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Abstract
There are advantages and disadvantages to both robust and

cryptographic hash methods. Integrating the qualities of robust-
ness and cryptographic confidentiality would be highly desirable.
However, the challenge is that the concept of similarity is not ap-
plicable to cryptographic hashes, preventing direct comparison
between robust and cryptographic hashes. Therefore, when in-
corporating robust hashes into cryptographic hashes, it becomes
essential to develop methods that effectively capture the intrinsic
properties of robust hashes without compromising their robust-
ness. In order to accomplish this, it is necessary to anticipate the
hash bits that are most susceptible to modification, such as those
that are affected by JPEG compression. Our work demonstrates
that the prediction accuracy of existing approaches can be signifi-
cantly improved by using a new hybrid hash comparison strategy.

Motivation
For copyright protection and detection of known illegal digi-

tal images, robust image hashing can be used. Privacy is an impor-
tant concern, especially when private images are part of a forensic
investigation. Mobile phones, computers, and other devices store
many private pictures whose privacy needs to be protected. A sus-
pect may not have any illegal images at all, so his or her privacy
must not be compromised. Robust image hashes are very effective
at detecting known illegal images. However, they leak informa-
tion about the original image and cannot be considered privacy
preserving. Steinebach et al. propose to combine robust hashes
with cryptographic hash functions in a hybrid approach to avoid
such information leakage [1].

One property of cryptographic hash functions is the
avalanche effect. A small change in a cryptographic hash func-
tion’s input produces a hash value drastically different from and
uncorrelated with the original. As a result, distance metrics such
as the Hamming Distance (HD), which are used to compare robust
hashes, cannot be applied to cryptographic hashes. As a result,
an image must always produce the exact same robust hash, even
when attacks such as JPEG compression or rescaling are applied.
Otherwise, the cryptographic hashes will not match. (Note: The
operations are referred to as "attacks" in this context because they
potentially change the hash. These "attacks" are also commonly
used in image live-cycles, such as automated normalization on so-
cial media platforms). To do this, Steinebach et al. propose the
identification of weak bits of robust hashes, which can be neu-
tralized before a cryptographic hash is applied. In this work, we
improve existing approaches for predicting weak bits. We also
propose and evaluate new prediction approaches based on ma-

chine learning.
Predicting flip positions is essential for combining robust

and cryptographic hashes. This topic is covered in previous
works [2] [1]. There the flipping positions are predicted by their
distance to the block median value. In [3] it is shown that this
assumption is not reliable enough for effective prediction. In [4]
machine learning is used to significantly improve the chances of
correct prediction. A prediction will allow to combine robust and
cryptographic hashes. In our work we show that the prediction
accuracy of existing approaches can be significantly improved by
using a new hybrid hash comparison strategy. This will provide
superior privacy when identifying images.

Background
Hash-based algorithms are used in various applications, such

as image searching, detecting duplicates or near-duplicates, or au-
thenticating images [5] [6] [7] [8]. Hash functions can be divided
into cryptographic and robust hashes. They are used for different
purposes and have different characteristics.

A cryptographic hash function is designed to provide data
integrity, authenticity, and non-repudiation. Its primary purpose
is to generate a hash value of a fixed size, or a digest of a mes-
sage, from an input of any size. Some common cryptographic
hash functions include SHA-256 (Secure Hash Algorithm 256-
bit), MD5 (Message Digest Algorithm 5), and SHA-3.They are
commonly used in various security applications such as password
hashing, digital signatures, message integrity checking, and key
derivation.

Characteristics of cryptographic hash functions include:

• Deterministic: The same input always produces the same
output.

• Fast computation: The hash function should produce the
hash value efficiently.

• Resistant to forgery: It is computationally infeasible to find
the original input from the hash value.

• Collision resistance: It is computationally infeasible to find
two different inputs that produce the same hash value.

• Small changes in the input lead to significant changes in the
output (avalanche effect).

• Pseudorandomness: The output should appear random, even
if the input has a predictable pattern.

For perceptually similar images, robust image hash functions
produce a unique bit string. They operate on an image’s percep-
tual features, not the image file’s binary representation. There-
fore, they are robust to changes in individual bits. As long as
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the changes are not perceptually noticeable. This robustness ap-
plies to intentional and unintentional image modifications. These
can result from malicious attempts to prevent re-identification of
an image, or from operations such as compression and scaling,
which are often used to reduce the size of an image file during
transmission.

