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Abstract

PhotoDNA is a widely used method for generating robust im-
age hashes. It is widely used today for the detection of CSAM.
This results in large numbers of images that need to be compared.
This is done over a Euclidean distance, which requires relatively
expensive computations. We present an approach that allows the
comparison of these images to be performed significantly more
efficiently. We also show that both robustness and resistance to
false positives are not compromised. Our approach is based on
converting the PhotoDNA hash from 144 bytes to 300 bits, which
can be compared using Hamming distance. An advantage is that
the existing hashes can be converted directly, so no new calcula-
tion of hashes from reference images is necessary.

Motivation

Robust (also called perceptual) hashing plays a crucial role
in the ongoing effort to combat Child Sexual Abuse Material
(CSAM) by facilitating the identification and removal of such
content from online platforms. CSAM encompasses various
forms of visual or digital media, including images, videos, or
computer-generated content, depicting the sexual abuse or ex-
ploitation of children.

The process of robust hashing involves creating a distinct
digital ’fingerprint’, or hash, for an image or video. This hash
serves as a unique identifier, enabling the comparison of content
with known instances of CSAM.

By employing robust hashing, online platforms gain the abil-
ity to proactively detect and eliminate CSAM without solely re-
lying on user reports. This proactive approach contributes signif-
icantly to reducing the spread of such content.

Furthermore, robust hashing proves instrumental in assisting
law enforcement in forensics investigations. Its is used to search
large quantities of images for relevant hits. This speeds up the
analysis and makes it possible to handle the large amounts of data
that frequently occur.

Efficiency

Due to the high prevalence of the method, one property is of
particular interest: The hash comparison is done over a Euclidean
distance: two hashes are compared by forming 144 differences
and then squaring them. The root is then taken from the sum of
these resulting values. This is the distance between the two hash
values. For two points P and Q in an n-dimensional space the
following formula is used:

d:\/(ql—p1)2+(q2—pz)2+~~+(qn—pn)2 M

This calculation is comparatively complex for a hash. Often
the much easier to compute Hamming distances are used, where
differences in binary sequences are simply counted. The Ham-
ming distance is a measure of the difference between two strings

IS&T Infernational Symposium on Electronic |mogin 2024
Media Watermarking, Security, and Forensics 2024

of the same length. It is calculated by counting the number of po-
sitions at which the corresponding symbols are different. If you
have two strings A and B of the same length, the Hamming dis-
tance can be defined as follows:

H(AB) = Y[ #b] @
i=1

In this work, we want to consider whether existing hashes
can be converted to a binary representation and compared by
Hamming distance without degrading the recognition rates of the
method. This could produce a much more resource-efficient solu-
tion.

The PhotoDNA Algorithm

The full mechanisms of PhotoDNA have not been disclosed
beyond some basic papers by the creators [7] and a presentation
by Microsoft. Nevertheless, there have been some attempts to
recreate the algorithms from the known facts!. PhotoDNA is in-
cluded in forensic tool sets.

From the available information, we assume the following al-
gorithm:

1. Normalization: Convert to grayscale and downscale to
26x26 pixels. Note: Both operations can affect the hash
result due to their handling of edges and textures, so reim-
plementations may produce values different from the leaked
library.

2. Segmentation: The 26x26 pixels are divided into 6x6 quad-
rants with an overlap of 2 pixels. There are 6 quadrants per
row, starting at 1, 5, 9, 13, 17, and 21. There are 36 quad-
rants

3. Gradients: Sobel gradients are computed for each quadrant.
This results in four values representing horizontal and ver-
tical positive and negative sums. The range of values is 0
to 255. In some papers it is mentioned that the value 255
means ~255 or more”.

4. comparison: There are several ways to compare two hashes.
The most common seems to be the Euclidean distance [8].
As far as we know, there are no official thresholds for de-
ciding whether two images are identical or not. The choice
of threshold will control the likelihood of false positives or
false negatives [19].

In table 1 we provide an example of a PhotoDNA hash as a se-
quence of 144 byte values derived from the image in figure 1.
The values are not structured with respect to gradiant directions.

Uhttps://www.hackerfactor.com/blog/index.php?archives/931-
PhotoDNA -and-Limitations.html
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Figure 1. Example image from the coco [12] dataset.

