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Abstract

Recent studies show that scaling pre-trained language mod-
els can lead to a significantly improved model capacity on down-
stream tasks, resulting in a new research direction called large
language models (LLMs). A remarkable application of LLMs is
ChatGPT, which is a powerful large language model capable of
generating human-like text based on context and past conversa-
tions. It is demonstrated that LLMs have impressive skills in rea-
soning, especially when using prompting strategies. In this pa-
per, we explore the possibility of applying LLMs to the field of
steganography, which is referred to as the art of hiding secret data
into an innocent cover for covert communication. Our purpose is
not to combine an LLM into an already designed steganographic
system to boost the performance, which follows the conventional
framework of steganography. Instead, we expect that, through
prompting, an LLM can realize steganography by itself, which is
defined as prompting steganography and may be a new paradigm
of steganography. We show that, by reasoning, an LLM can em-
bed secret data into a cover, and extract secret data from a stego,
with an error rate. This error rate, however, can be reduced by
optimizing the prompt, which may shed light on further research.

Introduction

Different from cryptography that encrypts a secret message
into a meaningless data stream which may arouse suspicion from
the channel attacker, steganography hides secret information into
an innocent cover such as digital image and text by slightly mod-
ifying the cover without significantly degrading the cover. The
resulting cover carrying secret information, typically called stego,
enables the decoder to reconstruct the secret information accord-
ing to a secret key. The most significant advantage of steganog-
raphy is that it even hides the presence of the present communi-
cation. With the rapid development of social networks, steganog-
raphy has become a preferred means to covert communication. It
can be foreseen that steganography will become more and more
important in modern information security.

Taking image for instance, early steganographic algorithms
minimize the total number of individual changes in the cover im-
age, which, however, ignores the fact that different cover pixels
have different suitability for covert communication. As a result,
these algorithms are easy to detect by statistical analysis. To over-
come this drawback, the minimum-distortion embedding frame-
work [1] was developed for steganography. In the framework, a
cost function is defined over the cover pixels from the perspective
of statistical detectability, where embedding secret into a com-
plex pixel often gives a relatively smaller cost than a smooth one.
Then, by applying syndrome-trellis codes (STCs) [2], a stego im-
age with the minimum embedding impact can be generated, which
shows superior performance in resisting statistical detectors [3].

Since 2012, deep learning has achieved great success in a va-
riety of application areas such as computer vision, pattern recog-
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nition and natural language processing. It is natural to think of ap-
plying deep learning to the field of steganography. Along this di-
rection, there are two popular deep learning based steganographic
frameworks widely followed by the research community. One is
to use an end-to-end framework that consists of an encoder and a
decoder, where the former embeds secret information into a cover
image and the latter extracts secret information from a stego im-
age. The other one is to utilize a neural network to learn a cost
function so that minimum-distortion embedding can be applied by
running STCs. It can be said to a certain extent that many existing
algorithms are based on either one of this two frameworks.

The majority of early steganographic algorithms were origi-
nally developed for digital images. In recent years, thanks to deep
learning, the performance of natural language processing technol-
ogy has been greatly improved, which promotes utilizing text for
steganography to become a hot topic [4, 5, 6, 7, 8]. Compared to
image steganography, natural language steganography (or say text
steganography) overcomes the problem of robustness, i.e., image
steganography may be failed due to lossy compression, but texts
can survive from noisy channel. Moreover, for a decoder, he can
keep silent, observe the stego text and further extract the hidden
information without taking any suspicious interaction with any-
one else, which facilitates protecting the real data recipient. There
are two common data embedding strategies among recent studies
of natural language steganography. One is to modify a given cover
text to generate a stego text [7], and the other one is to directly
generate a stego text without the cover text [4]. Both strategies,
however, require a pre-trained language model whose function is,
during text generation or token modification, to generate a list of
candidate tokens (each associated with a prediction probability)
for each token position to be embedded, so that we can select the
most appropriate token as the present output according to the se-
cret information to be embedded.

Recent studies show that scaling pre-trained language mod-
els can lead to impressive performance on downstream tasks, re-
sulting in a novel direction, i.e., large language models (LLMs).
Those LLMs such as ChatGPT' show surprising abilities in solv-
ing a series of complex tasks, including the ability to ‘reason’,
e.g., by feeding LLMs with “chain of thoughts (CoTs)” [9], they
can answer questions with explicit reasoning steps. The powerful
reasoning capabilities of LLMs demonstrate that LLMs not only
model natural language very well, but also provide research ideas
for the development of general artificial intelligence (GAI). Back
to steganography, it is straightforward to combine LLMs into ex-
isting natural language steganographic systems to boost their per-
formance, which, however, is an incremental work. We are more
interested in ‘automatic’ steganography, that is, through reason-
ing, an LLM itself can embed secret information into a cover ob-
ject and extract secret information from a stego object, which pro-

"https://chat.openai.com/
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vides a novel paradigm for steganography. Along this direction, in
this paper, we introduce prompting steganography, in which a pre-
trained LLM is utilized to realize steganography given prompts.
‘We show that, through reasoning, the LLM can embed secret data
into a cover, and extract secret data from a stego, but with an er-
ror rate. This error rate, however, can be significantly reduced by
prompt optimization, which may shed light on further research.

The structure of this paper is organized as follows. We firstly
provide preliminary concepts in the next section. Then, we intro-
duce prompting steganography, followed by efficient optimization
strategies for prompting steganography. Finally, we conclude this
paper and provide discussions.

