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Abstract
Assuming that Alice commits to an embedding method

and the Warden to a detector, we study how much infor-
mation Alice can communicate at a constant level of sta-
tistical detectability over potentially infinitely many uses
of the stego channel. When Alice is allowed to allocate
her payload across multiple cover objects, we find that cer-
tain payload allocation strategies that are informed by a
steganography detector exhibit super-square root secure pay-
load (scaling exponent 0.85) for at least tens of thousands
of uses of the stego channel. We analyze our experiments
with a source model of soft outputs of the detector across
images and show how the model determines the scaling of
the secure payload.

Introduction
In steganography with digital media objects, no mat-

ter how hard the steganographer tries, there exists a model
within which the embedding will be detectable [4].1 A con-
sequence of this postulate is the so-called square root law
(SRL) [17, 15] that states the existence of a critical rate
that determines whether the covert communication will be
asymptotically perfectly secure or whether the steganogra-
pher will be eventually caught with certainty.

In this paper, we take a look at a complementary
setup. Starting with a Warden’s detector built for a
known steganographic technique, we ask how much infor-
mation the steganographer can communicate over multi-
ple uses of the stego channel at a fixed detectability w.r.t.
Warden’s detector by cleverly allocating payloads to in-
dividual images but without making any adjustments to
the embedding algorithm. We study this problem within
the context of batch steganography and pooled steganaly-
sis [18, 23, 21, 26, 25, 1, 14] with an increasing size of the
bag of images.

First, we consider this problem for the hypothetical
scenario when the steganographer has access to Warden’s
detector (worst case for the Warden) as well as the more
realistic setup when she does not have access to Warden’s
detector. Surprisingly, under both scenarios our experi-
ments indicate that there exist payload allocation strate-
gies whose secure payload exhibits super-SRL scalings. To
understand why, we adopt a source model on the soft out-
put of a detector and link its numerical characteristics to
the scaling exponent of the secure payload.

1More precisely, the steganographic Fisher information
within this model will be positive.

The paper is structured as follows. After introducing
the necessary concepts and definitions in the next section,
in Section “Experiments”, we study the scaling of secure
payload experimentally. Inspired by the results, in Sec-
tion “Analysis” we impose a statistical model of the soft
output of Warden’s detector and derive the relationship
between this source model and the secure payload scal-
ing. This allows us to explain the experimentally observed
trends and how they are affected by the source model and
the payload allocation strategy. In Section “Conclusions,”
we summarize our work and point out possible future di-
rections.

Basic concepts

This section introduces some basic concepts and con-
structs needed in this paper. Throughout the paper, we
denote cover images using the symbol X and images (ei-
ther cover or stego) intercepted by the Warden using the
symbol Y . We use boldface symbols to denote n-tuples of
objects. In particular, X = (X1, . . . ,Xn) denotes a bag of
n cover images, and Y = (Y1, . . . ,Yn) denotes a bag (either
cover or stego) of n images intercepted by the Warden.

Warden’s detector

The Warden detects steganography in a bag in two
phases (known as pooled steganalysis). She applies a
single-image detector (SID) to each of the communicated
images and then pools the soft scalar outputs of the SID.

Formally, the SID is a mapping d :X →R, where X is
the space of all images. Having intercepted n images, the
Warden’s pooler is of the form π : Rn → R. The Warden
infers whether the sender uses steganography by comput-
ing d(Yi) for all n intercepted images Yi, i = 1, . . . ,n, and
comparing π(d(Y1), . . . ,d(Yn)) against a threshold deter-
mined by some application-dependent requirements, such
as controlling the false alarm.

Response curve

We use C to denote the maximum embedding capac-
ity of a cover image X ∈ X . For a ternary embedding
scheme in the spatial domain, C ≤ log2 3 bits per pixel
(bpp). Since most steganographic schemes avoid making
changes to saturated pixels, the capacity can be strictly
smaller than log2 3.

A response curve (RC) for a cover image X and de-
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tector d is the function % : [0,C]→ R defined by2

%(α) = E[d(X(α;k))], 0≤ α≤ C, (1)

where X(α;k) is X embedded with a secret message of
relative length α bpp and stego key k. The expectation is
taken over random messages and stego keys. Furthermore,
we define the expected shift of the detector response

s(α) = %(α)−%(0). (2)

Payload allocation strategies
In this paper, we use three different payload allocation

strategies (senders).
Let us assume that the sender has a bag of n cover im-

ages X1, . . . ,Xn with embedding capacities 0≤ Ci ≤ log2 3
bpp. Let P (n) ∈

[

0,
∑n

i=1 Ci

]

bpp be the total payload
the sender wants to communicate in the bag. Her pay-
load allocation strategy is an algorithm that assigns rela-
tive payloads αi to each image Xi subject to the constraints
∑n

i=1 αi = P (n) and αi ∈ [0,Ci] for each i.
The uniform sender spreads the payload uniformly

across all images in the bag. Since embedding capacities
can vary, the uniform sender employs a water filling algo-
rithm. It first finds α such that

∑n
i=1 min{α,Ci} = P (n)

and then embeds min{α,Ci} bpp to each image Xi in the
bag. If all Ci = C, each image receives the same payload
αi = α = P (n)/n.

