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Abstract

In this article, we study the properties of quantitative
steganography detectors (estimators of the payload size)
for content-adaptive steganography. In contrast to non-
adaptive embedding, the estimator’s bias as well as vari-
ance strongly depend on the true payload size. Initially,
and depending on the image content, the estimator may not
react to embedding. With increased payload size, it starts
responding as the embedding changes begin to “spill” into
regions where their detection is more reliable. We quantify
this behavior with the concepts of reactive and estimable
payloads. To better understand how the payload estimate
and its bias depend on image content, we study a mazi-
mum likelihood estimator derived for the MiPOD model of
the cover image. This model correctly predicts trends ob-
served in outputs of a state-of-the-art deep learning payload
regressor. Moreover, we use the model to demonstrate that
the cover bias can be caused by a small number of “outlier”
pizels in the cover image. This is also confirmed for the
deep learning regressor on a dataset of artificial images via
attribution maps.

Introduction

The main objective of steganalysis is to detect the
use of steganography. This requires algorithms that can
identify statistical anomalies introduced by steganographic
algorithms. Quantitative steganalysis is a term used for
detectors designed to estimate the length of the embed-
ded message. The first detectors of this type were de-
signed for least significant bit replacement (LSBR). The
RS steganalysis [14] laid the ground for a direction called
structural steganalysis further developed by Dumitrescu et
al. [12, 11] and Ker [19, 20]. A different class of quanti-
tative attacks on LSBR is the Weighted Stego-image at-
tack [13, 23, 22, 3], which was later (re)derived as a like-
lihood ratio test [40] whose expectation is the embedding
change rate. Structural steganalysis of LSBR in JPEG
images employing a zero message hypothesis [39], embed-
ding invariants, and the maximum likelihood estimation
was introduced in [24, 31]. Approaching quantitative ste-
ganalysis with machine learning by training detectors as
payload regressors (e. g., support vector regressors) on ste-
ganalysis “features” [27] allowed constructing quantitative
detectors in a fully automatized fashion for all embedding
schemes in both the spatial and JPEG domain. By mak-
ing the features “aware of parity”, further advancements
in quantitative steganalysis of LSBR became possible [16].
With high-dimensional “rich” models [15] data-driven re-
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gressors became even more accurate [25, 32, 9]. Today,
state-of-the-art quantitative detectors are built with deep
convolutional neural networks (CNNs) trained as payload
regressors [29, 8].

The first rigorous analysis of the error of quantita-
tive steganalyzers appeared in [4]. The authors presented
evidence that the estimation error consists of two compo-
nents — the highly non-Gaussian between-image error or
cover bias and the Gaussian within-image error due to the
randomness in embedding (pixel visitation). The right tail
of the distribution of the between-image error was exper-
imentally shown to be well modeled with the Student’s
t-distribution, which has power tails that affect the false-
alarm rate should the quantitative steganalyzer be used
as a binary detector of steganography. The statistical dis-
tribution of the between-image error was derived by Ker
for LSB replacement and least squares quantitative ste-
ganalysis [21]. To the best knowledge of the authors, the
error of data-driven quantitative steganalyzers for content-
adaptive steganography has not been studied before.

After defining our notation and acronyms, in Section
“Detector response curves” we introduce the key concept
studied in this paper — the detector response curve defined
as the detector’s expected soft output as a function of the
embedded message length. We also introduce two novel
critical payloads for evaluating quantitative steganalyzers,
which are the reactive and estimable payloads. In Section
“Quantitative steganalyzers” we describe the quantitative
steganalyzer studied in this paper, which is a novel end-
to-end trained deep learning regressor; its performance is
briefly evaluated against state of the art. To obtain in-
sight into how the response curves of the data-driven re-
gressor depend on the embedded message length and im-
age content, in Section “MLE of payload size” we study
the response curves of a maximum likelihood estimator of
payload size derived for the MiPOD model of the cover
image. In Section “Explaining trends ..” a rather tight
match is observed between the outputs of this MLE and a
data-driven regressor, which helps us understand the ob-
served trends and behavior of the data-driven regressor.
Moreover, in Section “Analyzing cover bias” we use our
cover model and the MLE to show that the estimator’s
bias on covers is often caused by a small number of “out-
lier pixels” in the cover image. This inspired us to verify
the existence of such “influential pixels” for the data-driven
detector via attribution maps. To this end, we work with
a deep learning detector trained on an artificial version of
our dataset containing natural-looking images that follow
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our cover model. The paper is concluded in the last Section
“Conclusions.”