Preliminary Concepts
Steganography

Steganography corresponds to a secure communication task,
where the data sender disguises a secret message as a seemingly
normal object and the data recipient reconstructs the secret mes-
sage from the seemingly normal object according to a secret key.
Mathematically, given a cover X, the data sender embeds a secret
message m into X by modifying x according to a secret key kK, i.e.,

% = Embed(x, m, k). (D

The modified cover X (also called stego) will be sent to the
data recipient via an insecure channel such as the Internet. If the
data recipient successfully receives X, s/he will be able to recon-
struct m, i.e.,

m = Extract(%, k). @)

In order to ensure concealment (i.e., to not arouse suspicion
from the channel monitor, or say, hide the existence of secret in-
formation), it is required that the distortion between x and X, i.e.,
||x—X[|, is small enough. The most simplest but effective stegano-
graphic algorithm is LSB Replacement, where “LSB” is short for
“Least Significant Bit”. LSB replacement uses the parity of in-
tegers to achieve information embedding. For example, let x be
a non-negative integer and m € {0, 1} be a secret bit to be hid-
den, the data embedding operation of LSB replacement can be
expressed as ¥ = x — (x mod 2) +m. The data extraction oper-
ation can be expressed as m = X mod 2. It can be inferred that
LSB replacement essentially replaces the LSB of a cover element
with the secret bit for data embedding. Another classic algorithm
is Quantization Index Modulation (QIM) [10]. A simple imple-
mentation of QIM can be described as follows. Let x represent a
real number and m € {0, 1} be the secret bit, the stego element ¥
is determined by % = [|x/A]| — (|x/A] mod 2) +m] - A. The data
extraction operation can be then expressed as m = |¥/A| mod 2.
Obviously, LSB replacement is a special case (A = 1) of QIM. We
will not review more steganographic algorithms since it is not the
main interest of this paper.

Steganography may not require a cover. For example, some
algorithms [4, 5] use a language model to directly generate a text
containing hidden bits. We classify them as generative steganog-
raphy, for which data embedding can be expressed as

% = Embed(.#,m,k). 3)

where .# denotes a generative model. The data extraction opera-
tion can be expressed as

m= Extract(//l,f(,kfl). 4)
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where ./ is optional. In steganography, the data sender and the
data recipient may share some side information in advance, which
can be considered as part of the secret key k.

Language Model

A language model is a probabilistic model that uses machine
learning to conduct a probability distribution over sequences of
tokens. It learns from text data and has various applications such
as sequence prediction, text classification, and language transla-
tion. Early language models are built upon statistical approaches
such as maximum likelihood estimation (MLE), Markov process
and Bayesian analysis. With the rapid development of deep learn-
ing, statistical approaches are replaced with recurrent neural net-
works (RNNs) [11], which makes token prediction more accurate.

As a revolutionary architecture, Transformer [12] achieves
great success in various natural language processing tasks in re-
cent years. It also greatly promotes the development of language
models. Various models such as BERT [13], GPT-2 [14] and GPT-
3 [15] use Transformer or its variants as the core. Transformer
consists of an encoder and a decoder. Transformer lies in paral-
lel computing, which significantly reduces the time of calculation
when compared to RNNs. Transformer has very strong ability to
extract text features and predict tokens so that the encoder and
the decoder can be even independently used as language model.
Currently, state-of-the-art language models are based on Trans-
former. These models are trained with a huge number of texts in
advance so that they are also called pre-trained language models
(PLMs). These PLMs exploit the idea of transfer learning, i.e.,
they have learned the fundamental knowledge of natural language
during pre-training, and can perform very well on downstream
tasks after fine-tuning with a small number of texts.

PLM could be divided into three categories including auto-
regressive language model, masked language model and Seq2Seq
(sequence to sequence) language model. Auto-regressive model
[16] uses the decoder of Transformer. It is pre-trained with the
next token prediction strategy which constrains that when calcu-
lating the probability of each token, the model can only access
the tokens of previous positions. Different from auto-regressive
model, masked model [13] on the basis of the encoder of Trans-
former accesses all the words in the text when prediction happens.
One training strategy is “masked token prediction”, which means
some tokens are replaced by ‘[MASK]’ in the entire text and the
model is trained to recover the original tokens. Seq2Seq model
[17] is built upon integral Transformer where the encoder is fed
with a corrupted version of the tokens, and the decoder is fed with
the natural version of the tokens.

Large Language Model

The above three categories of PLM are very popular in the
research community and there are many representative models
in each family. Although these models use different structures,
they are being developed along the same direction that is LLMs
demonstrate better performance on downstream tasks.

LLM is characterized by its large size. For example, LaMDA
[18] has around 137 billion parameters, GPT-3 [15] has around
175 billion parameters, Gopher [19] has around 280 billion pa-
rameters and so on. These LLMs exhibit strong ability to un-
derstand natural language and solve complex problems via text
generation. As a result, there are already LLMs that are success-
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LLM input:

Find the integer sequence after embedding secret bits "1001001101" into a sequence of integers
"168,168,169,170,171,177,188,189,192,193" by LSB steganography.

LLM output:

Sure, I can help with that.
LSB (Least Significant Bit) steganography is a method of hiding secret data within the least significant bits of another data. In this
case, we're embedding the secret bits “1001001101 into the least significant bit of each integer in the sequence
“168,168,169,170,171,177,188,189,192,193".
Here’s how we do it:

1. Convert each integer to binary.

2. Replace the least significant bit of cach binary number with the corresponding secret bit.

3. Convert the modified binary numbers back to integers.
Let’s do this step by step:

. 168 (binary: 10101000) embeds 1 -> 10101001 (169)

168 (binary: 10101000) embeds 0 -> 10101000 (168)

. 169 (binary: 10101001) embeds 0 -> 10101000 (168)
. 170 (binary: 10101010) embeds 1 -> 10101011 (171)
. 171 (binary: 10101011) embeds 0101010 (170)
. 177 (binary: 10110001) embeds 0110000 (176)
. 188 (binary: 10111100) embeds 0111101 (189)
. 189 (binary: 10111101) embeds 0111101 (189)

192 (binary
. 193 (binary: 11000001) embeds 1 -> 11000001 (193)

So the sequence after embedding the sccret bits is “169,168,168,171,170,176,189,189,192,193”. T hope this helps! Let me know if
you have any other questions.

11000000) embeds 0 -> 11000000 (192)

Figure 1. An example of data embedding for zero-shot steganography.

fully deployed in commercial products, e.g., a revolutionary ap-
plication is ChatGPT, which has been appropriately adapted and
integrated into Microsoft’s Al-powered Bing Chat?.