Assuming the steganographer has access to a steganog-
raphy detector d, the next two payload allocation strategies
consider feedback from the detector.

The greedy sender fully concentrates the payload in
images that induce the smallest shift in detector response.
The sender first permutes the bag of images so that
si(Ci) = %i(Ci)− %i(0) are sorted in non-decreasing or-
der s(1)(C(1)) ≤ ·· · ≤ s(n)(C(n)). The permutation is
expressed as X(1), . . . ,X(n). Let k be the largest inte-

ger for which
∑k

i=1 Ci < P (n). The sender fully em-
beds images X(1), . . . ,X(k) with αi = Ci while leaving
X(k+2), . . . ,X(n) empty. The k + 1st image X(k+1) is
partially embedded with the remaining relative payload

αk+1 = P (n)−
∑k

i=1 Ci bpp. We note that when Ci = C
for all i, k = bP (n)/Cc.

The shift-limited sender (SLS) [25] enforces the shift
hypothesis [14] by considering the impact of the embedding
on the statistical distribution of detector outputs across
cover images. The SLS finds the smallest δ > 0 that leads
to the same expected detector output shift when embed-
ding payload αi in Xi, satisfying

∑n
i=1 αi = P (n), and

δ = si(αi) for all i for which si(Ci) ≥ δ. For images that
do not satisfy this condition (images with “flat” response
curves), the SLS sets αi = Ci.

We note that in the rare case when the RC of an image
is not monotonically increasing, the greedy sender uses the
absolute value |si(α)| and SLS uses the cumulative max3

of |si(α)| in their implementations.

2The RC also depends on the steganographic embedding
scheme.

3The unidirectional search used to implement SLS requires
that RCs are monotonically increasing [25].

These senders were selected as a diverse set of payload
allocation strategies that are computationally inexpensive.
This requirement is important since we plan to experiment
with very large bags with tens of thousands of images. In
particular, excessive implementation complexity prevented
us from working with the minimum deflection sender [25],
which minimizes statistical detectability within the model
analyzed in Section “Analysis.” The same applies to the
image merging sender [23], which treats the bag as one
large image and lets the steganographic method distribute
the payload.

Experiments
This section reports on a series of experiments aimed

at establishing the scaling of secure payload when Alice
uses modern content-adaptive steganography and the War-
den uses state-of-the-art empirical single-image detectors
constructed using machine learning. Loosely speaking, the
secure payload is the maximal absolute payload that can
be communicated by the sender while guaranteeing a fixed
level of statistical undetectability. We are interested how
the size of the secure payload scales with the number of
images sent by such a detectability limited sender (DLS).
We first discuss a subtle yet important distinction between
implementing a DLS in practice and implementing a DLS
to observe scaling laws.

In practice, Alice must implement a DLS based on
some knowledge of a detector. For example, she could
adopt a model within which a relationship between pay-
load and error rates of an optimal detector can be estab-
lished [22, 16]. Another method involves fixing the empiri-
cal detectability of Alice’s estimate of the Warden’s pooled
detector (SID and pooler). In particular, Alice determines
payload based on empirical error rates of her own pooled
detector (SID and pooler) when evaluated on a dataset of
bags. We refer the reader to Sec II of [11] for additional
discussion and examples.

The disadvantage of these approaches is that the de-
tectability is bounded only within the model or bounded
only with respect to Alice’s estimated pooled detector, re-
spectively. There is no guarantee that detectability will be
bounded in practice with respect to the Warden’s pooled
detector. In this paper, we wish to study the scaling of
secure payload with respect to the detector the Warden
committed to. Therefore, to properly observe such a scal-
ing in a non-asymptotic regime we must, for every bag size
n, fix the detectability of the Warden’s pooled detector
by empirical evaluation (see Section “Simulating ...”). We
emphasize that Alice can only achieve this DLS in real life
conditions if she has full knowledge of the Warden’s pooled
detector.

Setup of experiments
We assume that there is a source of cover images avail-

able to both the sender and the Warden. The sender com-
mits to an embedding scheme for secret communication and
the Warden commits to a SID dW and pooler π. The War-
den is always fully aware of the actions potentially taken
by the sender. This means that the Warden knows the
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sender’s embedding scheme and payload allocation strat-
egy. We experimentally determine the scaling of the secure
payload for versions of the above payload allocation strate-
gies with two different poolers. In particular, we wish to
determine the largest payload the sender can communicate
under any circumstances, such as when allocating payloads
with Warden’s SID dW as well as the case when the sender
does not have access to Warden’s SID dW.

All experiments were executed on the image dataset
ALASKA II [7] developed as in [7] without the final JPEG
compression step. This dataset contains 75,000 images,
which we randomly split into three disjoint parts of the
same size for our experiments (Splits 1–3). Split 1 and Split
2 are used for training detectors while Split 3 was used for
assessing the secure payload scaling. In all experiments,
the sender uses the embedding algorithm HILL [19], which
is simulated to perform on the rate–distortion bound.