Tab. 1: Hash of image figure 1

1 2 3 4 5 6 7 8 9 10 11 12
0 0 36 0 42 0 56 0 39 7 33 0 37
12 0 118 49 245 193 255 16 2 181 255 26 0
24 0 32 0 43 0 52 0 44 6 36 0 27
36 255 2 75 125 255 158 132 235 10 255 164 255
48 0 45 0 40 0 44 0 52 3 12 0 36
60 166 3 13 144 224 203 9 255 18 136 0 150
72 0 49 0 44 0 38 0 45 4 7 0 32
84 12 0 0 39 25 6 0 86 42 2 0 43
96 0 41 0 36 2 20 0 26 3 3 0 16
108 0 0 0 0 0 0 0 0 0 0 0 0
120 0 26 1 5 1 12 0 2 1 1 0 5
132 0 0 0 3 1 0 0 4 13 0 0 13

State of the Art

Hash-based algorithms are used in various application areas,
such as image search, duplicate or near-duplicate detection, or
image authentication. [5] [14] [6] [24]. In this paper, we assume
that the difference between cryptographic and robust hashing is
known. Briefly, cryptographic hashing is not robust and will gen-
erate hashes with no similarity between versions of an image af-
ter lossy compression or scaling. Many robust hashing algorithms
use perceptual features of images [31, 30, 29, 28]. With advances
in deep learning, neural network-based approaches have also been
explored for robust hashing. These approaches use deep neural
networks to learn feature representations that capture image con-
tent and generate compact hash codes for similarity comparison.
(31 (171 [2].

Security vs. Robustness

It is often overlooked that content recognition methods are
often not designed to be secure. The task of robust hashing meth-
ods and classifiers is to recognize or classify content. It is not as-
sumed that an attacker will directly target the methods to prevent
this recognition. In the field of multimedia security, a distinction
is made between robustness and security. Robustness addresses
changes to content that are caused by processing that is normally
expected, such as scaling or lossy compression [11] [32]. Robust
hashing methods are resistant to this, and classifiers should not
exhibit any serious drops in performance here either.

Security, on the other hand, means that an attacker deliber-

1 1 ple, robust
hashing methods can be used to make local changes to the image
that cause the hash to change significantly, even though the image
itself is not or only slightly disturbed.

This also applies to modern hashing methods based on ma-
chine learning, such as NeuralHash from Apple[27]. These at-
tacks can potentially be carried out in both directions: The hash
of an image is changed so that it is no longer recognized. Or the
hash of another image is changed in such a way that it is mistak-
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Figure 2. Structure of PhotoDNA values. 6x6 cells with four values A,B,C,D.

enly considered to be stored in a database.

Attacks on PhotoDNA

In [16], preimage attacks on PhotoDNA (as well as facebook
PDQ) are shown. By accepting a certain amount of noise, it is
possible to generate image pairs with matching hashes. In [13]
the privacy of the hashes was verified. It was argued that it is not
possible to derive the original images from their hashes using ma-
chine learning. Recent experiments, however, show that images
can be reconstructed from the hashes?. The question is whether
the re-created images rely more on the hashes or on the training
data of the re-creation system.

Own Previous Work

An alternative robust hash of ours is the ForBild block hash
presented in [18] [23]. It is the result of an evaluation of im-
age hashing methods [32]. Based on this hash, we have added
segmentation countermeasures based on face detection [25], wa-
tershed image segmentation [24] and machine learning[20][21].
Beyond image recognition, we also addressed the possibility of
combining privacy and robust hashing in [1] [9] [26]. As an alter-
native to robust hashing, we also evaluated feature-based montage
detection using SIFT and SURF in [22].

Binarization of PhotoDNA

The original PhotoDNA hash consists of 144 byte values.
These are the result of 6x6 overlapping squares, for each of which
the edge intensity is calculated in four directions (vertical pos-
itive, vertical negative, horizontal positive, horizontal negative).
This results in 6¥6*4 values ranging from 0 to 255. Figure 2 il-
lustrates the structure of the original PhotoDNA hash, with A to
D representing the four gradient directions.

We suggest a simple conversion to a binary representation:
We compare values of individual directions in adjacent cells. One
bit of our hash results form the output of the comparison between

Zhttps://www.anishathalye.com/2021/12/20/inverting-photodna/
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two values x and y, e.g. Al and A2.

1if
HashBit={ =~ 7 3)
0 else

We perform these comparisons for neighboring cells in hor-
izontal, vertical and diagonal direction. Since there are 6*6 cells,
but we always need a direct neighbor, the comparison is reduced
to 5*5, i.e. we get 3*5%5=75 bits.