Notation

In this section, we introduce basic notational conven-
tions. Vectors and matrices will be typed in boldface.
Their elements will be denoted with the corresponding non-
boldface letter. Gaussian distribution with mean p and
covariance X is A(u,X). The ternary entropy function is
Hs(z) = —2zlogz — (1 — 2z)log(1l — 2z). In this paper, we
work solely with 8-bit grayscale images with pixels from
the set {0,...,255} £ 7.

The following abbreviations are used throughout this
paper: DLR for deep learning regressor, SVR for support
vector regressor, RC for the response curve of a quantita-
tive detector, CNN for convolutional neural network, LSB
for least significant bit, MLE for maximum likelihood es-
timation, MSE and MAE for the mean square (absolute)
error, and TTA for test time augmentation.

We strictly use the symbols ¢ € IM*N and s e
for cover and stego images with n = M x N pixels, re-
spectively, while x and y, both from RM*N , are reserved
for model representation of images (their noise residuals).
Data-driven detectors will be trained and tested on exam-
ples of ¢ and s while the MLE will work with x and y.

IMXN

Detector response curves

This section introduces the key concept studied in this
paper, which is the detector response curve (RC). It is de-
fined as the output of a quantitative detector as a function
of payload size for a given cover image and embedding tech-
nique. We will be interested in the trends exhibited by RCs
based on the content of the cover image.

Given a cover image with n pixels ¢ = {¢;}iq, ¢; €T,
its stego version after embedding relative payload a bpp,
s(a), is a random variable with the same domain. In par-
ticular, for a ternary embedding scheme with symmetric
costs p = {p;} that embeds at the rate-distortion bound
(ignoring the values on the boundary of the dynamic range
7), si(a) = ¢; +m;, with the stego signal PMF

Pni=-1)=P(m; =1) =5
P(n; =0) =1-28;, (1)

where

6*)\/)1'

ﬂi()\): m»

(2)

with the Lagrange multiplier A > 0 determined from the
payload constraint

an=3"Hy(B:(V). 3)
=1

When presenting the detector with stego images ob-
tained with different stego keys k, the detector’s output
d(s(a;k)) is a random variable due to the within-image er-
ror, which is well modeled with a Gaussian distribution [4].
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Figure 1.  An example of a typical response curve o(c;c) (black solid
line). The shading shows the standard deviation of the response across
stego images of the same length. Initially, the detector does not respond to
embedding because content-adaptive steganography makes changes in areas
of the image where they are hard to detect. With increased payload, the
detector starts responding, and it eventually outputs a good estimate of the
payload size. We quantify this with the concept of reactive and estimable

payloads ctren and aest. See the text for a formal definition.

The expectation
o(a;e) = Eg[d(s(a; k)] (4)

is called the detector’s response curve for cover image c.
The estimator bias is defined as

b(a;c) = p(a;¢) —a,0 < @ < amax, (5)

where amax < logy 3 is the maximal relative payload em-
beddable in the image. Note that amax may be smaller
than logy 3 because many steganographic schemes for ex-
ample avoid making changes to saturated pixels. To declut-
ter the notation, sometimes we will omit the parameter in
the RC and write simply o(a) as it should be clear from
the context that the RC is for a specific cover.

The reader is advised to follow Figure 1, which shows
a “typical” RC of a quantitative steganalyzer. The value
b(0;¢) = p(0;c) is called the between-image error [4]. In
this paper, we call it the cover bias instead for the fol-
lowing reason. For non-adaptive embedding schemes, the
estimator bias b(a;c) = o(e;c) — « is approximately inde-
pendent of a, b(a;c) =b(0;c). As will be seen below, for
content-adaptive embedding the bias is far from being con-
stant. This is because for small payloads the pixels that
are likely to be modified by embedding are constrained
to such areas of the cover image where detection is the
most difficult. This is why initially the RC appears “flat.”
When the payload becomes sufficiently large, the embed-
ding changes start “spilling” into detectable regions of the
image and the detector output starts to increase. With
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Figure 2. Scatter plots showing the estimated payload versus the true
payload for the Bucket Estimator (top) and DLR (bottom) for S-UNIWARD
on the TST set.

enough embedding changes in detectable regions, the out-
put of the detector grows with a slope approximately equal
to 1. This behavior motivated us to define the following
critical payloads to numerically characterize RCs.