A single-image detector d is trained as an SRNet [5]
and the Efficient Net B4 [20, 24] pre-trained on ImageNet
with the binary task of steganalyzing J-UNIWARD [12]
(the so-called JIN pre-training exactly as described in [6]).
The refinement of both detectors to detect HILL was done
with stego images embedded with relative payloads ran-
domly drawn from the uniform distribution on the set of
relative payloads (in bpp)

P = {0.05,0.1,0.2, . . . ,1.4,1.5}. (3)

SRNet was trained on Split 1 while B4 was trained on
Split 2. Each split was randomly partitioned into disjoint
subsets of 22k, 1k, and 2k images for training, validation,
and testing, respectively. The CNNs logit is used as the
detector’s response.

The response curves were estimated on the same grid
of payloads P. We computed the average detector response
%̂(α) and the standard deviation of detector outputs σ̂(α)
using 100 stego images (with different PRNG seeds in the
embedding simulator) for each payload α ∈ P.

Poolers
Our experiments include the simple average pooler,

which is agnostic w.r.t. the sender’s payload allocation
strategy

πavg(dW(Y)) =
1

n

n
∑

i=1

dW(Yi) (4)

and the correlator pooler introduced in [25]

πcorr1(dW(Y)) =

n
∑

i=1

dW(Yi)s(αi). (5)

This pooler makes use of a weighting function s(α) which
is a logistic fit over all embedding shifts ŝi(α) = %̂i(α)−
%̂i(0) of the Warden’s detector across the 2k image test
set of Split 1 or Split 2 (depending on if SRNet or B4 is
used, repectively). Note that this pooler is given the true
payloads αi that might reside in the images. In practice,

Algorithm 1 Detectability Limited Sender’s binary search
for secure payload. This algorithm is performed indepen-
dently for each bag size n.

// Set detectability δ, bag size n, num-
ber of bags sampled N
for m = 1 to N:

Xm← sample n images from Split 3 with-
out replacement
Pupper← minm{total capacity of Xm}
Plower← 0
loop:

P ← (Plower + Pupper)/2
for m = 1 to N:

αm← compute payload alloca-
tion for bag Xm

Ym← simulate embedding pay-
loads αm in bag Xm

Compute π(dW(Xm)),π(dW(Ym))
PE(P,n,N)← com-

pute PE from {π(dW(Xm)),π(dW(Ym))}Nm=1
if |PE(P,n,N)− δ|< 10−3:

break

else if PE(P,n,N) > δ:

Plower← P
else:

Pupper← P
}

Pδ(n)← P
return Pδ(n)

αi would need to be estimated by the Warden from the
images at hand. As shown in [25], the effect of estimating
the payloads has a negligible impact on Warden’s detection
performance for the studied in this prior art.

We note that our recent work which conceived of
detector-informed batch steganography [25] did not include
the greedy sender. As far as we know, there is no pub-
lished benchmark comparing the greedy sender and SLS
nor is there a benchmark testing the greedy sender against
different poolers. Thus, we initially experimented with ad-
ditional poolers and found that a modified version of the
correlator

πcorr2(dW(Y)) =

n
∑

i=1

dW(Yi)si(αi), (6)

where si(αi) is the shift in the RC of Warden’s detector,
performs better than πcorr1 when Alice uses the greedy
sender. Such a pooler is justified as the most powerful
pooler from a statistical model of detector response in Sec-
tion “Analysis.” Note that πcorr2 is clairvoyant as it re-
quires knowledge of the exact shift in response si(αi) as
opposed to a “global average” s(αi). However, πcorr1 still
universally performs better than πcorr2 when Alice uses
SLS. Therefore, in all experiments, we use πcorr2 when the
setup includes the greedy sender, and we use πcorr1 when
the setup includes SLS.
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Figure 1. Log-log plot of secure payload vs. bag size n for various payload allocation strategies and poolers. For every n, the Warden’s pooler π achieves

constant detectability PE = 0.2. Left: SID SRNet. Right: SID B4.

In summary, we wish to point out that giving the exact
payloads αi and shifts si to the Warden is done intention-
ally to consider the worst case scenario for the steganogra-
pher. If a super SRL secure payload is observed for such
unrealistically empowered Warden, then in practice the se-
cure payload will be at least as large as what we determine
under our assumptions. These clairvoyant pooled detectors
are also significantly cheaper to experiment with than de-
tectors that need to estimate these quantities. This aspect
is especially important for our study with large bags and
an empirical detectability criterion at the Warden’s side.

Simulating a detectability-limited sender
For a fixed statistical detectability δ ≥ 0 and bag size

n, we wish to determine the secure payload size Pδ(n) that
gives the Warden’s pooler a prescribed detectability δ. In
this paper, we use the detector’s minimum total average er-
ror probability PE = min 1

2 (PFA + PMD) as our detectabil-
ity measure. Of course, alternative measures could cer-
tainly be used, such as wAUC, true positive rate for a fixed
false alarm, etc.

