomposing polychromatic Point 

Spread Functions (PSFs) into their monochromatic counterparts. 

We begin our analysis by examining the Mean Squared Error (MSE) 

across various fields and wavelengths, a statistical metric that 

quantifies the accuracy of our model's PSF estimations. This 

approach allows us to assess the precision of the neural network in 

predicting PSFs at each specific field and wavelength. 

Our methodical approach involved calculating the MSE for 

each target field, spanning wavelengths from 400nm to 700nm. For 

each field, the MSE was computed by comparing the predicted 

monochromatic PSFs to the corresponding segments of the original 

polychromatic PSFs. These calculations were conducted for a series 

of files, ensuring a robust evaluation of the neural network’s 

performance. 

 

 
Figure 8. Mean Squared Error (MSE) Analysis of Predicted Monochromatic 
PSFs Across Optical Fields and Wavelengths. 

 

After presenting the detailed MSE values for each field and 

wavelength, we proceed to visual comparisons of these results. 

Graphical representations are used to illustrate the neural network's 

effectiveness at different wavelengths, complementing our 

statistical analysis. These visuals aim to provide an intuitive 

understanding of the model’s capabilities in accurately 

decomposing polychromatic PSFs into their monochromatic 

elements, offering a holistic view of its performance. 

The graph presented illustrates the average Mean Squared 

Error (MSE) across different target fields and wavelengths, 

providing an insightful visualization of our neural network's PSF 

estimation performance. Notably, the shorter wavelengths of 400nm 

and 475nm demonstrate lower MSE values, suggesting that the 

network is more adept at learning and predicting the complex PSF 

shapes that occur at these frequencies. The higher spatial frequency 

variations inherent in shorter wavelengths could be offering more 

information for the neural network to learn from, leading to these 

lower MSE results[9]. 

The trend observed in the graph indicates a decrease in MSE 

towards the outer fields, compared to the central fields. This may be 

attributed to the more complex and irregular shapes of the PSF in 

the outer fields, providing the neural network with an abundance of 

features to learn. Such complexity could enhance the network's 

ability to differentiate and predict the characteristics of each PSF 

accurately, thereby reducing the MSE. This pattern persists across 

longer wavelengths, including 550nm, 625nm, and 700nm, 

showcasing the variation in the neural network's learning capability 

with respect to wavelength. 

These results reveal a non-uniform performance of the neural 

network across wavelengths. While complex diffraction patterns 

typically arise at shorter wavelengths, our study shows that the 

neural network effectively handles this complexity, achieving lower 

MSE. This suggests that the network can accurately learn and 

predict more intricate PSF shapes, emphasizing the importance of 

considering the diverse characteristics of the optical field and 

wavelength when developing and training neural networks for PSF 

estimation. This finding is crucial for directing neural network 

modeling efforts to enhance the performance of optical systems. 

 

 
(a) 

 
(b) 

Figure 9. Mean Squared Error Analysis of Monochromatic PSF Estimations at 

Central and Peripheral Optical Fields. 

(a) This portion illustrates the estimation at a central field (field 4, Red dashed 
line), where the Mean Squared Error (MSE) is notably higher for shorter 
wavelengths, such as 400 nm. The increased MSE can be attributed to the 
three-dimensional shape of the PSF, which is nearly circular and symmetrical, 
leading to fewer distinctive features for the neural network to learn and thus a 
higher error rate. 

(b) This section presents the estimation at a peripheral field (field 18, Blue 
dashed line), demonstrating lower MSE values across all wavelengths. The 
PSFs at this peripheral field exhibit complex shapes that provide more 
distinctive features for the network to capture, resulting in improved learning 
and consequently lower MSE for all measured wavelengths. The enhanced 
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learning from these intricate shapes allows for more accurate estimations of the 
PSFs at these outer fields. 

 

Conclusion and Future Work 
The findings of this study underscore the potential of deep 

learning in the domain of optical system analysis, particularly in the 

decomposition of polychromatic PSFs into monochromatic 

constituents. Our neural network models have shown a remarkable 

ability to discern and reconstruct the intricate patterns of PSFs 

across various fields and wavelengths. The successful application of 

these models in accurately predicting monochromatic PSFs provides 

a solid proof of concept for the use of deep learning in optical design 

and analysis. It is evident that the models are particularly adept at 

handling the complexity of the PSFs in the peripheral fields, as 

demonstrated by the lower Mean Squared Error (MSE) in these 

areas. 

Looking ahead, we recognize the necessity of further research 

and development in several key areas. Firstly, expanding the dataset 

to encompass a wider range of wavelengths and optical system types 

will likely enhance the robustness and applicability of our models. 

Secondly, integrating advancements in neural network architecture, 

such as convolutional layers for spatial feature recognition[11], 

could significantly improve the precision of PSF estimations. 

Thirdly, exploring the implementation of more sophisticated 

optimization algorithms may yield improvements in the training 

efficiency and performance of the models. 

In conclusion, our research aims to enhance CMOS image 

sensor simulations[1] by accurately analyzing lens chromatic 

aberration effects through wavelength-specific separation. By 

applying our neural network models to simulate optic effects more 

precisely, we intend to improve the fidelity of lens design 

simulations. Future efforts will involve collaborating with industry 

partners to apply these advancements in real-world optical systems, 

leveraging the synergy between machine learning and optical 

science to address complex challenges and advance lens technology. 

This endeavor is expected to lead to innovative solutions, 

significantly impacting the optical industry with better lens designs 

and more sophisticated optical systems. 
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