Reactive payload area is the smallest payload o for
which p(a) is “different” than the cover bias p(0):

(6)

area(Trea) = min {afo(a;¢) — 0(0;€) > Trea}

where Trea > 0 is a suitably chosen fixed threshold.

Estimable payload is defined as the smallest payload
for which the RC starts showing a unit slope: o(a+ Aa) ~
o(a) + Aca. The definition of estimable payload mimics the
definition of reactive payload but with respect to the line
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with slope 1 instead of a line parallel to the x axis:
Qest (Test) = mgx{oz‘ | lo(ase) —al—

|o(umaci©) — amax] [ > st | (7)
where amax is the maximal embeddable payload in cover
c.

Note that both critical payloads are essentially defined
by the payloads for which the RC starts “peeling away”
from a line. It is the horizontal line with intercept equal to
the cover bias for the reactive payload and the diagonal line
with slope 1 for the estimable payload. Also note that we
allow the estimable payload to not match the true payload
(we allow a bias) as long as the detector response starts
increasing linearly with payload with slope 1.

In general, the smaller the reactive and estimable pay-
loads are the better the quantitative detector is. Thus,
both concepts offer an additional way of benchmarking
quantitative detectors.

Quantitative steganalyzers

In this section, we describe the quantitative detector
that will be used for our study and briefly benchmark it
against the previously proposed Bucket Estimator.

The main bulk of experiments were conducted on a
dataset of 20,000 images, which is the union of the BOSS-
Base 1.01 [1] and BOWS2 [2], each with 10,000 grayscale
images resized to 256 x 256 pixels with imresize in Mat-
lab using default parameters. We refer to this merged
dataset as BB for brevity. This dataset is a popular
choice for designing detectors with deep learning because
small images are more suitable for training deep architec-
tures [34, 5, 35, 36, 33, 38].

The BB was split into three disjoint sets for train-
ing deep learning quantitative steganalyzers that will be
analyzed in this paper. The training set (TRN) contains
all 10,000 BOWS2 images along with 7,000 randomly se-
lected images from BOSSbase. The remaining images from
BOSSbase were randomly partitioned to create the valida-
tion set (VAL) and the testing set (TST) with 1,000 and
2,000 images, respectively.

Deep learning detector (DLR)

In this paper, we describe a novel computationally ef-
ficient quantitative detector built as an SRNet [5] trained
in an end-to-end fashion to regress the relative payload ex-
pressed in bits per pixel (bpp). We abbreviate this detector
as DLR, Deep Learning Regressor. The decision to work
with the DLR rather than the previously proposed Bucket
Estimator proposed by Chen et al. [8] was made to avoid
dealing with the excessive complexity and GPU memory
requirements of the Bucket Estimator when regressing pay-
loads in the full payload range [0,1.5] bpp. Since, to the
best knowledge of the authors, the DLR has not been pre-
viously studied, in Section “Experimental benchmark” we
provide a brief comparison with the Bucket Estimator on
S-UNIWARD to show that the DLR is indeed the better
detector.
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To prepare the stego images for training the DLR, each
image from BB TRN and VAL set was embedded 10 times
with payloads uniformly and randomly pre-sampled from
the range [0.01, min(amax,1.5)] bpp, where amax is the
maximal payload for each image. During training, the net-
work is exposed to all 10 payloads every epoch. Images
from the testing set were embedded 50 times from the same
range.

Bucket estimator

The Bucket Estimator was built as described in [§]
with a few differences, which we point out. First, the
TRN set is randomly split into two disjoint subsets, which
we call TRN1 and TRN2, each with 14,000 and 3,000
images. Then, on TRN1 we trained 15 binary detec-
tors (SRNets) to distinguish the class of cover images
and stego images embedded with a fixed relative payload
ae A={0.1,0.2,...,1.5} bpp. Note that we use the VAL
set for evaluating binary detectors. The SRNet detectors
are used as “feature extractors” that map an input im-
age to a 512-dimensional vector — the output of the last
convolutional layer before the IP layer. The actual bucket
estimator was trained as a multi-layered perceptron (MLP)
on the union of these features on TRN2. For MLP train-
ing, each image from TRN2 is embedded 10 times in the
same way as for DLR. Since the concatenated features have
a dimensionality of d =512 x 15 = 7,680, to keep the num-
ber of parameters within the memory of our GPUs (and in
contrast to [8]), we used a MLP with three hidden layers
with 7,680, 960, and 120 nodes. The first two hidden lay-
ers are also followed by batch normalization and the ReLU
activation function. The weight decay parameter was set
to 1 to prevent the MLP from overfitting.