LLMs significantly increase the model size, data size, and to-
tal computational cost. We naturally want to know what explicit
relationship exists between model capability and scaling, which
has motivated scholars to find ways to quantify the scaling effect,
such as KM scaling law [21] and Chinchilla scaling law [22]. On
the other hand, emergent abilities of LLMs are defined as those
abilities that are not present in smaller models but are present in
larger models [23]. Typical emergent abilities include in-context
learning (ICL), instruction following and step-by-step reasoning
[20]. ICL enables LLMs to infer how to perform a new down-
stream task from a few examples in the context without training.
Instruction following means LLMs can follow the instructions for
novel tasks without using explicit examples, thereby resulting in
better generalization ability. Furthermore, by step-by-step reason-
ing, LLMs can solve many complex tasks such as math, common-
sense reasoning, and symbolic manipulation. All of these have
been widely verified as emerging abilities for LLMs.

The technical details of LLMs are not the main interest of
this paper. However, creating a successful LLM should consider
various aspects, including but not limited to how to scale a lan-
guage model, how to train a capable LLM, how to align the behav-
iors of LLMs, and how to prompt an LLM on specific tasks [20],
e.g., LLMs may generate biased and harmful texts, how to align
LLMs along human values is critical to the society. The above
problems are important to LLMs and need in-depth research.

Prompt Engineering

As mentioned above, LLMs have strong reasoning ability to
solve complex tasks. This reasoning ability can be significantly
enhanced by prompt engineering, the purpose of which is typi-
cally to develop and optimize prompts for LLMs so that LLMs
can return the correct or optimal solution given the problem to
be solved. Among various prompting strategies, zero-shot is the
simplest one. It works since LLMs can follow the instructions for
new tasks without using explicit examples. For instance, given a

’https://www.bing.com/search?q=Bing+AI&showconv=1&
FORM=hpcodx
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LLM input:

Based on LSB steganography, extract the secret bits from the integer sequence "169,168,168,171,170,176,189,189,192,193".

LLM output:

Sure, I can help with that.
LSB (Least Significant Bit) steganography is a method of extracting secret data from the least significant bits of another data. In
this case, we’re extracting the secret bits from the least significant bit of each integer in the sequence
169,168,168,171,170,176,189,189,192,193".
Here’s how we do it:
1. Convert cach integer to binary.
2. Extract the least significant bit of cach binary number.
3. The extracted bits form the secret bits.
Let’s do this step by step:
169 (binary: 10101001) -> least significant bit is 1
168 (binary: 10101000) -> least significant bit is 0
168 (binary: 10101000) -> least significant bit is 0
171 (binary: 10101011) -> least significant bt is 1
170 (binary: 10101010) -> least significant bt is 0
176 (binary: 10110000) -> least significant bit is 0

189 (binary: 10111101) > least significant bit is 1
189 (binary: 10111101) -> least
192 (binary: 11000000) -

. 193 (binary: 11000001) > |

So the secret bits extracted from the sequence are “1001001101”. T hope this helps! Let me know if you have any other questions.

Figure 2. An example of data extraction for zero-shot steganography.

prompt “Classify the text into neutral, negative or positive. Text: 1
am very happy to see you. Sentiment:”, an LLM may output “Pos-
itive”. Zero-shot can be treated as a baseline of prompting since
it does not rely on any specified prompt. Therefore, a significant
advantage of zero-shot is that it is not subject to any particular
task, regardless of its reasoning performance. Although zero-shot
is one of the most desired abilities what we want LLMs to obtain,
it may not work well in practice, at least at present. To deal with
this problem, a few demonstrations or examples can be provided,
which is deemed few-shot prompting. For example, given “‘A’ =
65, ‘C’ =67, ‘G’ =", an LLM may return “71”.

Recently, Wei et al. [9] introduce the chain-of-thought (CoT)
prompting, which enables LLMs to perform complex reasoning
through intermediate reasoning steps. CoT can be combined into
zero-shot or few-shot prompting to significantly improve the in-
ference performance. However, when to apply CoT prompting,
it needs hand-crafting effective and diverse examples which may
lead to suboptimal solutions. To deal with this problem, Zhang
et al. [24] propose automatic CoT prompting, which eliminates
manual efforts by interacting LLMs with, e.g., “Let’s think step
by step” prompt. Inspired by ensemble learning, Wang et al. [25]
introduce self-consistency CoT, which merges multiple solutions
into one solution during the decoding process to boost the perfor-
mance. Yao et al. [26] further introduce tree of thoughts (ToT)
prompting, which generalizes CoT and self-consistency CoT by
maintaining a tree of thoughts. It enables LLMs to self-evaluate
the progress intermediate thoughts towards solving a problem
through a deliberate reasoning process.

In addition to CoT prompting and its variants, it is demon-
strated that LLMs can be improved by incorporating external
knowledge to help LLMs make more accurate predictions. For ex-
ample, Liu et al. [27] introduce generated knowledge prompting,
which consists of generating knowledge from a language model,
then providing the knowledge as additional input when answer-
ing a question. Lewis ez al. [28] explore a general-purpose fine-
tuning recipe for retrieval-augmented generation, which enables
us to build a language model based system that obtains exter-
nal knowledge to complete tasks. More prompting engineering
techniques include but are not limited to automatic reasoning and
tool-use (ART) [29], automatic prompt engineer (APE) [30], ac-
tive prompting [31], graph prompt [32] and cumulative reasoning
[33]. We refer the readers to corresponding papers for more de-
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LLM input:

We design a steganographic algorithm as follows. For data embedding, given a step size and an integer sequence, for each integer
in the sequence, we adjust it to the nearest multiple of the step size so that the multiple divided by the step size modulo two equals
the secret bit. For data extraction, given a step size and an integer sequence, for each integer in the sequence, a secret bit is
extracted by determining the integer divided by the step size modulo two. Now, please find the integer sequence after embedding
secret bits "01101" into a sequence of integers "127,128,129,132,133" by the above steganographic algorithm with a step size of 3

LLM output:

Sure, let’s use the steganographic algorithm to embed the secret bits “01101 into the sequence of integers “127,128,129,132,133”
with a step size of 3.
Here is how we do it:

1. Forcach integer in the sequence, find the nearest multiple of the step size (3) such that the multiple divided by the
step size modulo two equals the secret bit.
2. The secret bits are “011017, so we adjust each integer i the sequence according to each bit.

Let’s calculate:
e For 127 with secret bit 0, the nearest multiple of 3 is 126 (126/3 mod 2 = 0), so we adjust 127 to 126,

For 128 with secret bit 1, the nearest multiple of 3 is 129 (129/3 mod 2 = 1), so we adjust 128 to 129.

