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Abstract
Video DeepFakes are fake media created with Deep Learn-

ing (DL) that manipulate a person’s expression or identity. Most
current DeepFake detection methods analyze each frame inde-
pendently, ignoring inconsistencies and unnatural movements be-
tween frames. Some newer methods employ optical flow mod-
els to capture this temporal aspect, but they are computation-
ally expensive. In contrast, we propose using the related but of-
ten ignored Motion Vectors (MVs) and Information Masks (IMs)
from the H.264 video codec, to detect temporal inconsistencies in
DeepFakes. Our experiments show that this approach is effective
and has minimal computational costs, compared with per-frame
RGB-only methods. This could lead to new, real-time temporally-
aware DeepFake detection methods for video calls and streaming.

Introduction
Ever since their emergence, DeepFakes, or more specifically

Deep Learning (DL)-based fake media with manipulated facial
identity and expression, have brought serious security and pri-
vacy concerns to the public [5, 43]. Whilst they offer advan-
tages to photo and video editing, they also have significant down-
sides, including identity abuse and the spreading of misinforma-
tion. Ranging from defamation and political misuse to video-call
scams and pornography, these issues have become a major cause
for concern in our society [14]; even more so as facial identity
is a determining factor for person recognition, both in the human
thought process and in machine algorithms. [17]. Given their im-
portance in our social interactions [16], a simple modification of
facial expressions can have profound effects in how a person is
perceived.

Therefore, to combat DeepFake videos, various research
groups, companies and organizations have launched multiple
campaigns to raise public awareness of these issues [2, 6]. These
initiatives have notably accelerated research on DeepFake coun-
termeasures, demonstrating significant improvements in accuracy,
efficiency, and generalizability [13, 34, 33, 27, 36, 47, 32, 11, 12,
1, 4, 9]. However, despite these achievements, most contempo-
rary DeepFake detection methods exhibit two key limitations: the
omission of temporal video information and insufficient general-
izability [48].

With the fast-paced evolution of DeepFake generation mod-
els, it is necessary for DeepFake detection algorithms to be more
robust to these unknown manipulations, as measured by cross-
forgery accuracy. Current such attempts at improving gener-
alizability focus mostly on finding new fake cues that are as
algorithm-independent as possible, such as detecting heartbeat
rhythms [32, 11, 12] or blending boundaries [27]. However, these
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Figure 1. Two continuous video frames in the FaceForensics++ dataset,

with their corresponding optical flow and H.264 motion vectors, with respect

to the precursory frame of each frame. The information masks indicate the

availability of motion vectors at a spatial location. (1) and (2) express the

color visualization of two dimensional motion information into RGB space.

Motion vectors show similar motion as optical flow but are coarser and nois-

ier. (Best viewed on a screen when zoomed in)

come with their own restrictions of needing a specific quality of
videos or not having the video fully generated.

Handling temporal information poses its own specific chal-
lenges; a typical DeepFake detection pipeline will sample mul-
tiple frames from a video, predict per-frame fake probabilities,
and then heuristically aggregate these probabilities into an over-
all fake video probability. This method, however, fails to account
for the inherent temporal consistency stemming from real-world
constraints, such as stable facial features, unchanged eye colors,
and naturally paced blinking. One common way of capturing this
temporal information is to use the motion information in videos,
commonly represented as Optical Flow (OF) [9]. However, one
issue is that optical flow estimation requires additional computa-
tional resources, in a sequential manner, which poses a potential
efficiency bottleneck. This is especially the case considering the
increasingly growing prevalence of DeepFakes in live streaming
and online video platforms.

Based on the two above-mentioned limitations, this paper
proposes the use of H.264 motion vectors as a method for mo-
tion approximation in DeepFake detection: On one hand, H.264
motion vectors offer new and unique fake artifacts and MV-based
models are shown to be more generalizable than per-frame RGB-
only methods. On the other hand, we do not need to estimate
motion vectors as in optical flow-based methods, which is a ben-
efit provided by the widespread adoption of the H.264 codec. In
research on using MV for segmentation [38], the motion approx-
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imation capabilities of MVs and OF are compared. They suggest
that MVs can provide a good estimate for optical flow, except
for small noise, which can for example stem from imperceptible
variations in luminosity. In those cases, MVs might reference dif-
ferent patches, similar in luminosity and color, that are contrary
to the optical flow, or generally just plain noisy. It is exactly these
temporal inconsistencies, we hypothesize, that might present a
challenge for generative DeepFake methods, and which we can
exploit as an auxiliary input for detection.