Figure 3 shows the selection of comparison values for direc-
tion A: We compare neighbors in three directions shown by the
arrows. The marked blocks at the right column and bottom row
are not used as starting points. The last starting point is A29,
comparing with A30, A35 and A36.

We do the same for directions B to D. This means that we
get 300 bits as a hash from the comparison. These 300 bits are
our new binary representation of the PhotoDNA hash. Now that
we have a binary representation, we can efficiently calculate the
Hamming distance between two hashes.

Evaluation

The test material is 10,000 images from the Coco dataset
[12], which contain a wide collection of different motifs. The
longest edge of each of these images is 640 pixels. In addition, we
used 99.999 different images from Coco for creating a hash data
base. This data base is used for evaluating the collision resistance.

Robustness

Since PhotoDNA is a robust hash, the first thing we did was
to investigate the effect of robustness on the hash after converting
it into a binary sequence. The following attacks were applied by
Irfanview?:

* 80: convert=jpg80

* 70: convert=jpg70

* 30: convert=jpg30

* ¢2: crop=(2,2,1000,1000) and jpgq=80

* ¢10: crop=(10,10,1000,1000) and jpgq=80
* 300: resize long=300 and jpgq=80

* 500: resize long=500 and jpgq=80

3 https://www.irfanview.com/, version 4.60
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Cropping is done by setting the starting point of the crop area
to the top left. Crop(2,2,....) means that the image with a maxi-
mum length of 640 pixels has been cropped at position (2,2) by
removing one pixel row and column from the top left. The crop
boundary (....,1000,1000) can be seen as an neutral setting as it is
beyond the size of the image.

Our first investigations show that the robustness of the hash
does not suffer by converting it to a binary representation. The
following two tables first show the percentage mapping to bins of
Hamming distances in steps of five. The attacks considered are
JPEG compression with quality factor 80, 70 and 30 (80,70,30),
cropping at the upper left corner by 2 and by 10 pixels (C2 and
C10), and scaling to 300 and 500 pixel page length (R300, R500).

While the original calculation has a potentially huge result
space, the binary hash is limited to a maximum Hamming distance
of 300 due to its 300 bit length. We have limited our investigation
to 25% of this maximum distance, so we only show the range
between 0 and 74 as well as all higher valuescombined. For the
Euclidean distance, we consider the range from 0 to 425 as well
as all higher values in steps of 25.

It can be clearly seen that the robustness of both comparison
methods is similar. In both cases, only cropping C10 by 10 pixels
is a challenge to robustness. The other attacks show results that
are all very low distances.

Tab. 2: Robustness of original hash comparison (in percent)

Range 80 70 30 C2 C10 R300 R500
0 25 22775 2275 2222 727 0.00 17.02  20.57
26 50 36.77 36.76 37.11 4531 0.05 39.93  38.04
51 75 21.82 2185 21.89 2643 2.02 23.46 2240

76 100 10.58 10.57 10.63 12.07 2398 11.17 10.82
101 125 4.57 4.56 4.60 5.08 39.18 476 4.61
126 150 1.84 1.85 1.85 2.06 21.48 191 1.85
151 175 0.85 0.86 0.88 0.91 8.24 0.89 0.88
176~ 200 0.40 0.39 0.41 0.45 2.95 0.44 0.41
201 225 0.24 0.24 0.22 0.23 1.14 0.23 0.23
226 250 0.08 0.07 0.08 0.08 0.50 0.08 0.08
251 275 0.05 0.05 0.05 0.05 0.21 0.04 0.05
276 300 0.03 0.03 0.03 0.03 0.10 0.03 0.03
301 325 0.02 0.02 0.02 0.02 0.06 0.02 0.02
326 350 0.01 0.01 0.01 0.01 0.04 0.01 0.01
351 375 0.00 0.00 0.00 0.00 0.01 0.00 0.00
376 400 0.00 0.00 0.00 0.00 0.02 0.00 0.00
401 425 0.01 0.00 0.01 0.00 0.01 0.01 0.01
426 99999  0.00 0.00 0.00 0.00 0.01 0.00 0.00

Collision resistance

Results based on comparison of hash values from randomly
selected images show a very low false error rate that is compa-
rable to the original PhotoDNA results discussed in our previous
paper [19]. Comparing each of the 10,000 image hashes with the
other 99,999 hashes show an average minimal Hamming distance
of 144, which is close to the coin flip average of 150 for 300 bits.
Figure 4 and table 4 show the results for all 10,000 images. No
hash was below the hamming distance threshold of 75. The ob-
served minimal distance is 83. Figure 5 provides a sorted view on
all 10,000 minimal distances.