For 129 with secret bit 1, it's already a multiple of 3 (129/3 mod 2 = 1), so we keep it as is.

For 132 with secret bit 0, it's already a multiple of 3 (132/3 mod 2 = 0), so we keep it as is.

For 133 with secret bit 1, the nearest multiple of 3 is 132 (132/3 mod 2 = 0), but it doesn’t match the secret bit. So

we need 1o go to the next multiple which is 135 (135/3 mod 2 = 1), so we adjust 133 to 135.

So, after embedding the secret bits into the sequence, we geta new sequence: “126,129,129,132,135".

Figure 3. Another example of data embedding for zero-shot steganography.

LLM input:

We design a steganographic algorithm as follows. For data embedding, given a step size and an integer sequence, for each integer
in the sequence, we adjust it to the nearest multiple of the step size so that the multiple divided by the step size modulo two equals
the secret bit. For data extraction, given a step size and an integer sequence, for each integer in the se e, a secret bit is
extracted by determining the integer divided by the step size modulo two. Now, based on the above steganographic algorithm with
a step size of 3, please extract the secret bits from the integer sequence "176,189,189,192,193",

LLM output:

Sure, let's extract the secret bits from the integer sequence “176,189,189,192,193" based on the steganographic algorithm with a

step size of 3.

For cach integer in the sequence, a secret bit is extracted by determining the integer divided by the step size modulo two. Here’s

how it works:

176 divided by 3 is 58 remainder 2, so 58 modulo 2 equals 0.

189 divided by 3 is 63 remainder 0, so 63 modulo 2 equals 1

189 divided by 3 is 63 remainder 0, so 63 modulo 2 equals |

192 divided by 3 is 64 remainder 0, so 64 modulo 2 equals 0.
. 193 divided by 3 is 64 remainder 1, so 64 modulo 2 equals 0.

So the secret bits extracted from the integer sequence “176,189,189,192,193

are “01100”.

Figure 4. Another example of data extraction for zero-shot steganography.

tails. In brief summary, prompt engineering is still in the stage of
rapid development. It is believed that more advanced and general
prompting techniques will be reported in near future.

Prompting Steganography

Throughout this paper, we use the aforementioned Mi-
crosoft’s Al-powered Bing Chat for experiments. There are three
reasons for this choice. First, Bing Chat bases on the state-of-
the-art LLM, i.e., GPT-4 [34], making it suitable for exploring
steganography. Second, Bing Chat is open to ordinary users, mak-
ing it easy to conduct simulations without the need of computing
resources and expertise. Third, the authors have no local comput-
ing resources supporting LLM research at the moment. It should
be pointed that Microsoft may upgrade Bing Chat, which will lead
to some deviations in the experimental results when the reader de-
cides to reproduce the experiment. However, we believe that this
will not affect our conclusion and analysis.

Zero-shot Steganography

We start our work by introducing zero-shot steganography,
which provides steganographic tasks to LLMs without demonstra-
tions or examples. Figure 1 and Figure 2 demonstrate an exam-
ple?, where secret bits are successfully embedded into a cover se-
quence and extracted from a stego sequence, by specifying “LSB
steganography” in the prompt. It indicates that the model “mas-
ters” the technical details of LSB steganography. Actually, even
we remove ‘LSB steganography’ from the prompt, e.g., by re-
placing “LSB” with “any”, the model will still complete the task

3The conversation style was set to “More Precise” by default.
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LLM input:

Find the integer sequence after embedding seeret bits "0,0,1,1,1,1,0,1,1,0" into a sequence of integers
"19,22,22,37,91,58,221,223,117,92" by LSB steganography.

LLM output:

Sure, I can help with that. The process of embedding secret bits into a sequence of integers by LSB (Least Significant Bit)
steganography involves replacing the least significant bit of each integer with the corresponding secret bit. Here’s how you can do
it:

1 Convert each integer in the sequence to binary.

2. Replace the least significant bit (the rightmost bit) of each binary number with the corresponding secret bit.
3. Convert cach modified binary number back to an integer.
Let’s apply this process to your sequences:
Secret bits: 0,0,1,1,1,1,0,1,1,0

. Integer sequence: 19,22,22,37,91,58,221,223,117,92
After applying LSB steganography:
. Modified integer sequence: 18,22,23,36,91,59,220,223.116,93

So the integer sequence after embedding your secret bits is 18.22,21.59.1241,223

Figure 5. An example of incorrect reasoning for zero-shot steganography.

LLM input:

The integer sequence after embedding secret bits "1,0,0,1,0,0,1,1,0,1" into a sequence of integers
"168,168,169,170,171,177,188,189,192,193" by LSB steganography is "169,168,168,171,170,176,189,189,192,193". Find the
integer sequence after embedding secret bits "0,0,1,1,1,1,0,1,1,0" into a sequence of integers "19,22,22,37,91,58,221,223,117,92"

by LSB steganography.

LLM output:

In LSB (Least Significant Bit) steganography, the least significant bit of an integer is replaced with the secret bit. Here’s how you
can embed the secret bil 1,1,1,0,1,1,0” into the sequence of integers “19, 37,91,58,221,223,117,92":
. If the secret bit is 0 and the integer is odd, subtract 1 from the integer.
. If the secret bit is | and the integer is even, add 1 to the integer.
So the new sequence after embedding the secret bits would be:
19 (0dd) with bit 0 becomes 18
22 (even) with bit 0 stays 22
22 (even) with bit 1 becomes 23
37 (odd) with bit 1 stays 37
91 (odd) with bit 1 stays 91
58 (even) with bit 1 becomes 59
221 (odd) with bit 0 becomes 220
223 (odd) with bit 1 stays 22.
117 (odd) with bit 1 stays 11
o 92 (even) with bit 0 stays 92
So the final sequence is: 18,22,23,37,91,59,220,223,117,92. | hope this helps!

3
3

Figure 6. An example of using examples for prompting steganography.

by performing LSB steganography by default. It can be inferred
from this example that LLMs should be capable of performing
steganography in zero-shot scenario, which is due to the reason
that LLMs possess emergent capabilities and can well learn the
domain knowledge of steganography. We have also evaluated the
case of prompting with QIM steganography, which, however, can-
not be well performed due to the reason that QIM steganography
has various implementations, e.g., according to our experiments,
two almost identical prompts:

1. Find the integer sequence after embedding secret bits
“1001001101” into a sequence of integers
“118,118,119,120,121,127,128,129,132,133”
by QIM steganography with a step value of 2.