To keep model performance high on top of keeping computa-
tional costs low, we propose a classification model based on Mo-
bileNet [21, 20]. To demonstrate the effectiveness of our frame-
work, we conduct rigorous experiments on the FaceForensics++
dataset [33], which consists of several different types of Deep-
Fake generated content. In these experiments, and compared with
our optical flow baseline classifier, our motion vector based model
achieves a relative improvement of ∼14% in accuracy. We sum-
marize our findings with the following contributions:

• We propose a novel DeepFake detection framework that
takes into account temporal transformations and artifacts,
outperforming state-of-the-art optical flow based models.

• We reach real-time data extraction efficiencies by using
readily available H.264 motion vectors as motion approxi-
mation.

• We demonstrate that our proposed method achieves higher
generalization capabilities than models based solely on
RGB input, and rival combined RGB and optical flow based
models.

Related work
DeepFakes Detection. Based on whether they use the inter-

frame information, we categorize DeepFakes detection algorithms
into two types: image-level and temporally-aware. Image-level
detections exploit intra-frame information, such as forensics fea-
tures [13], XceptionNet features [34, 33], and blending bound-
ary [27, 36]. However, image-level algorithms fail to use temporal
cues in videos, such as cross-frame inconsistency [47], heartbeat
rhythms [32, 11, 12], phoneme-viseme mismatching [1], and un-
natural movement [4, 9].

Temporally-aware DeepFake Detection. To exploit tempo-
ral information, researchers proposed and adapted deep networks
that can process multiple frames from the computer vision com-
munity, such as 3DCNNs [48], spatiotemporal transformers [47],
recurrent networks [19], and LSTMs [3]. Comparatively, instead
of feeding all frames as concatenated input to the same network,
research by Simonyan and Zisserman claims there is an advan-
tage in using two-stream networks. These networks that have two
branches for encoding inputs, feed in pre-extracted motion infor-
mation, i.e. optical flow, in a separate branch from the RGB input,
and have for example been found to help with action classifica-
tion [37]. Optical flows, in this case, describe object motion, and
we consider it as one of the most general forms of motion repre-
sentation for DeepFake detection [4, 9].

One issue that might however hinder the use of optical flow
for DeepFake detection is the computational cost of optical flow
estimation. Despite the efforts that have been made to speed up
optical flow estimation to near real-time or real-time1 [25, 39], the

1https://developer.nvidia.com/opticalflow-sdk

computational costs in DeepFake detection are still quite large, as
OF has to be calculated for every single frame of a video. There-
fore it is beneficial to further reduce the resource usage. In this
paper, instead of trying to speed up optical flow estimation, we
use the almost free motion vectors in the H.264 video codec as an
approximation to the optical flow for DeepFakes detection.

Motion vectors as motion approximation. H.264 uses mo-
tion vectors to exploit temporal redundancy in video frames for
compression purposes. Motion vectors bear similarity to the op-
tical flow, in that they are both two-dimensional data describing
pixel or patch level motion across frames. This similarity and the
motion approximation relation has been used for a long time, for
example in video object detection, researchers use motion vector
to propagate object detection result of key frames [45]. Motion
vectors have also been used to represent a compressed version of
videos, that can be used as input directly [44], reducing the data
size by up to two orders of magnitude. In our case, we use the
motion itself as a discriminative feature for DeepFake detection,
by similarly making use of the compressed temporal information.

Preliminaries and Methodology
In this Section, we first briefly introduce optical flow, and

motion vectors. After that, we discuss our data processing meth-
ods in Section, as well as the classifier. The whole detection
pipeline is illustrated in Fig. 2.