This problem formulation is known as a detectability-
limited sender (DLS). We reiterate that our DLS fixes de-
tectability across a collection of N bags rather than fixing
detectability within a statistical model of a specific bag.
We therefore must use a payload-limited sender (PLS) to
solve for the total payload that achieves the desired de-
tectability δ. In particular, we implement the DLS as a
binary search for Pδ(n). Note that this DLS results in the
same payload Pδ(n) being embedded in every bag while a
traditional DLS using a model can have variable payloads
depending on the bag.

Each iteration of the binary search does the follow-
ing (also follow Algorithm 1). We randomly select n cover
images X from Split 3 without replacement4 and use a pay-

4Given the size of the splits, if bags are formed without re-
placement, we are limited to bag size on the order of ≈ 20,000.

load allocation strategy to compute α = (α1, . . . ,αn) given
a desired total payload of P bpp. We generate each stego
image Yi = Xi(αi) using a random key, producing the stego
bag Y = X(α). The pooled detector is then applied to the
cover and stego bags,

(

π(dW(X)),π(dW(Y))
)

. This is re-
peated with a newly sampled cover bag a total of N times.
Denoting the outputs of Warden’s pooled detector with
{

π(dW(Xm)),π(dW(Ym))
}N

m=1
, we compute from this

data the empirical detectability PE(P,n,N). The search
ultimately solves for the payload P such that PE(P,n,N) =
δ. The payload found this way will be denoted Pδ(n), omit-
ting the dependence on N since PE(P,n,N) saturates for
large enough N .

To determine the scaling of the secure payload across
a range of bag sizes, the entire binary search is repeated for
n ∈ {21,22, . . . ,214} . The maximum bag size that we can
study, 214, is determined by the size of the split3 (25,000).
The number of bags N was adjusted with n to control
the computational complexity. In particular, N = 1000 for
n = 21, . . . ,28, N = 500 for n = 29, . . . ,212 and N = 300 for
n = 213,214.

We note that the entire procedure described above in-
cludes expensive operations, such as running the embed-
ding simulator and computing forward passes of the CNNs
for O(N×n) images per iteration of the binary search. To
speed up our experiments, we sampled logits of stego im-
ages in a Monte Carlo fashion by drawing a sample from the
Gaussian distribution5 N (%̂(α), σ̂2(α)) by linearly interpo-
lating %̂(α), σ̂2(α) from the two closest grid points from P.
We can verify that the scaling we observe in our simulations
is roughly the scaling for real images by running the PLS
with real images using the secure payload Pδ(n) found from
the simulation. The verification comes from observing that
empirical detectability for real images is approximately our
desired detectability δ.

5The Gaussian model is justified in Section “Analysis.”
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Results
Figure 1 contains log-log plots of Pδ(n) as a function

of n at detectability δ = PE = 0.2 for different combina-
tions of senders and Warden’s pooled detectors. These re-
sults assume that the SIDs used by Alice and the Warden
are matched. The left plot uses SRNet and the right plot
uses B4. The black reference lines correspond to power
laws n0.85 and n1/2. The most notable result is the scal-
ing for SLS and the greedy senders whose secure payload
scales as nγ with γ≈ 0.85 with both poolers and both SIDs.
The secure payload for the uniform sender scales accord-
ing to the square root law and serves as a sanity check.
In Figure 2, we verify that the super SRL scaling for the
greedy sender holds across a range of fixed detectability
levels PE ∈ {0.1,0.2,0.3,0.4}.

We note that the slight departure from power law scal-
ing for the largest bag size is due to the finite dataset
(split). The statistical spread of the pooler output on the
largest bags whose size is comparable to the dataset size
(n = 16,384 on a split with 25,000 images) is smaller than
what it would be for a much larger (infinite) dataset. In
the extreme case when the bag size is the entire split, the
statistical spread would be zero as there is only one bag.

The authors wish to emphasize that Alice is not chang-
ing the embedding algorithm itself but she is strategizing
on how to distribute her payload across images based on
feedback from Warden’s SID. Thus, the observed scaling
is perhaps more fittingly interpreted as a property of the
source and the Warden’s pooled detector rather than a re-
sult for an adversarial setting. For a fixed cover source, em-
bedding method, and a pooled detector, the scaling tells
us how much information can be communicated through
the channel by allocating the payload without triggering
the pooled detector. Thus, one can think of the result as
a scaling law of source-adaptive payload allocation.

The next batch of experiments aims at establishing the
secure payload scaling in a more realistic setting when the
payload allocation is carried out with feedback from a dif-
ferent SID than the one used by the Warden for detection.
To this end, we used the same setup as above but with Al-
ice distributing her payload based on feedback from SRNet
while the Warden uses B4 for detection and vice versa. We
note that SRNet was trained on Split 1 and B4 on Split 2
to include a mismatch in training data as well. Split 3 is
still used for assessing the secure payload scaling.