Properties of robust hash functions include:

• Deterministic: Like cryptographic hash functions, robust
hash functions should produce the same output for the same
input.

• Efficient: Robust hash functions are optimized for perfor-
mance and computational efficiency.

• Uniform distribution: Hash values should be uniformly dis-
tributed over the output space.

• Lower collision resistance: While robust hash functions aim
for minimal collisions, they may not have the same level of
collision resistance as cryptographic hash functions.

Based on machine learning, new attack strategies in-
cluding preimage and avoidance attacks have been intro-
duced [9] [10] [11]. They show that targeted attacks against
robust hashes are possible but still introduce a significant quality
loss. It should also be noted that attacks on robust hashing
have already been discussed before the advance of machine
learning [12] [13].

Perceptual features of images are used in many different ro-
bust hash functions [14, 15, 16, 17]. In this work, we base our
implementation on the block mean value based perceptual image
hash function [18] proposed by Yang et al. in its simplest form:

• Normalize the original image into a preset size and convert
it into greyscale.

• Partition the resulting image I into non-overlapping blocks
I1, I2, ..., IN where N is the targeted length of the hash bit
string.

• Permute the block sequence {I1, ..., IN} based on a secret
key.

• Calculate the mean pixel value of Mi of each block Ii and
determine the mean value of this sequence

Md = median(Mi), ∀i ∈ {1,2, ...,N} (1)

• Obtain binary hash value by concatenating the individual
hash bits:

h(i) =

{
0, Mi < Md , ∀i ∈ {1,2, ...,N}
1, Mi ≥ Md , ∀i ∈ {1,2, ...,N}

(2)

The robust hash applied in this work is the ForBild block
hash presented by [19]. It is the result of an evaluation of image
hashing methods [20].

Robust Hashing and Privacy
For some time, there has been a discussion whether an im-

age can be derived from its robust hash. While this seems to be
unrealistic in the sense that a high quality image is reproduced,
the structure-preserving nature of many robust hashes may allow
to reproduce a general idea of the image content. Recent works
based on machine learning show some progress in this respect1 . It

1https://www.anishathalye.com/2021/12/20/inverting-photodna/

is still not clear if the reproduced content depends on the training
data or only on the hash. Still, this developments makes it even
more important to investigate methods to support the privacy of
robust hashing.

There are also other approaches to combine privacy and ro-
bust hashing. Concepts have been discussed to use secure match-
ing protocols able to compute the hamming distance of two bi-
nary strings [21] [22]. Here the hashes are not anonymized, but
their comparison is executed in a privacy-preserving manner. This
could be a challenge for scenarios where robust hashing is applied
as it requires multiple parties that may not efficiently established
in e.g. an upload filter.

Hybrid Hash
Robust hashes can be matched not only if they are identi-

cal. They can also be similar. This similarity is measured by the
Hamming distance. Therefore, small image changes, e.g. JPEG
compression or scaling, result in a robust hash still similar to the
original robust hash. However, depending on how much the image
is attacked, individual hash bits of these attacked images change
their value. This bit-flipping behavior, analyzed by Steinebach et
al., renders cryptographic hashes of robust hashes ineffective due
to the avalanche effect [3].
Before a cryptographic hash function can be applied, weak bits
must be predicted and neutralized. Steinebach et al. use the
normalized distance between the pixel value of a block and the
normalized median of an image to predict such bits. Combin-
ing robust hashing, neutralizing weak bits, and a cryptographic
hash function is called Hybrid Hash. In this work, we further
analyze bit flipping during robust image hashing to improve ex-
isting heuristic predictions. We also propose machine learning
approaches to predict weak bits.

Concept
Our aim is to predict the bits of a robust hash that are likely

to flip due to an operation the hash should be robust against. For
robust hashing, flipping of individual bits is not a problem as they
define similarity between hashes as two hashes having less differ-
ent bits than a given threshold when they use Hamming distance
as a measure. For hybrid hashes flipping bits is an important chal-
lenge as the robust hash is converted into a cryptographic hash and
thereby loses its potential to be compared with the other hash in a
similar manner. Machine learning can help to predict the flipping
positions. We see this as a classification problem: a hash bit is ei-
ther classified as stable or as likely to flip. As supervised learning
is best suited for classification tasks, and we can generate labeled
training data on demand by attacking images and comparing their
hashes with the original ones, we use supervised learning to train
our classifiers.