Optical flow
Optical flows represent the projection of every 3D point’s

trace to the image plane. The motion information they provide
is very helpful for other computer vision tasks, such as detecting
and tracking objects [35], and visual odometry [29]. However,
extracting optical flow from a video stream is one of computer
vision’s unsolved tasks, due to its ill-posed nature. Examples in-
clude having to deal with occlusion of objects, non-rigid move-
ment or even blurry or noisy images.

Over time there have been several proposed solutions to opti-
cal flow estimation, for example, nowadays classical optical flow
estimations algorithms solve the ill-posed aperture problem by
introducing a smoothness prior, such as the wildly used optical
flow estimation algorithm TV-L1 [31, 46]. Researchers also em-
ploy more recent deep learning technology to exploit learnable
and generalizable priors, achieving state-of-the-art performance
on multiple optical flow estimation datasets such as Sintel [8] and
KITTI 2015 [28]. Therefore, for a fair comparison with our meth-
ods, we use the RAFT model which has a top score on both of
these datasets, as our optical flow baseline [39].

H.264 motion vectors
Motion Vectors (MVs) are part of the H.2642 video compres-

sion scheme that exploits temporal and spatial redundancy for a
better compression rate. Unlike optical flow which gives a move-
ment prediction for each pixel, motion vectors operate on macro-
blocks, consisting of 4x4, 8x8 and 16x16 pixel blocks, allowing
for mixed sizes such as 4x8 and 16x8.

To fully understand the computational advantage of using
encoded MVs, we shortly recap their encoding and decoding pro-

2https://www.itu.int/rec/T-REC-H.264-202108-I/
en
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Figure 2. Proposed DeepFake detection pipeline. The input to the processing set-up is an H.264 encoded video-file or stream. The file or stream are then

further processed by selecting a subset of the RGB-frames and cropping the face via a face-detection network. During the decoding process, the motion vectors

and a mask of the I-macroblocks are taken directly from the decoder, cropped to the bounding box and used as input to either the standalone MobileNet, or

our Two-Stream network. The final inputs to the networks vary depending on the transformations performed on the motion vectors and the network used. For

example we can use temporal slices of varying duration, here multiple frames, alone, with RGB, and with the I-macroblock mask. Information masks are omitted

for simplicity. (Best viewed on a screen when zoomed in)

cess. There exist three types of frames in the H.264 format: Intra-
coded (I), Predicted (P), Bi-directionally predicted (B). Of the
three, the I-frames do not interest us, as they contain no tempo-
ral information and are fully intra-coded. The P- and B-frames
both reference other frames for their encoding and decoding, with
the difference being that P-frames reference only past frames and
B-frames reference past and future frames. Both are however lim-
ited to a maximal distance of 16 frames from the current frame.
Therefore, we can gain temporal information, here MVs, from P-
and B-frames.

In P- and B-frames, MVs are not always available for all
macro-blocks. Some macro-blocks are encoded entirely with
intra-frame coding, so called I-Macroblocks. We use a binary
mask to represent these and call the result our Information Mask
(IM), meaning there is no temporal dependency in those mac-
roblocks and all information is new. We do not delve deeper into
how the I-Macroblocks are coded, as only the encoder’s incapa-
bility of encoding the information with MVs interests us.

Another interesting process is how this temporal informa-
tion is encoded and decoded. For this the H.26X compression
schemes follow a motion estimation algorithm: Firstly, MVs be-
tween the to-be-encoded macroblocks are predicted. This can be
done via diverse easy-to-compute mechanisms (e.g. median of
previous, in encoding order, neighbours) and vary depending on
the H.26X version. Then, the actual MV v is calculated for the
respective macroblock and the MV estimation from the previous
step is subtracted from it, leading to the Motion Vector Differ-
ences (MVD). This is then the information that will be sent over
the bitstream and then decoded. The decoding process happens in
reverse, meaning the MVD are recovered, the MVs are estimated,
and v, our target MVs, are calculated by adding the two.