All deep learning detectors were initialized with JIN-
SRNet [7], which is the SRNet [5] pre-trained on Im-
ageNet [10] and its stego version embedded with J-
UNIWARD [17] with payloads uniformly randomly se-
lected from the interval [0.4, 0.6] bpnzac. The networks
were then refined for a given steganalysis task via transfer
learning as described in [7] with cross-entropy loss for bi-
nary steganalysis and Lg loss for quantitative steganalysis
(payload regression or DLR).

Experimental benchmark

We now benchmark the performance of the DLR
against the Bucket Estimator on S-UNIWARD. For this
purpose, we use the standard mean square error (MSE)
and mean absolute error (MAE) across all images in the
TST set as well as the newly introduced critical payloads.
Figure 2 shows the scatter plots of the estimated payload
vs. true payload for the Bucket Estimator (top) and for
DLR (bottom). Table 1 shows the MSE, MAE, and av-
erage reactive and estimable payloads across the T'ST set.
The DLR outperforms the Bucket Estimator with all four
performance measures. We experimented with a range of
different choices for the thresholds Tyrea and 7est and even-
tually settled on 7rea = 0.05 and 7est = 0.03, which seemed
to visually capture the concept of these two critical pay-
loads the best.

3364

Regressor ~ MSE MAE  @rea(0.05)  @est(0.03)
Bucket 0.0150 0.0814 0.216 1.115
DLR 0.0144 0.0741 0.191 0.754

Table 1. Comparison between the Bucket Estimator and DLR
through the MSE and MAE, and the reactive and estimable pay-
loads averaged over the TST set for S-UNIWARD. Note that a
smaller reactive (estimable) payload implies better performance.

Additionally, in Figure 3 we plot the histogram of reac-
tive and estimable payloads for the DLR and for the Bucket
Estimator. In agreement with the evidence provided by the
conventional performance measures, the MSE and MAE
(Table 1), the histograms confirm that DLR’s performance
improves upon the Bucket Estimator. We notice that both
estimators are rather close in terms of starting to respond
to embedding, drea, but the DLR exhibits a linear RC with
slope 1 much sooner than the Bucket Estimator.

MLE of payload size

To better understand the trends observed in RCs
across images, we use the MiPOD image model [28] and
study the RCs of a MLE of the payload size within
this model. In MiPOD, cover pixels are modeled as
independent Gaussian variables, ¢ ~ N (u,¥) with ¥ =
diag(c?,...,02). The mean g is set to zero in MiPOD
because it has no effect on the stego algorithm as the em-
bedding “costs” (Fisher information) only depend on the
variance. The variance estimator was designed to min-
imize MiPOD’s empirical detectability of steganography
(see Section V in [28]). In this section, the mean has no
effect on the MLE because it is known, hence we also make
the assumption that g = 0. Finally, we wish to emphasize
that the MLE described here is for a general ternary em-
bedding algorithm and not necessarily for MiPOD itself.
MiPOD’s variance estimator is merely used for estimating
the cover image model.

Given a steganographic scheme with symmetric costs
pi computed from the cover image ¢ and ignoring the effect
of quantization, the stego image pixels y = {y;} follow a
Gaussian mixture

yi ~ BN (=1,00) + BN (1,07) +(1-28,)N(0,07), (8)

where the pixel change rates §; (2) satisfy the payload
constraint (3).

Note that the stego image y is the result of a dou-
bly stochastic process. First, the cover x is sampled from
N(0,%) and then modified to y = x+n, where 7 is the
stego signal (1). With this model, one can estimate the
message length using the maximum likelihood estimator

n

aMLE) (x,y,0) = arg maleog f(yla), )
i=1

where f(y|a) is the likelihood (8) of observing the stego
image residuals (8) when payload of length « is embedded
in x. In practice, for better numerical stability we first
estimate the Lagrange multiplier A using MLE, which is
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Figure 3. Histogram of reactive and estimable payloads for S-UNIWARD
across the TST set. The DLR (blue) consistently starts reacting and esti-

mating for smaller payloads than the Bucket Estimator (coral).

then substituted into (2) and (3) to obtain the estimate of
the relative payload « for a given stego realization y.