Discussion
The innovation of our work lies in demonstrating that exist-
ing and widely used methods such as PhotoDNA can be made
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Tab. 3: Robustness of binary hash comparison (in percent)

Range 80 70 30 C2 C10 R300 R500
0 4 3488 3438 3229 17.58 0.02 25.69 31.22
5 9 39.12 3956 39.73 46.81 1.83 4278  40.46
10 14 1687 1676 17.77 23.6 13.47  20.7 18.52
15 19 585 5.96 6.67 8.05 31.07 7.04 6.26
20 24 21 2.17 2.26 2.49 30.13 235 2.25
25 29 0.73 0.68 0.74 0.9 15.5 0.89 0.78
30 34 028 0.32 0.32 0.33 5.63 0.37 0.33
35 39 0.08 0.08 0.09 0.14 1.62 0.08 0.07
40 44 0.03 0.02 0.04 0.04 0.44 0.04 0.05
45 49 0.02 0.02 0.02 0.02 0.13 0.01 0.02
50 54 0.02 0.02 0.03 0.02 0.07 0.01 0.01
55 59 0.01 0.01 0.01 0.01 0.04 0.03 0.01
60 64 0 0 0.01 0 0.02 0 0.01
65 69 0 0.01 0.01 0 0.01 0 0
70 74 0 0 0 0 0 0 0

75 300 0.01 0.01 0.01 0.01 0.02 0.01 0.01
401 425 0,01 0,00 0,01 0,00 0,01 0,01 0,01
426 99999 0,00 0,00 0,00 0,00 0,01 0,00 0,00

Tab. 4: Minimal Hamming Distances distribution

Range Percent Range Percent
150 154  36.04 110 114 131
145 149 125 105 109 0.59
140 144 13.58 100 104 025
135 139  11.65 95 99 0.15
130 134 9.33 90 94 0.05
125 129 7.22 85 89 0.02
120 124 4.64 80 84 0.01
115 119 2.66 75 79 0

Hamming Distances

75 85 95 105 115 125 135 145
Hamming Distance

Figure 4. Minimal Hamming Distance distribution

Sorted Minimal Distances

250

Hamming Distance (Minimum)
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8
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Figure 5. Sorted minimal distances
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much more efficient using simple approaches without reducing
their performance. Our approach should allow a significantly
faster hash lookup and requires only 38 bytes of memory instead
of 144 bytes. Existing hash collections can be easily converted,
there is no need to recompute the hash. Especially when large
data collections have to be stored and compared, our approach
has a massive advantage over the established method.

Our evaluation with 10,000 images shows that with a thresh-
old of Hamming Distance 75 (25% of the maximum distance) we
achieve zero false positives and 0.01% false negatives.

In conclusion, it is imperative to underscore the significance
of enhancing the efficiency of perceptual hashing algorithms. The
primary justification for this lies in the ability of optimized al-
gorithms to expedite the processing of extensive data volumes,
thereby diminishing the temporal and computational resources
requisites. Such an enhancement is particularly pivotal in scenar-
ios necessitating real-time or near-real-time processing, exempli-
fied by content moderation on digital social platforms or in video
surveillance frameworks.

A reduction in computational demands, coupled with a de-
crease in requisite data transmission, unequivocally leads to a
lower overall energy consumption. This aspect is of paramount
importance in the context of sustainable computing methodolo-
gies, especially within the ambit of large-scale systems and data
centers. Furthermore, an efficient perceptual hashing system is
inherently more capable of adapting to scalability demands. This
adaptability is critical in an era where digital content is prolifer-
ating at an exponential rate, necessitating efficient processing and
comparison mechanisms.

Moreover, the reduction of the perceptual hash length signif-
icantly minimizes the volume of data necessitating storage. This
attribute is particularly beneficial in database systems where sub-
stantial quantities of images or videos are archived for subsequent
comparison or retrieval.

Finally, it is essential to acknowledge that a reduction in en-
ergy consumption transcends mere cost savings; it also substan-
tially lessens the environmental footprint. This consideration is
increasingly crucial in contemporary discourse, where the focus
on sustainability is paramount. Therefore, advancing the effi-
ciency of perceptual hashing algorithms not only presents techni-
cal and economic benefits but also aligns with broader ecological
objectives.
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