Knowing that the encoding process can be quite computa-
tionally expensive, hardware encoding and decoding solutions
that automatize this process and completely remove the CPU-
load, have become quite prevalent. There are even GPU hard-
ware based decoding acceleration to support this process to allow
for a faster decoding process without extra hardware. From there

we surmise that using a hardware accessory that directly outputs
the motion vectors into memory, it would be quasi-free, in terms
of CPU and GPU processing power, to get the MV information.
However, as a proof of concept, we perform our following experi-
ments using non-hardware-specific video decoding, as the source
of the MVs should have no impact on the results.

Data Preprocessing
Face detector. Following [9, 27], we use a pretrained

MTCNN [49] face detector to detect the face region using the
default parameters. Should multiple faces be detected, only the
biggest one is used. After detecting the four corner points, the
dimension that is smallest is then padded with pixels to obtain a
square bounding box. The face is resized to a 224× 224 resolu-
tion. Finally the resulting frames are normalized using standard-
ization.

Motion Vectors. After processing the faces, we extract the
MVs and IMs in the face region and stack them together. We then
end up utilizing either a four-dimensional input (past-x, past-y,
future-x, future-y) to indicate whether the MV references a past
or future frame and their direction, or a six-dimensional input
(future- and past-referencing IMs) if the IM is employed as an
additional input feature. The MVs are also normalized by stan-
dardization.

There is however a caveat, in that there exist blocks which
have a zero-MV, and blocks for which there is no MV information,
that are also zero. As these non MV-blocks are represented by the
IM we can exclude them from the normalization by referencing
non-zero IM blocks. The MV and IM blocks are then scaled up
to our selected input resolution, by using bi-linear and nearest
neighbour interpolation respectively.

Data Augmentation. We apply several augmentations, to
both reduce overfitting and give us better predictions, inspired
by the DFDC winner [6]. We use the albumentation library [7]
to implement the following augmentations, which are then ap-
plied with a certain probability each (see Figure 3): image com-
pression, gaussian noise and blur, RGB and hue-saturation-value
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(a) Original frame (b) Image compression (c) Gaussian noise

(d) Gaussian blur (e) RGB shift (f) Hue saturation value shift

(g) Fancy PCA (h) Brightness constant (i) Grey-scale

Figure 3. Examples of all the data augmentations performed on RGB data

stemming from FaceForensics++.

shifts, FancyPCA [24], random Brightness Contrast, and grey-
scale transformation.

On top of these augmentations, we apply non-RGB transfor-
mations to the entirety of the image, which include horizontal and
vertical flips, as well as the complete removal of certain regions
of the input, replacing them by patches of zeroes as introduced in
GridMask data augmentation [10]. It is to note that flips and Grid-
Mask augmentations affect MVs differently, as their values need
to be mirrored in vector space on top of flipping their position,
which can be seen in Figure 4.

Classifier
We choose MobileNetV3 [21, 20] as our classifier’s back-

bone. MobileNetV3 is designed using neural architecture search
for low latency and accuracy, aligning with our goal of wanting to
make our pipeline as efficient as possible. To use it for DeepFake
detection, we made several modifications. Firstly, we replace the
classifier output by a fully connected layer to output a scalar in-
dicating the probability of the sample being fake. Secondly, we
change the number of input channels of the first convolution, as
we have varying channel sizes, depending on whether we use
RGB, MVs, or MVs and IMs. The feature extraction part remains
the same. Finally for our two-stream network, we combine the
two different modalities of input, RGB and MVs by concatenat-
ing the last layers of their respective MobileNets, which consist
of a single value. We then get our final prediction by averaging
100 randomly sampled frames of the video.

Loss function. DeepFake detection, as we define it, is a bi-
nary classification, and therefore we use the binary cross entropy
loss.

L = ŷ logy+(1− ŷ) log(1− y), (1)

where ŷ and y denote the predicted and ground-truth label.