Figure 3 (left) shows the payload scaling when the
sender spreads using feedback from B4 and the Warden
uses SRNet for detection. In the right figure, the sender
uses SRNet and the Warden uses B4. When the War-
den uses the average pooler, the secure payload follows
the super-SRL scaling. The effect of using the clairvoyant
correlator poolers depends on who has which SID. When
the sender uses SRNet and Warden B4, the greedy sender
offers a larger secure payload that follows the super SRL
scaling while the SLS falls under the SRL. This situation
reverses when the sender is given B4 for spreading and War-
den SRNet for detection. This asymmetric behavior could
be caused by one of the SIDs being superior to the other.
Since the greedy sender is more aggressive than SLS in how
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Figure 2. Log-log plot of secure payload vs. bag size n for a range of fixed

detectability levels PE. Alice uses greedy sender and embedding algorithm

HILL. Warden uses πcorr2. Both use the same SRNet as their SID.

it uses the SID feedback, when the sender uses the more
powerful SID she can communicate larger secure payload
with this more aggressive spreading. However, when using
the inferior SID, the greedy sender “overdoes” the spread-
ing and becomes more vulnerable to the better SID used
by the Warden. In either case, nevertheless, the sender
can still communicate super SRL payload despite the mis-
matched SIDs.

We remind the reader that all experiments above were
executed with a simulated response of the SIDs. To con-
firm that the payload scaling we observe holds when the
Warden feeds actual images to her SID, we perform an iter-
ation of the PLS using real images and the secure payloads
found from the simulations. Figure 4 includes 8 cases of
SIDs, senders, and poolers. Observe that there is very mi-
nor deviation from the target detectability PE = 0.2 such
payloads would achieve in the simulations. We note that
the largest bag size 214 is omitted and re-emphasize that it
was infeasible for us to run such an expensive binary search
using real images given our time constraints.

The experiments presented in the figures so far are
for the case when Alice adjusts payload for constant de-
tectability of the Warden’s pooled detector. As discussed
previously, in practice Alice will likely not be able to deter-
mine such secure payloads and will have to either choose
secure payloads w.r.t. her own pooled detector or use a
PLS determined heuristically. In Figure 5, we show the re-
sults for the most realistic case in our study; we have Alice
and the Warden use feedback from mismatched SIDs and
have Alice determine her absolute payloads from a simple
formula P (n) = 0.5nγ which does not give any guarantees
on security. Colors are used to represent cases of different
SIDs, spreaders, and pooling strategies. Marker symbols
are used to represent the value of γ used. Note that γ = 0.9
tends towards perfect detection while γ = 0.7 and 0.8 re-
main roughly in the center of the dynamic range of PE.
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& spreader and Warden’s SID & pooler. We hypothesize that this figure’s

legend is one of the world’s largest.

Analysis

In this section, we analyze the experimental results in
an attempt to explain the secure payload scaling observed
in practice. To this end, we adopt a statistical model of
detector soft outputs and study the secure payload of the
greedy sender for Warden’s most powerful pooler. The
greedy sender was selected because the analysis allows us
to obtain the main results in an easily interpretable an-
alytic form, which is not the case for the SLS and other
senders, such as the MDS or the IMS. Finally, we note
that our analysis is restricted to the matched detector case
when both the steganographer and the Warden make use
of the same single-image detector for their respective goals.
This is done intentionally to avoid dealing with the diffi-
cult problem of modeling the mismatch between detectors,
which would significantly complicate the analysis.

Sampling from the cover source

We envision the process of sampling from the cover
source as a two-stage stochastic process. First, the sender
selects a (noise-free) scene and then acquires it using a
digital imaging sensor. The acquisition is affected by nu-
merous noise sources, such as the shot (photonic) noise,
the readout noise, and thermal noise [13]. Thus, taking
multiple images of the exact same scene with the same
camera would produce slightly different images that fol-
low a statistical distribution that is conditioned on the
scene and, technically, also on the camera. We call the
random variable following this distribution an acquisition
oracle, a concept commonly found in steganography in the
past [2, 9, 10, 8, 25].

To avoid the potentially infeasibly complex task of
modeling the oracle itself, we make assumptions on the
distribution of detector outputs on the realizations of the
oracle. We take advantage of the fact that the distribu-
tion of the acquisitions X for a fixed scene is concentrated
on a small subset of X (multiple images of the same scene
taken with the same camera differ only slightly). Since
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Figure 5. PE vs. bag size n when detecting real stego bags for a PLS
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Alice uses B4 and SLS. Warden uses SRNet and πcorr1. For red curves,

Alice uses SRNet and greedy sender. Warden uses B4 and πcorr2.

differentiable non-linear functions are approximately lin-
ear on sufficiently small neighborhoods, the central limit
theorem (CLT) implies that6

d(X)∼N (µ,σ2), (7)

where µ and σ2 are the expected value and variance of d
on cover images generated by the acquisition oracle for a
fixed scene. Since stego schemes try to preserve statistical
properties of X, the embedding process will also preserve
the concentration. Therefore, by the same argument we
assume that the detector output on X embedded with rel-
ative message length α (denoted as X(α)) is also Gaussian

d(X(α))∼N (µ + s(α),σ2). (8)

Note that we implicitly assume that only the mean is
affected by embedding but not the variance. At the end of
this section, we comment on the case when σ2(α) increases
with α and its effect on secure payload scaling. This lo-
cal shift hypothesis is a much weaker assumption than the
shift hypothesis (as adopted in, e.g., [23]) about the global
distribution of detector response which is not satisfied for
modern steganalyzers in the form of rich models and con-
volutional neural networks (CNNs) (see Sec. 3.2 in [25]).