To study the RC for a given cover image ¢ from BB,
we first compute its embedding costs p; and then estimate
the variances (TZ-Z using MiPOD’s variance estimator. Once
the costs and the model parameters are estimated, we com-
pute one realization of the cover x; ~ N(0, 01»2), i=1,...,n.
This is the equivalent of a “cover image” within the Mi-
POD model. Then, for each payload o we add the stego
signal ; (o) € {—1,0,1}, y; (o) = z; +m; (), to simulate em-
bedding. This is repeated Njp times (p as in payload) for
the same z; and « but a different stego signal n(«a) in or-
der to estimate the expectation of the MLE outputs over
embeddings

pMLE)( aMLE)

a;X):Ey[ X,y,Oé)], (10)

which is the MLE’s RC for a specific cover realization x.
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Explaining trends in DLR’s RCs

Equipped with an image model and a MLE of the pay-
load, our goal is to explain the trends observed in RCs of
the DLR, including the cover bias.

Figure 5 shows the RCs for one BB image shown on
the right. The middle figure contains eight RCs o(«;x) for
eight cover realizations x derived from a MiPOD model of
the same cover image c. Note that the cover bias varies
significantly across cover realizations. To see if the DLR
exhibits a similar behavior, we would need multiple “ac-
quisitions” of the cover image. However, for most datasets
there is only one realization of the cover available. Instead,
we feed the DLR with eight different versions of the cover
image (and its stego versions) obtained by rotating it by
integer multiples of 90 degrees and mirroring (the D4 group
of augmentations). While this is technically different than
supplying actual acquisitions, it is at least similar in spirit.
As Figure 5 left shows, DLR’s RCs also exhibit a large sta-
tistical spread of the cover bias as the MLE for the image
model. In the next section, we argue that this statistical
spread is due to a small number of outlier pixels in the
cover.

Given that the cover bias is quite sensitive to a few
outlier pixels, to obtain a more meaningful comparison
between the RCs of the DLR and the MLE, we average
the RCs across all eight cover realizations (D4 transforma-
tions).l In Figure 5, we show examples of such averaged
RCs for 12 randomly selected images from BB. Note that
the MLE RCs seem to match the trends exhibited by the
DLR in terms of the initial “flat” region and the region
where the regressor begins outputting a reasonably accu-
rate estimate of the payload size.

Analyzing cover bias

Intrigued by the observed sensitivity of the cover bias
w.r.t. cover realizations (Figure 4), in this section we ana-
lyze this phenomenon for the MLE within our model and
then contrast our findings on experiments with the DLR.
In summary, the cover bias is due to a small number of out-
lier pixels in the cover image that the regressors mistaken
for a sign of embedding.

Influential pixels (MLE)

Given a cover image X, ignoring the constant term and
the term that only depends on x but not on payload (\),
the log likelihood for the mixture (8) is

TN =3 i), (1)
i=1

where

(3, A) = In(1 - 28; + Biaf + Bia;) (12)

1 Averaging network outputs over the D4 group at test time,
which is recognized as test time augmentation (TTA), is com-
monly done in machine learning to improve performance (see
Sec. 3.7.2 in [37]).
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Figure 4.  Left: response curves of the DLR across eight D4 transformations for the same image. Middle: Response curves p(c;x) for eight cover realizations

x derived from a MiPOD model of one BB image shown on the right. Note that both detectors show a wide spread of the cover bias.

with 8;(\) (2) and

a;" =exp (—1+2$i> (13)

2
207}

a; =exp <—1_2xi> . (14)

20142

As X goes from A =0 (maximal payload) to A — 400
(zero payload), ¢;’s contribute to f(x|\) to a different de-
gree, depending on a;L, a; , and on J3;, which in turn de-
pend on the exact value of the cover z;, on o0;, and on
the cost p;. For large o;, both a?‘ and a; are likely to
be small, hence the contribution of £(z;) to the log likeli-
hood is not so insignificant. For small® o;, however, one
or both a?‘ and a; can be very large. For a xo; outlier
2k0;—1
outlier x; = 40; for o; = 0.2 leads to a; = e”% ~1808. Such
pixels have the potential to strongly affect the MLE out-
put. As seen in (12), for a pixel to be “influential” we need
to consider the magnitude of the products Bia;r and fB;a;”
or, in other words, the effect of embedding costs. Indeed, a
pixel’s impact may be attenuated by small 3; (large cost).
Thus, we identify candidates for influential pixels based on
their “outlierness” computed from the logarithms of the
products ﬁia;" and SB;a; :