Two strategies can be followed to re-identify hybrid hashes:
double prediction [4] and single prediction. We consider a
database of known images K and a set of unknown images S that
is being examined.
During double prediction, the database containing hybrid hashes
of known images H(K) is computed by predicting weak bits for
every image k ∈ K. For higher accuracy, this should be done
for multiple attack types like different JPEG quality factors (qf).
These weak bits are then neutralized, and the hybrid hashes are
computed. The same approach can be applied for every image
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s ∈ S in order to compute the hybrid hashes database H(S) for ex-
amined images. Therefore double prediction can be implemented
with negligible performance overhead compared to block hash
matching. The performance can vary based on the chosen pre-
dictor.
During single prediction, weak bits are only predicted for either
K (Original Prediction) or S (Suspect Prediction). Predicted weak
bits P(X) are stored in addition to the resulting hybrid hashes
H(X) for the chosen image database X ∈ {K,S}. Images y from
the other database Y ∈ {K,S},Y ̸= X are not fed into a prediction
function. For every image y:

1. the neutralized robust hash Np(y) is computed for every p ∈
P(X)

2. the hybrid hash Hp(Np(y)) is computed

and the resulting hybrid hashes are stored. This introduces a sig-
nificant performance and memory overhead compared to double
prediction and block hash matching. On the other hand, single
predictions yield a higher recall score than double predictions
with a comparable precision score. In this work, we focus on
single prediction strategies.

K-Nearest Neighbors
We implement a single-label classifier that classifies robust

hash blocks individually based on the observed flipping likelihood
corresponding to [4]. Each block can either flip (encoded as 1) or
not flip (encoded as 0). The KNN classifier predicts a class label
PN for every block BN , for N = 1, ...,256 . We also compare the
results to a classifier that considers the JPEG quality factor (qf) as
a third feature. The qf is approximated using the dc coefficient of
each image.

As most blocks of a robust hash do not flip, most samples
belong to class 0, which causes the dataset to be imbalanced. This
is fixed by re-sampling the training data so that both classes are
represented equally.

Single-Label Classification
In accordance with [4] we use a Deep Neural Network

(DNN) with three hidden layers, the Adam optimizer and binary
cross-entropy as loss function. The results are superior to all pre-
vious predictions in both recall and overprediction.

Again, we seek to improve both by using the qf as an ad-
ditional feature. The predictions using the qf achieve a nearly
perfect recall score and for qf > 10 a significantly lower overpre-
diction.

Evaluation
For the evaluation of our single prediction re-identification

approach we use 2000 randomly selected images of a cheer-
leading team from the galaxy data set [23]. The images in this
data set show:

• Various amounts of humans
• Humans in various poses
• Humans of various appearance
• Humans in various environments

They were taken with different cameras and different resolutions.
For our evaluation, we randomly selected the images and divided

them into two data sets of 1,000 images each. One of them con-
tains known images and the other unknown images.

The following attacks are performed on all images:

• JPEG compression with qf ∈ {90,80, ...,10}
• Scaling with scaling factors ∈ {0.5,0.75,0.9,1.1,1.5}

They are likely to be the result of unintentional manipulation.
This often occurs when an image is transmitted or uploaded but
exceeds the maximum file size.
Because the data set does contain several attacked images and the
respective original images, double compression and double scal-
ing are performed implicitly but not evaluated explicitly.

We compare both machine-learning approaches to the rela-
tive distance approach utilized in the literature [2]. Here the pre-
diction is based on the distance between the individual hash bit
and the median used as a threshold for bit value assignment. The
concept here is that the close a value is to the median, the more
likely it is to flip due to an attack. To represent how many FPs
have to be neutralized during cryptographic hashing are predicted
per image we define Overprediction as

Overprediction =
FP

T P+FP+T N +FN
(3)

Performance
In addition to the prediction quality discussed in the next

section, we also had a look at the computation time of the strate-
gies. To compare the performance of the previously described ap-
proaches, we measure the median time it takes to hash and predict
110 images. The measurement is given relative to the time it takes
to compute a standard robust block hash. The evaluation is per-
formed on an Intel(R) Xeon(R) CPU @2.00GHz CPU and with
52 GB memory. No GPU was used for machine learning opti-
mization. Table 1 shows that both KNN and DNN are slower than
the standard block hash. We evaluated both strategies regarding
the complexity in Table 2. We can see that the single prediction
strategy produces less predictions as the double prediction strat-
egy and neutralizes more bits. Therefore the generated hybrid
hashes tend to be more robust.