Optimal pooler
Let X = (X1, . . . ,Xn) be a bag of independently sam-

pled cover images. Equipped with a SID d that ad-
heres to the assumptions above, given a bag of images

6Modern single-image detectors d are often neural networks
with differentiable structure.

Y = (Y1, . . . ,Yn) the Warden’s hypothesis test becomes:

H0 : d(Yi)∼N (µi,σ
2) for all i

H1 : d(Yi)∼N (µi + si(αi),σ
2) for all i,

(9)

where αi is the relative payload residing in the ith cover
image Xi. The outputs d(Yi) are pooled by the Warden
using pooler π to detect the use of steganography by the
sender.

Assuming the parameters of the distributions in the
hypothesis test (9) are known to the Warden, the test be-
comes simple and, due to the independence of cover images,
the Warden’s most powerful pooled detector is the likeli-
hood ratio test. The detectability of steganography based
on evidence from n images Y = X(α) is thus determined
by the deflection coefficient

∆2(Y) =
1

σ2

n
∑

i=1

s2
i (αi). (10)

Cover source model
In this paper, a cover source is modeled by adopting

a statistical model for detector response curves (1). As al-
ready mentioned in the introduction, modeling the source
through the response of a detector is a compromise because
the conclusions reached are with respect to a specific de-
tector and embedding scheme. On the other hand, this
arrangement gives us a substantial advantage in the form
of tractable analysis and estimability of all modeling pa-
rameters in practice.

A particularly simple model of response curves is the
linear model. For cover image Xi ∈X

si(α) = %i(α)−%(0) = biα, (11)

where bi is the RC’s slope. Since the greedy sender either
embeds an image fully or not at all,7 we can equivalently
consider a model for the expected increase in detector re-
sponse8 at their embedding capacity, si(C) = %i(Ci)−%(0).
For this model, the deflection of Warden’s optimal pooler
is given by

∆2(Y) =
1

σ2

k
∑

i=1

s2
i (Ci) +

1

σ2
s2

k+1(αk+1), (12)

where k is the largest integer such that
∑k

i=1 Ci < P , where
P is the payload to be embedded in the bag.

A cover source model is a probabilistic distribution
imposed on s2

i (Ci) for images from a given source:

s2
i (Ci)∼ F, (13)

where F is a cumulative distribution function (CDF) sup-
ported on [0,∞). We wish to emphasize that F depends
on the cover source, steganographic method, and Warden’s
detector.

7With the exception of the last image, which may be embed-
ded only partially.

8Expectation taken over embeddings with different messages
/ stego keys.
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Secure payload
Given a bag of n cover images X = (X1, . . . ,Xn) sam-

pled independently from the cover source, we define the se-
cure payload of a bag of size n at detectability δ≥ 0, Pδ(n),
as the largest total expected payload

∑n
i=1 αi, αi ≤ Ci,

that can be communicated in these n images that satisfies

E[∆2(X(α))]≤ δ, (14)

with the expectation taken over bags of size n.
We will study the scaling of the secure payload only

for the greedy sender because the results are available in
a closed form. Our goal is to explain the scaling observed
in experiments in Section “Results.” For simplicity and
without loss of generality, we will assume that σ2 = 1 and
that the embedding capacity of all images is the same,
Ci = C = log2 3 for all i. We further simplify by ignor-
ing the contribution of the last partially embedded image
to the deflection (12) as this will asymptotically for large
n become negligible.

This main result is proved in the appendix:

Theorem: Let s2(C) ∼ F with F (x) > 0 for x > 0
continuous and invertible on some right neighborhood of
zero. The secure payload of the greedy sender for bag size
n and detectability δ > 0 is

Pδ(n) = log2 3×k(n), (15)

where k(n) is the largest integer satisfying

n
∫ k(n)/n

0
F −1(x)dx ≤ δ. In particular, when F (x) ∝ xβ ,

β > 0, on some right neighborhood of 0, Pδ(n)∝ n
1

β+1 .

Discussion
The key to understanding the super SRL scaling ob-

served in experiments is the source model and the CDF
F . In Figure 6 we show the PDF (left) and the log-log
plot of the CDF (right) of s2(C) for the SID in the form
of an SRNet trained for HILL. The PDF shows that im-
ages with increasingly small s(C) are very common in our
dataset, which is the reason for the super SRL scaling ob-
served in experiments. These images are typically very
noisy (taken at high ISO setting) and / or contain complex
texture. The CDF includes a line of best fit whose slope is

β ≈ 0.22. Using the rule Pδ(n)∝ n
1

β+1 , the line of best fit
predicts a power scaling of γ ≈ 0.82 which is roughly what
was observed in the experiments with matched detectors
in Section “Results.”