Original Horizontal flip Vertical flip GridMask

Figure 4. Examples of the data augmentations performed on motion vectors

and information mask on the FaceForensics++ dataset. In these augmenta-

tions, the motion vector values have to be additionally mirrored on the flip

axis in vector space, on top of flipping their positions. The colors represent

the MVs direction and length in the vector field. (Best viewed on a screen

when zoomed in)

Experiments

Experimental setups
Datasets. Following previous optical flow based DeepFake

detection research [9], we report our findings on the FaceForen-
sics++ [33] dataset, which contains 1,000 YouTube videos that
have been manipulated with different types of DeepFake ma-
nipulations, we use the hq version (C23). More specifically
there are five different types: FaceShifter (FS) [26], FaceSwap
(FSwap) [23], DeepFakes (DF) [5], Face2Face (F2F) [41], and
NeuralTexture (NT) [40]. The diversity of the data, and the pair-
ing of fake and non-fake video of the same source, allow for prac-
tical initial explorations into generalizability of DeepFake detec-
tion methods, which is our goal.

Baselines. To fairly evaluate the performance of our mo-
tion vector based model, we compare it not only with pure RGB
based models, but also with a state-of-the-art optical flow esti-
mator, RAFT [39], based model, using the default parameters
as described in the original paper. We create our own baselines,
as we cannot compare to values from [9], which does not report
all quantitative values. Additionally, RAFT significantly outper-
forms TV-l1, the classical OF algorithm they use3. To avoid stor-
ing floating points, which would make for very large file sizes,
we save the estimated optical flows as gray scale images using
lossless jpeg compression as in [37].

Implementation details. We implement our model in Py-
Torch [30] and PyTorch Lightning [15]. The training and exper-
iments are performed on two Nvidia GTX Titan X with 12 GB
of memory and an Intel Xeon E5-2680 v3 @ 2.50GHz CPU. We
use the Adam optimizer [22] and perform a balanced training,
meaning depending on the dataset, the diverse DeepFake gener-
ated contents are sampled equally and sum up to the number of
real samples. The models are trained for eight epochs (until con-
vergence) and the best performing checkpoint on validation loss
is selected.

3http://sintel.is.tue.mpg.de/results
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Figure 5. General evaluation of all our models on all FaceForensics++

DeepFake types. The values represent the accuracies on the respective

testsets. We also examine MV P, which represents the use of only past

frame referencing motion vectors, which would make it more closely matched

to OF methods. P represents the pristine (real) videos themselves. The

values quickly overfit when combined with RGB, and adding auxiliary inputs

only changes the accuracy by fractions of percentages.

DeepFake detection accuracy

To gain an understanding of their general accuracy in Deep-
Fake detection, we evaluate the two-stream models for our
temporally-aware models on the full dataset, and compare it to
the RGB baseline (see Figure 5). The goal being to make the
prediction as accurate as possible.

Once we introduce RGB based models into the mix, we see
an immediate saturation in accuracy for the models at around
96%. Additionally, the RGB models once again quickly overfit
on the dataset. As we see no changes in general accuracy whether
the model uses RGB or a combination of RGB and motion infor-
mation, we surmise that this is due to the poor quality of current
DeepFake datasets available for research. Meaning the model gets
as high of an accuracy it can get, already by just using RGB input.

To have a fairer evaluation of these combined models, we
stress the importance of introducing better DeepFake detection
datasets that include high quality real-world data.

Cross-forgery generalization ability

A main focus in our experiments is to check whether we can
maintain the generalizability that was initially shown when using
optical flow models, over RGB models [9]. To that end, we train
our models on one type of DeepFake each, and evaluate them on
all different DeepFake types in the dataset, as shown in Figure 6,
Table 3 and Table 4. Firstly, and as we elaborate in Section , we
can see MVs achieving higher accuracies on the specific datasets,
indicating that they might add additional information that is not
included in optical flows. Secondly, for cross-forgery and on av-
erage we see equally strong generalization results for all temporal
augmentations, with OF performing slightly better on some sub-
sets, namely Face2Face and DeepFakes. Confirming previous re-
search, we see purely RGB trained networks perform poorly on
all generalization tasks.

Thereby, we confirm the cross-forgery detection ability of
MV in DeepFake detection and perform a more in-depth compar-
ison of their similarities in subsection .