Hash Factor
Block Hash 1
Relative Distance 1.01
KNN 1.29
DNN 1.59

Table 1: Performance of different prediction approaches.

Prediction Strategy Predictions Neutralizations
Double Prediction O(n+m) O(n+m)

Single Prediction O(min(n,m)) O(n×m)
n ∈ Kand m ∈ S

Table 2: Performance of different prediction approaches.

Results
The inclusion of the JPEG quality factor improves the per-

formance of the classifiers significantly as stated in [4], but the
whole re-identification process this might not be true for all pre-
diction strategies. For our new single prediction strategy the inde-
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Figure 1: Recall and precision for qf-independent single prediction re-identification. Single Label Classification is the DNN approach

pendence of the quality factors can be advantageous for example
for the recall against a scaling attack.

The results for single prediction, shown in figures 1 and 2,
show a high recall score between 0.85 and 1. Single-label classi-
fication achieves the highest recall score for JPEG compression
and decent results for scaling. The precision remains lower
than that of Steinebach et al. and Breidenbach et al. but is still
reasonably high at 0.95 and higher.

Overall, the results show that we can predict weak bits in
an image. However, predictions between an original and an
attacked image differ marginally, which results in false negatives.
Furthermore, single-label classification yields the best recall
results irrespective of the prediction strategy used. The KNN
classifier, however, consistently results in the lowest recall score
of all predictors.
We compared our new single prediction approach against the
double prediction approach in Figures 3 and 4 for quality factor
dependent and independent variants. We can see that our single
prediction approach performs significantly better in regards to
recall and slightly worse in regards to precision. The low recall
of the double prediction approach caused by the avalanche effect
is not desirable. A combined approach can be used where double
prediction is performed for an initial re-identification. The
performance-intensive re-identification using single prediction
can be run afterward while the initial results are analyzed. As a
result, initial results are available quickly, while more accurate

results are being determined. The hybrid hashes obtained during
double prediction re-identification can be used to improve the
performance of the single prediction re-identification.

We also can see that the approaches are robust against a cer-
tain amount of scaling. Figure 4 (b) and (d) show no significant
change of performance depending on the scaling factor. For JPEG
compression, single prediction is also very stable with respect to
recall as can be seen in figure 4 (a). Precision under JPEG com-
pression seems to be the most unstable prediction. In Figure 4
(c) we can see that only KNN double prediction works equally
well independently of the QF. KNN single prediction on the other
hand shows significant changes that do not follow the expectation
of improving performance with increasing QF.

Summary
Our prediction algorithms use image properties to predict

weak bits in robust hashes with high recall. In particular, the
DNN classifier achieves high recall combined with low overpre-
diction. Approximating the qf of an image increases recall at low
qf and decreases overprediction at high qf. The flipped bit pre-
diction rate of machine learning-based predictors is superior to
that of heuristic approaches when using the approximated qf as
a feature. Overall, we show that given an image, we can predict
weak bits with a recall close to one and an overprediction of less
than 10%. Our new single prediction strategy outperforms the
previously proposed double prediction strategy for all classifiers
under scaling and JPEG compression attacks in terms of recall for
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Figure 2: Recall and precision for qf-dependent single prediction re-identification. Single Label Classification is the DNN approach

quality dependent and independent variants of the classifiers. In
regards to precision the single prediciton strategy is slightly infe-
rior. In terms of computation times the double prediction strategy
out performs our single prediction.

Future Work
As mentioned in the concept section, both double and sin-

gle prediction strategies are possible. We evaluated and compared
both in this work, in conclusion our single prediction strategy out-
performs the double prediction in recall and is about equal in pre-
cision. Therefore, having a better accuracy at the cost of having a
much higher computation time. In future work, a combination of
both strategies should be evaluated to combine their advantages.
One idea would be to use double prediction as a fast pre-filter and
single prediction as the final evaluation given a defined threshold
result of dual prediction.
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