The secure payload scaling for the greedy sender has
been derived under some simplifying assumptions, which
will inevitably cause deviations between the theory and
experiments. In particular, the hypothesis test (9) that
gives rise to the theoretical result is simple as the Warden
is given the means µi, which is the response of the detec-
tor response on the cover %i(0). In practice, the Warden
will not have access to this data and her detector will thus
perform suboptimally, allowing the sender to communicate
more at the same level of statistical detectability. More-
over, our analysis is limited to all capacities being equal,
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Figure 6. Left: Plot of the PDF F of s2(C) across Split 3. Right: The

corresponding Log-log plot of the CDF with a best fit line of slope β ≈ 0.22.

Ci = C, across all images. To properly extend our study
to this case, we would need to adopt a source model on
the capacities and also most likely consider the joint dis-
tribution of (C,s(C)), which might be difficult to model
and estimate in practice.

Our modeling assumption that the variance σ2 of
the detector soft output is constant (9) is also an ap-
proximation. Our experiments suggest that the com-
bined standard deviation due to acquisition and embed-
ding, σi(α), increases approximately linearly with si(α);
σi(α) ≈ σ + csi(α), where c > 0 does not depend on the
image i. The optimal pooler in this case is a sum of a
correlator and an energy detector as the Warden can also
detect embedding by increased variance of the SID output.
For a linear model of response curves si(α) = biα, it can
be shown that the leading term of the deflection (in terms
of c being small) changes only by a constant multiplicative
factor and thus has no effect on secure payload scaling.

At this point, we also wish to contrast our find-
ings with Ker’s scaling law of secure payload for content-
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adaptive steganography [16]. The obvious parallel here is
the similarity between payload allocation across images
and content-adaptive steganography (payload allocation
across pixels). In [16], the author derived a relationship be-
tween secure payload and the sum of reciprocals of pixels’
embedding costs (Fisher information). One of the key as-
sumptions in this paper that guaranteed the SRL of secure
payload was banning a non-negligible source of free bits in
the form of pixels’ diminishing costs. While this assump-
tion is indeed reasonable on the level of (integer-valued)
pixels, outputs of a detector trained on entire images ex-
hibit a much larger diversity. In particular and unlike for
pixels, we can accurately estimate the properties of the de-
tector output as a function of payload on individual images.
The fact that the distribution of s2(C) exhibits a spike at
zero gives rise to a CDF that leads to the observed super
SRL secure payload scaling.

In fact, we have observed this spike for other datasets
(BOSSbase [3]) and other embedding algorithms than
HILL (not reported in this paper). We plan to inves-
tigate the universality of this spiky distribution of re-
sponse curves’ slopes across a wider spectrum of detectors,
datasets, and embedding schemes. Should this character-
istic of steganography detectors be universally observed, it
would indicate a new type of law that the Warden should
be aware of in practice:

No matter how hard the Warden works to
build a detector, there exists a payload allocation
strategy that would allow the steganographer to
communicate super SRL secure payload.

Finally, in experiments on finite datasets we will be unable
to distinguish between “true” payload scaling nγ as n→∞
and a transient scaling that eventually becomes n1/2. For
example, we might see a different power scaling of the CDF
F very close to zero if we were to substantially increase the
size of the dataset. A linear scaling F (x)∝ x or F (x) = 0
on some small right neighborhood of 0 would imply a se-
cure payload that eventually must follow the SRL for suffi-
ciently large n. Thus, our conclusion concerning the secure
payload scaling needs to be understood within the context
(and limitation) of our experiments. Technically, we can-
not claim that the scaling will be observed for sufficiently
large n.

Conclusions
The square root law studies the secure payload scaling

based on a postulate that perfectly secure steganography is
practically unachievable. In our paper, we take a comple-
mentary stance from the perspective of the Warden being
unable to construct a perfect detector. We ask the sender
to commit to a steganographic algorithm and subsequently
the Warden to commit to a detector of that algorithm and
study the size of payload that can be communicated at a
fixed level of statistical detectability as measured by War-
den’s pooled detector. Our experimental findings are sur-
prising as they indicate that there exists a strategy for the
steganographer to cleverly allocate payload across images
that leads to super square root scaling of secure payload.

We traced this to the properties of Warden’s single-image
detector, namely the distribution of the detector response
curves across the cover source. This distribution exhibits a
spike at zero, effectively meaning that there is a significant
source of images with diminishing response to embedding.
To quantitatively explain the scaling observed in our exper-
iments, we derive a closed-form expression for the scaling
exponent of secure payload size based on the distribution
of the detector response.