2. Find the integer sequence after embedding secret bits
“1001001101” into a sequence of integers
“118,118,119,120,121,127,128,129,132,133”
by QIM steganography with a step value of 3.

will result in two different implementations of QIM steganogra-
phy. In fact, even two exactly identical prompts may lead to dif-
ferent results, e.g., the second prompt mentioned above. This in-
dicates that the input should not introduce ambiguity in order to
correctly extract secret bits from a stego sequence.

Technical details can be provided in the form of natural lan-
guage in zero-shot steganography. Its advantage is that the al-
gorithmic ambiguity can be eliminated. An example is given in
Figure 3 and Figure 4. In the example, the model sorts out the
steganographic steps based on input. Meanwhile, for each cover
element to be embedded, the model outputs the detailed operation.
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As aresult, secret bits are all successfully embedded into the cover
sequence and extracted from the stego sequence. It confirms that
the model is capable of realizing steganography via instruction.

In Figure 3 and Figure 4, the steganographic algorithm is de-
signed by human and the model follows human design and con-
ducts steganography based on given parameters. As a result, such
steganographic example can be also called instruction steganog-
raphy. It will be desirable that an LLM itself can design a stegano-
graphic algorithm. To this purpose, we feed the following prompt
to the model:

“Please design a new steganographic algorithm that seg-
ments a cover sequence into multiple subsequences and uses each
subsequence to carry only one bit. The length of each subse-
quence should be larger than 1.” (without double quotes when
interacting with the model)

The model responded to us positively, although the stegano-
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graphic algorithm is simple, i.e., a variant of LSB steganography.
In detail, the algorithm designed by the model works by using
the parity of the sum of each subsequence to carry one bit of the
secret message. If the parity does not match the secret bit to be
encoded, it flips the LSB of the last element of the subsequence.
To decode, it retrieves the bit from the parity of each subsequence
and converts it back to a binary stream. The model gives an over-
all evaluation about the algorithm as follows: “Please note that
this is a very simple algorithm and may not be suitable for practi-
cal use. It assumes that flipping an element in the cover sequence
will not be noticeable, which may not be true depending on what
kind of data you are working with. Also, it does not include any
error checking or correction, so if a single bit gets flipped during
transmission, it could cause an error in decoding. You may want
to consider adding some form of error checking or correction if
you plan to use this in a real-world application.”. Although this
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summary is meaningful, we do not know whether it is what the
model learns or it is a thoughtless output of the model. It is re-
marked that though we used the term “LSB steganography” in the
prompt previously, one may replace “LSB steganography” with
descriptive sentences which work for arbitrary algorithms.

Few-shot Steganography

The other category is called few-shot steganography, which
provides a few of intuitive steganographic demonstrations or ex-
amples to the model. If the number of demonstrations or examples
is equal to one, it is also called one-shot steganography. We have
found through experiments that zero-shot steganography would
produce errors of data embedding and data extraction. Figure 5
shows an example, in which three cover elements are incorrectly
modified, thereby surely leading to incorrect decoding. However,
as shown in Figure 6, the errors can be corrected by “optimiz-
ing” the prompt. It is natural to ask a question that can few-shot
demonstrations or examples enhance the steganographic ability of
the model? This requires us to provide quantitative analysis. To
this end, we formulate the form of zero-shot prompting as:

Q: Based on LSB steganography, embed the secret bits “0,
0,0 1,1, 1, 1,0, 0, 1" into the integer sequence “119, 104, 105,
210, 109, 171, 122, 191, 202, 60”.

A:

In case of few-shot prompting, the form of input is given by,
e.g.,

Q: Based on LSB steganography, embed the secret bits “0,
1, 1, 0, 17 into the integer sequence “18, 113, 255, 56, 233”.

A: “18, 113, 255, 56, 233”.

Q: Based on LSB steganography, embed the secret bits “0,
0,0 1,1, 1, 1,0, 0, 1” into the integer sequence “119, 104, 105,
210, 109, 171, 122, 191, 202, 60”.

A:

where the number of examples is 5. For data extraction, the
form of zero-shot prompting is given by, e.g.,

Q: Based on LSB steganography, extract the secret bits from
the integer sequence “36, 63, 11, 102, 23"

A:

In case of few-shot prompting, the form of input is given by,
e.g.,

Q: Based on LSB steganography, extract the secret bits from
the integer sequence “25, 178, 22, 1, 17”.

A:“1,0,01, 1.

Q: Based on LSB steganography, extract the secret bits from
the integer sequence “36, 63, 11, 102, 23"

A:

In our experiments, for few-shot scenario, the number of ex-
amples, i.e., the few-shot size in each prompt was set to 5. Figure
7 shows the data embedding performance of LSB (replacement)
steganography in zero-shot and few-shot scenarios, where a to-
tal of 100 prompts were tested for each experimental point. In
Figure 7, the abscissa represents the number of cover elements to
be embedded in each test prompt. In Figure 7 (a), the ordinate
represents the proportion of correctly embedded cover elements
per prompt averagely, whereas in Figure 7 (b), the ordinate rep-
resents the proportion of correctly embedded sequences among
the tested prompts. If there was at least one element in the cover
sequence that was incorrectly embedded, the entire sequence in
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the corresponding prompt was considered to be incorrectly em-
bedded. Figure 8 further demonstrates the data extraction perfor-
mance of LSB steganography. In our experiments, to avoid con-
text learning, after interacting with the model by only one prompt,
we cleared the history and started a new conversation.