Ty = Koy, £>0,a; = exp( ) For example, a 40

0i(z;) = max{lnﬁiaj,lnﬁia;}
1420 1-2
2012 ’ 2(7142 ’

—lnﬁi—i—max{— (15)

Notice that a small change rate 8; decreases o;(z;). In all
experiments below, we computed 3; for payload 0.5 bpp.
To test how well the outlierness (15) captures a pixel’s
effect on the cover bias, the following experiment was con-
ducted with the MLE. We selected an image that exhibited
a wide range of the cover bias across cover acquisitions x

2MiPOD’s estimator floors the estimated standard deviations
to o; > 0.1.
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(see the response curves in Figure 6 left). Then, we se-
lected one acquisition with a large cover bias and another
one with a very small bias.

For the image with a negligible bias, we carried out
the following insertion experiment. After sorting the resid-
uals by o0;(40;), we replaced k values x; with the largest
0i(40;) with 4o; for k=1,2,... and observed the effect on
the response curves. As Figure 6 middle shows, inserting
only a small number of outlier pixels rapidly increases the
cover bias. In fact, replacing even a single pixel can intro-
duce a noticeable bias. In contrast, inserting 4o outliers
at randomly selected pixels has a much less pronounced
effect (Figure 6 right). This experiment also justifies using
0; (15) as a measure for identifying influential pixels.

For the image with a large bias, we carried out the fol-
lowing complementary deletion experiment to see if remov-
ing pixels with large o; can decrease the cover bias. The
values x; with the k largest o; were replaced with x; =0
while gradually increasing k = 1,2,.... Figure 7 top con-
firms that the cover bias rapidly decreases when deleting
top k influential pixels (pixels with large o;). In contrast,
deleting randomly selected pixels (the figure on the bot-
tom) has no effect on the cover bias.

To confirm that the above case study is a typical case
for images from BB, we executed the deletion and insertion
experiments for all BB images from the testing set. For the
insertion test, we selected 1,174 images with cover bias less
than 0.01 and inserted outlier pixels to increase the bias
to at least 0.2. Our goal was achieved for 81% of images
with the average amount of inserted outlier pixels equal
to 20. For the deletion test, we selected 177 images with
cover bias larger than 0.2. Subsequently, we applied the
deletion procedure to decrease the cover bias below 0.01.
On average, we needed to delete 11 pixels to achieve our
goal across all 177 images.

In summary, we demonstrated that within our model
setup only a small number of influential pixels with large
0; have a major effect on the MLE’s cover bias. In the
next section, we study whether this same phenomenon is
also observed with data-driven detectors (DLR).
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Figure 6. MLE's response curves across acquisitions for one BB image (left), after inserting 4o outliers at pixels with large 0;(40;) (middle), and after

inserting 4o outliers at randomly selected pixels (right).

Influential pixels (DLR)

. e . ) To identify pixels in cover images that most contribute

161 Deletion test (mﬂuentldl)’ MLE to the output of the DLR, we used the Integrated Gradients

T —0 (IG) attribution technique [30]. However, we could not
144 —— 9 find a good base image for the cover for the attribution to

5 work. To resolve this problem and in order to relate the

1.2 10 ) / attribution to a statistical model, we switched to a dataset
1.0 // of artificial but realistic looking images where pixels follow

15 ) a known model but kept the regressor in the form of a

< 0.81 // trained network (DLR).

0.6 The artificial image dataset was prepared in a sim-

— 7 ilar manner as in [6, 18]. BB images were simply de-
0.4 noised and then independent Gaussian noise with unequal
0.2 variances was added to force a known cover model. In

more detail, for each image ¢ from BB, first we computed

0.0 I T I I 1 I T I the pixel variances 0’% using MiPOD'’s variance estimator.

00 02 04 06 0.8 1.0 1.2 14 1.6 Then, the image was denoised using the wavelet denois-

a ing filter [26] with opey, = 10. Rounding the pixel val-

ues to integers, we denote the resulting denoised image

Deletion test (random), MLE with n pixels p(c) € {0,...,255}". After denoising, the

164 . image dynamic range was narrowed to [15,240] to make

T —0 sure the pixel values after noisification fit within the [0,255]

144 —— 9 range with high probability. The pixels in the artificial

5 version of the same image follow a multi-variate Gaus-

1.21 10 sian distribution N'(p(c),3(c)) with a diagonal covariance

1.0 3 =diag (%a%, . %0721). The pixels are finally rounded to

15 integers and clipped to [1,254]. We abbreviate this artifi-

< 0.81 cial version of BB as BB1/2, since the noisification is done
0.6 1 with O'Z'/Q.