It should be emphasized that the fact that there exists
a payload allocation strategy with super SRL scaling does
not mean that the steganographer will always be able to de-
termine this strategy in practice because it requires access
to Warden’s detector. Nevertheless, we show that, within
our experimental setup, the steganographer can make use
of her own detector and still enjoy a super SRL scaling.
Our findings shed new light on the old question of who
will win in the long term – the steganographer or the War-
den? A super SRL secure payload scaling certainly allows
the steganographer to make a practical use of the cover
source.

Our paper brings numerous new questions to the table
that we intend to study in the future. The most important
one is whether the observed concentration of Warden’s de-
tector diminishing response to embedding is a universal
phenomenon that will be observed in all datasets, with
all kinds of detectors, and for all steganographic methods.
Since in our study the super SRL scaling is observed when
the Warden is given powerful clairvoyant detectors built us-
ing state-of-the-art deep convolutional neural networks, we
conjecture that the spike in diminishing detector response
is indeed ubiquitous. We believe that it is important for
steganalysts to be aware of the possibility that a steganog-
rapher might go undetected even when embedding super
SRL payloads.
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Appendix
In this appendix, we prove the main result for scaling

of the secure payload for the greedy sender. Below, we use
the symbol X for the random variable whose realizations
are (%(C)−%(0))2, the squared expected detector increase
when embedding maximum payload.

We first state some known properties of order statistics
of a uniformly distributed random variable on the interval
[0,1], U [0,1]. Let U(k) denote the kth order statistic of n
i.i.d. uniform random variables Ui ∼ U [0,1]. The CDF of
U(k) is

Gk(x) =

n
∑

j=k

(

n

j

)

xj(1−x)n−j . (16)

Further inspection of the PDF of U(k) would reveal that

U(k) ∼ Beta(k,n + 1−k) which means E[U(k)] = k
n+1 and

Var[U(k)] =
k(n−k+1)

(n+1)2(n+2)
.
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Consider n i.i.d. random variables Xi ∼ F as well as
the kth order statistic of the Xi, denoted by X(k). Suppose

that k = k(n) is some function of n satisfying cn1/2 ≤ k(n)

(secure payload is at least ∝ n1/2) for some c > 0 and
k(n)/n→ 0 (secure payload is sublinear) as n→∞.

Lemma. F (X(k))
n+1
k(n)

→ 1 in probability as n→∞.

Proof : Since F (X) ∼ U [0,1] and since F is non-
decreasing, F (X(k)) is the kth order statistic U(k). Let
ε > 0. Applying Chebyshev’s inequality gives us

P

{
∣

∣

∣

∣

U(k)
n + 1

k(n)
−1

∣

∣

∣

∣

≥ ε

}

= P

{∣

∣

∣

∣

U(k)−
k(n)

n + 1

∣

∣

∣

∣

≥ ε
k(n)

n + 1

}

≤
(n + 1)2

k2(n)ε2

k(n)(n + 1−k)

(n + 1)2(n + 2)

=
n + 1

n + 2

1−k(n)/(n + 1)

k(n)ε2
. (17)

The upper bound (17) is O(n−1/2) as n→∞. Hence, we
have that F (X(k))

n+1
k(n)

→ 1 in probability, which completes

the proof.�

Let X[0,a] denote X conditioned on [0,a]. Given
n i.i.d. samples Xi and ε > 0, the lemma im-

plies that 0 ≤ F (X(i)) ≤
k(n)

n (1 + ε) and hence 0 ≤

X(i) ≤ F −1
(

k(n)
n (1 + ε)

)

for all 1 ≤ i ≤ k(n) with prob-

ability arbitrarily close to 1 for sufficiently large n.
The sample statistics X(i), 1 ≤ i ≤ k(n) are realiza-

tions of X
[

0,F −1
(

k(n)
n (1 + ε)

)]

. Denoting for com-

pactness ak,n = F −1
(

k(n)
n (1 + ε)

)

and realizing that

kE[X[0,ak,n]] = δ from the detectability requirement,
Chebyshev’s inequality implies

P

(∣

∣

∣

∣

∣

k
∑

i=1

Xi[0,ak,n]−kE[X[0,ak,n]]

∣

∣

∣

∣

∣

> ε1

)

≤
kVar[X[0,ak,n]]

ε2
1

=
δVar[X[0,ak,n]]

ε2
1E[X[0,ak,n]]

. (18)

This bound approaches 0 with n→∞ for any ε1 because
ak,n → 0 by our assumption on k(n) and due to F being
continuous and the fact that

Var[X[0,ak,n]]≤ ak,nE[X[0,ak,n]]. (19)

Finally, the secure payload k(n)× log2 3 is determined

from the condition

δ = k(n)E[X[0,ak,n]]

= k(n)
n

k(n)

∫ F −1
(

k(n)
n

)

0

xdF (x)

= n

∫ k(n)/n

0

F −1(x)dx. (20)

When F (x) ∝ xβ , F −1(x) ∝ x1/β ,and we have δ =

n β
β+1

(

k
n

)

β+1
β , which gives k ∝ n

1
β+1 by solving for k.
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