It can be easily observed that both PCEE (percentage of cor-
rectly embedded/extracted elements) and PCES (percentage of
correctly embedded/extracted sequences) decline as the number
of cover/stego elements in the prompt increases, which is reason-
able since more cover/stego elements require more inference ca-
pabilities. It reveals that the processing of individual elements
is not independent of each other within the model. Otherwise,
PCEE should not change as the number of cover/stego elements
increases. On the other hand, the degree of declining of PCES is
significantly higher than that of PCEE, which can be easily de-
rived by probabilistic analysis. Existing studies on LLMs show
that few-shot can improve the inference performance of LLMs
which is due to the reason that the reasoning ability of LLMs can
be often enhanced from a few examples. However, surprisingly,
as shown in Figure 7 and Figure 8, the above conclusion does not
always hold for prompting steganography. It is seen that while the
few-shot scenario is superior to the zero-shot scenario in terms
of data extraction, the few-shot scenario results in worse perfor-
mance in terms of data embedding. We provide our reasonable
explanation as follows. LSB extraction is an easier task compared
to LSB embedding, resulting in that for both scenarios, the ex-
traction performance is superior to the embedding performance
which has been verified in Figure 7 and Figure 8. LSB extrac-
tion accepts one sequence as input, but LSB embedding needs to
process two sequences. When to perform LSB extraction, few-
shot examples can enhance the alignment capability of the model,
which allows that the model can better orderly process each el-
ement in the stego sequence and then output the corresponding
bit. However, when to perform LSB embedding, few-shot exam-
ples in the prompt does not provide any intermediate steps. The
directly-given answers may cause the model to easily forget inter-
mediate steps or even misunderstand LSB embedding, making it
prone to errors. How to further improve the prompt of few-shot
steganography therefore deserves exploration.

Prompt Optimization

Figure 7 and Figure 8 may not accurately characterize the
performance of the model in steganography due to the small num-
ber of tested prompts. However, we can conclude that the stegano-
graphic performance of the model is actually not satisfactory to
us because both PCEE and PCES are relatively very low when
the number of cover (or stego) elements reaches 80. Although er-
ror correcting codes (ECCs) can be applied to improve reliability,
its contribution may be limited since applying ECCs will reduce
the pure payload, and we do not know how to set the ECC pa-
rameters in practice due to the unpredictable probability of error
embedding/extraction of the model. Therefore, it would be quite
desirable to find good strategies to optimize the prompt fed into
the model so that the model can make more accurate inference. It
motivates the authors to explore efficient optimization strategies.

Segmentation
The above quantitative results indicate that shorter sequence
gives better embedding/extraction performance. Especially, when
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Figure 9. Error distribution for LSB (replacement) steganography in zero-shot and few-shot scenarios where N is the total number of tested prompts for each
experimental point and M represents the total number of cover or stego elements to be processed in each prompt.

the length of the cover (or stego) sequence becomes close to 1, the
data embedding (or extraction) accuracy approaches 100%. It in-
spires us to divide the original cover (or stego) sequence into sub-
sequences so as to achieve perfect/near-perfect embedding (or ex-
traction). Such segmentation strategy can be effective if the length
of the sequence to be processed is determined appropriately. For
example, referring to Figure 8, by dividing a stego sequence with
a length of 80 into two disjoint stego sub-sequences with a length
of 40, the PCEE can be increased from around 80% to above 90%,
which is a significant improvement.

In practice, a drawback of segmentation is that many prompts
(or say interactions) will be required, which consumes more re-
sponse time of the model. Although parallel computing can be ap-
plied to reduce the time complexity, the premise of parallelism is
that data-embedding (or data-extraction) units are generally inde-
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pendent of each other, which may not hold for advanced stegano-
graphic algorithms. Nevertheless, we admit that segmentation is
a good strategy for prompting steganography to reduce errors.

Position-aware Fusion

LLM is a probabilistic predictor of candidate tokens that en-
ables us to sample multiple candidate solutions for a specific task.
In the black-box scenario, although we cannot directly handle the
output of the model due to the inaccessibility of the probability
distribution, we can generate different prompts for the same ques-
tion. By merging multiple candidate solutions into one solution,
the final accuracy may be significantly improved.

Such fusion strategy can be used for prompting steganogra-
phy. In detail, by feeding multiple prompts corresponding to the
same question into the model respectively, we can collect multi-
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ple candidate solutions for the same question. The final solution
of the question can be then obtained by, e.g., applying majority
voting. However, designing multiple prompts needs expertise of
the steganographer. A greedy strategy is keeping the form of the
prompt unchanged while only permuting the sequence(s) to be
processed with a secret key. Taking zero-shot LSB embedding for
example, we can apply the following three prompts for steganog-
raphy, where only the secret-bit sequence and the cover sequence
are permuted controlled by a secret key.

Prompt 1 (original):

Q: Based on LSB steganography, embed the secret bits “0,
0,0 1,1, 1, 1,0, 0, 1” into the integer sequence “119, 104, 105,
210, 109, 171, 122, 191, 202, 60”.

A:

Prompt 2 (permuted):

Q: Based on LSB steganography, embed the secret bits “0,
0,0 1,0, 1, 1, 1, 1, 0” into the integer sequence “105, 202, 119,
109, 191, 171, 122, 210, 60, 104"

A:

Prompt 3 (permuted):

Q: Based on LSB steganography, embed the secret bits “I,
0,0 1,0, 1,0, 1, 0, 1" into the integer sequence “122, 104, 202,
109, 119, 60, 191, 210, 105, 171".

A:

By feeding the three prompts into the model respectively, we
can collect three candidate solutions, which enable us to gener-
ate the final solution by using any fusion strategy. A problem is
that we have to prove that permutation works for improvement of
the original prompt. To verify this argument, we propose to ana-
lyze the impact of different element-positions in the prompt on the
steganographic performance. If these element-positions are inde-
pendent of each other in terms of data embedding/extraction per-
formance, the performance improvement for prompting steganog-
raphy may be slight. Otherwise, it is a good choice for enhancing
the steganographic ability of the large model. We will show that
the steganographic performance of the large model is affected by
the positions of the cover (stego) elements in the prompt.