For images from BB1/2, there exists a natural base
0.4 image for the IGs — the denoised image . Notice that the
0.2 images from BB1/2 exactly follow the model within which

we study the MLE.
0.0 1

T T T T T T T T T The deletion experiment was executed by replacing
0.0 02 04 06 08 10 12 14 16 pixels with the largest attribution with pixels from the de-
o noised image p. In some images, the cover bias decreased
significantly even after removing only a few pixels. To scale
up this experiment, we selected 388 images from the BB1/2
(top) and randomly selected pixels (bottom) for one BB image. testing set with cover bias larger than 0.3. Figure 8 left

shows the cover bias averaged over all 388 images after

Figure 7. MLE's response curves after deleting pixels with the largest o;
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deleting top k pixels with the largest attribution. In con-
trast, deleting k randomly chosen pixels has no effect on
the cover bias. We verified that pixels with the largest
attribution indeed have large outlierness o; (15) by select-
ing 20 pixels with the largest attribution from each image
(20 x 388 pixels in total) and plotting the histogram of their
outlierness 0;. Figure 8 middle shows that this histogram
has a much thicker right tail when compared to o; of 20
randomly selected pixels from each image.

Next, we studied whether a large positive cover bias
can be introduced by inserting 4o outliers at pixels with
large 0;(40;) (the insertion experiment). To this end, we se-
lected 288 images from BB1/2 with cover bias in the inter-
val [0.01,0.05]. Figure 8 right shows the average cover bias
after replacing k pixels with the largest 0;(40;) when aver-
aged over all 288 images. We observe that the DLR starts
exhibiting a positive bias, which increases when adding
more outlier pixels. In contrast, the cover bias is virtu-
ally unchanged when the pixels were chosen randomly.

Note that in both experiments, it takes more pixels
to alter DLR’s output that for the MLE. This is to be
anticipated since the DLR is a data-driven estimator and
thus is not completely aware of the source model unlike the
MLE. To confirm the effect of influential pixels as identified
by attribution and outlierness o;, we verified that altering
DLR’s output is not easily achieved by modifying randomly
selected pixels.

Conclusions

Quantitative steganography detectors output an es-
timate of the embedded secret message length. Origi-
nally conceived of and analyzed for detection of LSB re-
placement, quantitative detectors can be constructed for
any embedding scheme using machine learning. The esti-
mation error of such detectors for content-adaptive stego
schemes exhibits different properties than for non-adaptive
steganography. The estimator bias strongly depends on the
payload and the distribution of outputs no longer satisfies
the shift hypothesis. This is because content-adaptive em-
bedding preferably modifies pixels where the embedding
changes are the hardest to detect. The detector output as
a function of payload for a fixed cover image thus naturally
strongly depends on content.

In this paper, we study this dependence both exper-
imentally for a deep learning payload regressor and theo-
retically from a model of the cover image and a maximum
likelihood estimator. The MLE exhibits trends w.r.t. pay-
load that remarkably closely match the trends observed for
payload regressors built with deep learning, which allows
us to better understand the estimator error, and the cover
bias in particular, as a function of true payload. The MLE
reveals that a large positive cover bias is often due to only
a small number of “outlier” cover pixels that the estima-
tor mistakens for evidence of embedding. The same kind of
outlier pixel values affects the deep learning regressor. This
was shown on an artificial dataset by analyzing pixels with
the largest attributions. Similarly, we demonstrated that
an image with a very small cover bias can be perturbed to
exhibit a large cover bias by changing only a small number
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of carefully selected pixels. This effect was first established
for the MLE and then also for a deep learning detector.

Additionally, we introduced two new concepts for
benchmarking quantitative detectors, the reactive and es-
timable payloads, which both depend on cover image con-
tent. These quantities join global error measures, such as
MSE and MAE, for comparing quantitative detectors in
practice.

Future work will be directed towards analyzing quan-
titative detectors in the JPEG domain. Moreover, we in-
tend to generalize the concept of influential cover pixels to
binary detectors of steganography.
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