Classification with only temporal data
In this experiment we want to evaluate the performance of

the classifier when fed with only temporal information. Previous
research [9] reports average values of 82.99% for this task, how-
ever due to the different model, optical flow estimator and test
set, we cannot use these numbers as direct baseline. Therefore
we establish our own baseline by using the state-of-the-art RAFT
optical flow as input and compare it with MVs and IMs concate-
nated with MVs (see Figure 5 and Table 1). We also evaluate
the behavior of models relying solely on MVs stemming from the
past (MV P), which would correspond more closely to the OF.

These results show that using the MVs and IMs only,
strongly outperforms the RAFT based model, even only using
MV Ps. Meaning that, while maybe not all motion is accounted
for by MVs as it is by the OF (see Section ), there is additional
information in MVs and IMs that allows for a better classification
of whether a video is a forgery or not.

Method DF F2F FS FSwap NT
OF 67.90 66.00 64.13 63.30 61.37
MV P 71.97 66.90 72.93 71.00 71.63
MV 77.60 69.50 68.20 77.93 69.53
MV+IM 83.53 76.50 75.30 81.17 74.23

Evaluation of motion vectors, information masks and optical
flow classification accuracies (in %) on the respective Deep-
Fake types they were trained on.

Resolution OF MFLOP MV MFLOP
480×360 138.8 · 103 0.1
640×480 249.3 · 103 0.2
1280×720 783.5 · 103 0.6
1920×1080 1.9 · 106 1.3

Computational costs of creating optical flow based on RAFT
compared with the costs of transforming the MVs into our in-
put format, in MFLOPs.

Run-time analysis
We perform a general upper-bound analysis of the estimated

operation cost of preparing motion vectors, as compared to ob-
taining the optical flow. We do this by firstly calculating the costs
of transforming the motion vectors to fit our input type, assum-
ing the encoded data is provided for free, and comparing it with
RAFT FLOPs obtained by fvcore4 given two input frames. Two
frames as the OF algorithm needs to predict the motion between
the two. The different computational costs are visible in Table 2.

These values represent the difference between a single
frame, therefore one can easily see that the processing time scales
massively with a regular 30 fps stream from a webcam.

Using MVs as motion approximation
Beyond the capabilities of MVs in DeepFake generalization,

we also want to confirm the validity of MVs for motion approx-
imation, which has already been used in prior research [45]. To
evaluate their efficacy in this task, we assessed MVs on the Sintel
optical flow benchmark [8]. Using the clean data split for sim-
plicity, we generated MVs by compressing video frames into a

4https://github.com/facebookresearch/fvcore
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Figure 6. Cross-forgery evaluation of our models on datasets they were not trained for (out-of-distribution) in the FaceForensics++ dataset. The values

represent the accuracies [0.0,1.0] of the models on the respective DeepFake or real (pristine) video test set.

MV+IM DeepFakes Face2Face FaceShifter FaceSwap NeuralTextures all
DeepFakes 83.53% 35.77% 67.23% 36.47% 48.73% 77.57%
Face2Face 25.57% 76.50% 38.23% 22.20% 64.60% 63.93%
FaceShifter 36.10% 30.40% 75.30% 23.83% 47.87% 59.00%
FaceSwap 28.97% 22.57% 34.90% 81.17% 27.20% 64.00%
NeuralTextures 23.43% 43.63% 39.07% 16.23% 74.23% 50.47%
Pristine 86.10% 78.93% 75.63% 83.17% 69.63% 76.03%
all 40.10% 42.10% 51.43% 35.53% 51.70% 63.03%

Cross-forgery accuracy evaluation of our MobileNet network with MV+IM input, trained on a specific DeepFake type (columns).
Evaluated on different forgery types (rows).