Mathematically, taking LSB embedding for explanation, let
N denote the total number of test prompts, where the i-th prompt
contains a cover sequence ¢; = {¢; 1,¢;2,....¢im} € {0,...,255 i
and a secret-bit sequence b; = {b; 1,b;2,....bim} € {0, 1M, By
feeding the i-th prompt into the model, we obtain a response with
a stego sequence S; = {s;1,5;2,...,5ip}. The error rate for the
Jj-th element position over the test prompts can be determined by
1 N
ej= lfﬁ Z o [Si,jvci,j* (Ci,j mod 2)+bi,j] 1< <M, (5)
i=1
where 0 [x,y] = 1 if x =y otherwise 6 [x,y] = 0. To characterize
the error distribution of different segments, the cover sequence is
segmented into L > 0 (assuming that L can divide M) disjoint sub-
sequences, where the k-th cover sub-sequence for ¢; can be ex-

k
pressed as CS )= {¢i —1m/L+15Ci k- 1)M/L425 > Cigmy}- The

error rate for the k-th stego sub-sequence in terms of data embed-
ding is defined as:

1 k/li/’L
Ek=7 ej,lngL. (6)
M/L Jj=(k—=1)M/L+1
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For data extraction, the error rate for the k-th secret-bit sub-
sequence is determined by a similar way. Figure 9 shows the error
distribution in zero-shot and few-shot scenarios where M/L is set
to 5. It can be observed that the model exhibits different stegano-
graphic performance at different positions, i.e., the smaller the in-
dex of the position to be processed, the better the steganographic
performance at that position. The reason may be that the model as
a sequence predictor can make accurate prediction based on his-
tory states, however, a larger index makes the model away from
the useful history states and therefore makes the model easily
forget or misunderstand the task, leading to worse performance.
Nevertheless, it indicates that it is more desirable to place a cover
or stego element in the position with a smaller index so that bet-
ter steganographic performance can be achieved for that element,
which also implies that optimizing the order of elements of the
input sequence(s) will improve the performance.

We introduce cycle-shifting permutation and weighted vot-
ing to boost the steganographic performance. Such strategy per-
mutes one sequence by cycle-shifting. For example, the sequence
{0,1,...,M — 1} becomes {L; mod M,(Ls;+ 1) mod M, ..., (Ls —
2) mod M, (Ls — 1) mod M} using a step Ly after one-time cycle-
shifting. After two-time cycle-shifting, the original sequence be-
comes {2L; mod M, (2Ls+1) mod M, (2Ls+2) mod M, ..., (2Ls —
2) mod M, (2Ls; — 1) mod M} using the same step L.

By performing sequence permutation multiple times, multi-
ple prompts can be generated, each of which results in a candidate
solution from the model. The final solution will be determined by
weighted voting. We take data embedding for explanation. Sup-
pose that we have obtained 7" candidate stego sequences from the
model, where the i-th stego sequence is expressed as

Pi = {Pi 1) Pif(2)s iy} 1 i< T, (7

where f; is a bijection function mapping the set {1,2,...,M} into
itself. In other words, {py f,(j):P2,,(j)s -+ PT.fr(j)} are the can-
didate values for the j-th stego element. The final stego sequence
p=1{p1,p2,...,pm} is determined by
T R
pj = arg max, Z {%(J)MJ O[pif(j) i 1<j<M. (8)
i=1

The above voting strategy assigns a larger weight to positions
with a smaller index, which helps to get more reliable result. In or-
der to collect T candidate stego sequences, cycle-shifting should
be performed 7 — 1 times on the original sequence, that is, the first
stego sequence corresponds to the original sequence, the second
stego sequence corresponds to the cycle-shifted sequence with a
step Ly, and the T-th stego sequence corresponds to the cycle-
shifted sequence with a step (7 — 1)Ls.

We evaluate the performance on LSB embedding and extrac-
tion. Table 1 shows the results where Ly = 16. In Table 1, T =1
corresponds to the baseline performance demonstrated in Figure
7 and Figure 8 (in case that the number of cover/stego elements
was set to 80). It is inferred that PCEE significantly increases as
T increases which verifies the effectiveness of the proposed op-
timization technique. When T is fixed, PCEE increases in most
cases as A decreases which confirms the fact that the model makes
more accurate predictions for those positions with small indexes.
However, the performance gain in term of PCES is still not satis-
factory to us, i.e., although there is a significant improvement on
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Table 1. Performance after applying cycle-shifting permutation and weighted voting for prompting steganography (N = 100, M = 80).

Scenario [ 7] A ] PCEE | PCES | Scenario [ 7] A ] PCEE | PCES
1| - ]0.5710 | 0.00 1] - | 0.7330 | 0.00

3] 5 | 06816 | 0.00 3| 5 [0.9320 | 0.11

3 |10 | 0.6766 | 0.00 3|10 | 09321 | 0.10

3 |20 | 0.6804 | 0.00 3|20 | 09270 | 0.08

3 | 40 | 0.6681 | 0.00 3 | 40 | 0.9223 | 0.03

Zero-shot LSB embedding || 3 | 80 | 0.6255 | 0.00 | Zero-shot LSB extraction || 3 | 80 | 0.8939 | 0.02
5| 5 | 07464 | 0.00 5| 5 | 09742 | 0.52

5|10 | 0.7478 | 0.00 5|10 | 0.9734 | 0.51

5|20 | 0.7488 | 0.00 5|20 | 09715 | 0.51

5|40 | 0.7418 | 0.00 5| 40 | 0.9698 | 0.49

5| 80 | 0.6609 | 0.00 5|80 | 0.9564 | 0.32

1| - 105194 | 0.00 1] - | 0.8050 | 0.00

3] 5 |05949 | 0.00 3| 5 |09676 | 0.19

3 |10 | 0.5856 | 0.00 3 |10 | 0.9674 | 0.19

3 |20 | 0.5849 | 0.00 3|20 | 09671 | 0.18

3 | 40 | 0.5695 | 0.00 3|40 | 09613 | 0.06

Few-shot LSB embedding || 3 | 80 | 0.5508 | 0.00 | Few-shot LSB extraction || 3 | 80 | 0.8999 | 0.01
5] 5 | 06156 | 0.00 5] 5 ]09974 | 0.85

5|10 | 0.6151 | 0.00 5110 | 0.9975 | 0.86

5|20 | 06165 | 0.00 5120 | 09975 | 0.85

5| 40 | 0.6088 | 0.00 5| 40 | 0.9970 | 0.83

5| 80 | 0.5637 | 0.00 5|80 | 09689 | 0.15

Algorithm 1 Pseudocode for the data extraction procedure

Algorithm 2 Pseudocode for the data embedding procedure

Function: b = Extract(s, .Z, o)
Parameters: Secret bit-sequence b = {by,by,...,by }, Stego s = {
$1,82,-..,SM }, Model ., Threshold o.
1: if M < o then
Generate the data-extraction prompt Q based on s
Obtain the secret bit-sequence b from .# with Q
return b
else
st ={s1,52,--.5m2}> SR = {Sm /21 Sm 24255 }
{bl ,bg, -"abM/Z} = Extract(sy, M, )
{byja1:bm/242, - bu } = Extract(sg, 4, a)
9:  return b= {by,b,, Dy 25 br 241 P 2425 by}
10: end if

LSB extraction, PCES equals zero for all cases for LSB embed-
ding, meaning that there are always errors in the stego sequence,
which requires us to explore novel strategies to reduce the errors.