RAFT DeepFakes Face2Face FaceShifter FaceSwap NeuralTextures all
DeepFakes 67.90% 49.47% 61.53% 38.43% 56.20% 68.60%
Face2Face 35.83% 66.00% 38.73% 25.97% 51.93% 55.23%
FaceShifter 43.63% 40.00% 64.13% 28.97% 54.80% 52.57%
FaceSwap 35.43% 32.50% 40.63% 63.30% 39.13% 58.77%
NeuralTextures 31.73% 43.47% 47.87% 25.43% 61.37% 49.53%
Pristine 73.33% 66.07% 61.00% 78.00% 59.03% 61.90%
all 41.53% 46.87% 50.60% 34.00% 52.83% 55.13%

Cross-forgery accuracy evaluation of our MobileNet network with RAFT input as baseline, trained on a specific DeepFake type
(columns). Evaluated on different forgery types (rows).
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video via FFmpeg [42] using the H.264 codec. Subsequently, in
line with the optical flow evaluation, we computed the error of the
MVs and tabulated the results in table 5.

We note that our computation only incorporated the P
frames, as I frames lack motion information. We report end-point-
error (EPE) in the table for different resolutions. We compare the
different scales, as the MVs are per definition at a 16 times lower
resolution. While the EPE results show significantly worse results
for MV, they represent valid motion approximations by surpass-
ing some of the current existing OF on OF benchmarks [18]. It
should also be taken into consideration that RAFT was trained on
the Sintel dataset.

DownScale Method EPE ↓

1/1 RAFT 0.603
MVs 2.193

1/4 RAFT 0.611
MVs 2.364

1/16 RAFT 0.652
MVs 2.527

Evaluation of MVs as motion approximation. End-point-error
(EPE) is reported.

Ablation on data augmentation
We run an ablation study on different types of data aug-

mentation, and evaluate their contribution individually in Table 6.
Training without augmentations led to quickly overfitting mod-
els, and adding augmentations generally gave us a performance
and generalization boost.

Augmentations Accuracy
None 93.05%
+ Compression, Noise, Blur 89.34%
+ Color changes 93.62%
+ GridMask 93.51%
+ Flips 94.62%

Augmentations we use and their accuracy on the test
set, when used with our two-stream model consisting of
RGB+MV+IM streams.

Limitations and future work
There are two noteworthy limitations in our method. First,

we propose to replace optical flow with H.264 motion vectors for
DeepFakes detection. Though it reduces computational costs by
estimating the optical flow, we still have two efficiency bottle-
necks in our pipeline: Firstly we still need to run face detection

and classifier inference sequentially. Although we note that it
would be possible to further exploit MVs for face detection and
face tracking to boost prediction speed [45, 44]. Secondly, as
MVs have a 16 times lower resolution than the source video, it
becomes significantly more challenging for the classifier when
the potential subject of forgery does not occupy a larger part of
the frame, or the frame has a low resolution to begin with. A so-
lution we see, would be a compromise: Using MVs as priors to
guide the estimation of optical flow as in [44]. Since the coarse
motion information would is provided by MVs, the optical flow
estimation network can have a lighter design.

While we show these capabilities for the most widely
adapted H.264 codec, they are just as well portable to the newer
codecs, such as H.265, which uses the Coding Tree Unit (CTU)
structure instead of macroblocks, but still retains motion vectors.

Conclusion
In this work we have shown that the information avail-

able through the H.264 encoding-decoding process, can directly
be used to augment existing RGB-only DeepFake detection
pipelines, by including temporal information and artifacts. This
allows for better generalization capabilities, comparable with op-
tical flow based methods. Furthermore the temporal information
is made available at a vastly reduced cost and can remove the need
of running an optical flow network sequentially, before being able
to run the rest of the detection pipeline. Finally, by leveraging
hardware-based solutions for the decoding process, this auxiliary
information becomes quasi-free. This, in turn, would enable real-
time temporal anomaly detection even on consumer-grade hard-
ware, highlighting its potential value in various applications such
as video calls and streaming settings.
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[17] Javier Galbally, Sébastien Marcel, and Julian Fierrez.
“Biometric antispoofing methods: A survey in face recog-
nition”. In: IEEE Access 2 (2014), pp. 1530–1552.

[18] Mathias Gehrig et al. “E-RAFT: Dense Optical Flow from
Event Cameras”. In: International Conference on 3D Vi-
sion (3DV). 2021.
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