Divide and conquer, and Self-consistency

Yet another strategy is divide and conquer, which recursively
divides the entire sequence into disjoint sub-sequences. The most
significant difference between divide and conquer and segmenta-
tion is that all the sub-sequences are determined in advance for the
segmentation strategy whereas for divide and conquer, the present
sub-sequence to be processed is calculated from the previous sub-
sequence to be processed. An advantage of divide and conquer is
the prediction accuracy can be improved while the total number
of prompts (interactions) can be controlled in a reasonable range.

Our experimental results have already indicated that shorter
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Function: s =Embed(c, b, .7, a, )
Parameters: Stego s = {s1,52,...,spm}, Cover ¢ = {cy,¢2,...,cm},
Secret bits b = {by,b3,...,by }, Model .#, Thresholds o, f3.

1: Generate the data-embedding prompt ® based on ¢ and b
2: Obtain the stego sequence s from .# with ©®

3: bg = Extract(s, .Z, o)

4: if ||bs —b|| < B then

5: return s

6: else

7: CL = {C] ,C2, "'7CM/2}’ CR = {CM/2+I?CM/2+27 ...7CM}
8: b, = {b],bz,“.,bM/z}, br = {bM/2+1,bM/2+2,...,bM}
9: {s1,52, "'>SM/2} =Embed(c;, by, #Z, ., B)
10: {SM/2+laSM/2+27 ...,SM} = Embed(cg, bg, .#Z, a, B)
11:  return s= {s,s7, ey SM /25 SM /2415 SM /2425 ey SM}
12: end if

sequences generally result in better steganographic performance.
Based on this fact, Algorithms 1 and 2 demonstrate an implemen-
tation for prompting steganography using divide and conquer. In
Algorithm 1, a threshold « is used to control the total number of
prompts, e.g., & = M + 1 means that only one prompt is used and
o = 1 means that M prompts are required. In Algorithm 2, the
termination of the procedure is controlled by a parameter 3. This
parameter is used to constrain the difference between the original
secret bit-sequence and the bit-sequence extracted from a candi-
date stego sequence (see Lines 1-4). We regard this operation as a
self-consistency verification process, which allows for early stop-
ping if the present secret bit-sequence is successfully embedded,
thereby reducing the total number of prompts (interactions) while
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Table 2. Experimental results by applying divide and conquer.
Scenario | o [ B | PCEE [ PCES [ # prompts

80 | - | 0.8050 | 0.00 1.00
‘Extract’ || 40 | - | 0.9759 | 0.46 2.00
20 | - | 09949 | 0.72 4.00
80 | 80 | 0.5710 | 0.00 2.00
40 | 80 | 0.5710 | 0.00 3.00
20 | 80 | 0.5710 | 0.00 5.00
80 | 40 | 0.6591 | 0.00 2.70
‘Embed’ || 40 | 40 | 0.6623 | 0.00 4.05
20 | 40 | 0.6626 | 0.00 6.75
80 | 20 | 0.8253 | 0.05 6.30
40 | 20 | 0.8294 | 0.06 9.45
20 | 20 | 0.8302 | 0.06 15.75

maintaining the steganographic performance.

To verify the superiority, we take zero-shot LSB embedding
and few-shot LSB extraction for experiments, in which N = 100
and M = 80. For zero-shot embedding, we use few-shot extraction
for self-consistency verification. Table 2 provides the experimen-
tal results. In Table 2, B = 80 means that if the number of different
bits between the original secret bit-sequence and the extracted bit-
sequence is no more than 80, we return the corresponding stego
sequence. “# prompts” represents the average number of prompts
used for processing each data embedding (or extraction) task.

As shown in Table 2, the steganographic performance can be
significantly improved by using the divide and conquer strategy.
For example, for data extraction, by changing o = 80 to o = 20,
PCEE changes from 0.8050 to 0.9949 and PCES changes from 0
to 0.72. We have to admit that the performance gains come at the
cost of more prompts. It can be inferred from Table 2 that the per-
formance of LSB embedding is mainly affected by the parameter
B because changing « results in slight improvement. The reason
is that we have proven that LSB extraction can be well performed
by the model for a relatively small M. However, we believe that
o matters if M is significantly large or for advanced algorithms.

Combinations and Other Strategies

Obviously, combinations of the above strategies can further
boost the performance of steganography, which is an incremental
work. Many existing prompt optimization techniques may be ap-
plicable to prompting steganography, but should take into account
the characteristics of prompting steganography.

Conclusion and Discussion

In this paper, we introduce prompting steganography, which
feeds prompts into an LLM so that the LLM can embed secret data
into a cover and extract secret data from a stego through reasoning
by itself. Our experimental results indicate that errors inevitably
occur as the total number of secret bits to be embedded (or ex-
tracted) increases. In order to reduce the errors, we propose three
optimization strategies for the input prompts. Experiments verify
the effectiveness and superiority of these strategies.

Although the steganograpic operations evaluated in this pa-
per are simple, i.e., LSB embedding and extraction, it is confirmed
that LLM 1is capable of reasoning steganography with prompts,
which is totally different from previous steganographic algorithms
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that fully follow human-design concepts. It could be foreseen that
there may be no need for humans to develop any steganographic
algorithms in the future. Instead, by providing instructions to an
LLM, the LLM itself can design a steganographic algorithm that
meets the requirements specified in the instructions and success-
fully perform data embedding and data extraction. Although this
requires continued efforts of the researchers, our work proves to a
certain extent that it can become a reality. In addition, our previ-
ous work [35] shows that language model can enhance steganaly-
sis capabilities, which implies that prompting steganalysis should
also work. We hope our efforts can inspire more advanced works.
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