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Abstract

The impressive rise of Deep Learning and, more specifi-
cally, the discovery of generative adversarial networks has rev-
olutionised the world of Deepfake. The forgeries are becoming
more and more realistic, and consequently harder to detect. At-
testing whether a video content is authentic is increasingly sen-
sitive. Furthermore, free access to forgery technologies is dra-
matically increasing and very worrying. Numerous methods have
been proposed to detect these deepfakes and it is difficult to know
which detection methods are still accurate regarding the recent
advances. Therefore, an approach for face swapping detection
in videos, based on residual signal analysis is presented in this

paper.
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Introduction

We live in a hyper-connected society, with billions of pieces
of data in transit every day. Unfortunately, these days we can no
longer be sure that this data is reliable and risk-free. This is espe-
cially true when we are talking about videos and images, which
represent a phenomenal amount of data distributed and shared on
a massive scale. The rapid growth in Deep Learning schemes has
led to the emergence of numerous efficient models for generating
false images or videos. As a matter of fact, while these mod-
els are becoming increasingly powerful, they are also becoming
more and more accessible to the public thanks to the internet and
social media. The current risk is that we will eventually no longer
be able to distinguish the real from the fake, hence an inability to
trust these ubiquitous media that are images and videos.

As a consequence, many researchers have studied deepfake
detection, proposing methods mainly based on the use of Deep
Learning models. However, although these models presented as
state-of-the-art models show very good performance, the durabil-
ity of these models and their ability to generalize to any database
are lacking. Nevertheless, the main drawback of these models lies
in the fact that they are black boxes. In fact, it is not really pos-
sible to provide a justification for the pronounced verdicts, which
makes these detectors unusable. It is for all these reasons we have
investigate this highly hot and urgent topic.

Objective(s)

As explained previously, the problem is vast, which is why
we have set ourselves a number of objectives for this work. The
main objective is to develop a model that takes a video as input
and returns a verdict on its authenticity as output. The problem is
therefore characterized as a binary classification problem where

IS&T Infernational Symposium on Electronic |mogin 2024
Media Watermarking, Security, and Forensics 2024

the classes are “authentic” and “forged”. The secondary objec-
tives considered in this study are the following:

* as the model must be able to be used to assist the judicial
system, particular attention must be paid to the explainabil-
ity of the results;

* the model must work without any reference to pronounce its
diagnosis;

* the model must be as robust and generalizable as possible;

» we will focus on the detection of face swapping, and a face
detection mechanism is required in order to target the area
to be studied;

* the model must work for videos of variable length with the
fake part that can appear at any position or moment.

Eventually, the aim is to achieve the best possible trade-off
between efficiency and explainability. The aim is not to come up
with a perfect solution, but rather a proof of concept to determine
whether or not the proposed approach is viable.

Method
State-of-the-art methods

In order to propose a suitable alternative, we took a look at
state-of-the-art deepfake detection methods. As introduced ear-
lier, the best performing state-of-the-art models are those based
on the usage of Deep Learning. In [1], the authors present a deep
architecture split into a feature extractor part and a classifier part.
The feature extractor uses convolutional networks to extract spa-
tial features from images, while a LSTM is used to extract tempo-
ral features. Regarding the classifier, the authors use a likelihood
estimation in order to predict the probability of a video to be real
or fake.

The authors reported very good results with this method.
However, these results remain poorly explainable. As a matter
of fact, it is difficult to give a sense to the verdict since it is based
on features we do not understand. This is the reason why we
looked for an alternative to this feature extraction system. In [2],
the author lists many different methods used in forensics.

Many methods seek to analyze what are known as residual
signals. These are characteristics intrinsic to an image that are
generated during the acquisition process and that can be altered
during the face swapping process. As videos are a succession
of images, we can analyze these characteristics frame by frame.
These signals, which are invisible to the naked eye and look like
a hidden signature, are varied and can be explained, enabling us
to extract features that can be explained and thus, used for predic-
tion.
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The residual errors investigated

In this study we focused on two residual signals in partic-
ular: 1) Image quality assessemnt and 2) frequency spectrum of
images.

Image Quality Assessment

SCORE

Figure 1. Quality features extraction process

The first residual signal we focus on is the assessment of
image quality. Actually, it can be observed that image falsifica-
tion processes tend to reduce the quality of the original images
introducing artifacts. In [3], a detection method based on im-
age quality analysis was presented. This work was then taken
up more recently in [4]. The authors greatly increase the num-
ber of quality measurements carried out and test their regression
model on state-of-the-art databases. The obtained results are con-
vincing, which is why we looked for a method of quality estima-
tion without reference. Among all no-reference Image Quality
assessment schemes, Blind/Referenceless Image Spatial Quality
Evaluator also known as BRISQUE [5] is selected due to its high
correlation with human judgments. Introduced in 2012, the prin-
ciple of this method is schematized in Fig. 1. The main idea is that
the distribution of pixel intensities of natural images differs from
that of distorted images. This difference in distributions is much
more pronounced when we normalize pixel intensities and calcu-
late the distribution over these normalized intensities. Finally, 18
elements are obtained. The image is downsized to half its original
size and the same process is repeated to obtain 18 new numbers
bringing the total to 36 features.

We were then able to compute 37 features relating to image
quality without using a reference (36 features plus the predicted

quality score).
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Figure 2. Frequency spectrum analysis

Frequency spectrum analysis

When processing image, it is common to move from the time
domain to the frequency domain. In [6], the authors investigate
the impact of the deepfake generation process on the frequency
spectrum of images. Their results, illustrated by the Fig. 2,
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clearly indicate that deepfakes have a higher high-frequency in-
tensity than real images and that it is possible to use this property
to detect deepfakes. The origin of this phenomenon lies in the
use of Generative Adversarial Networks (GANs), which are the
keystone of modern deepfake models. These models are forced
to use upsampling to generate images, which introduces more
high frequencies due to interpolation. We therefore reproduced
the pipeline used to obtain the frequency spectrum of the images
and calculated the tenth quartile in order to quantify the increase
in high frequencies.

The Proposed Architecture
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Figure 3. Synopsis of the proposed architecture
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The two-part architecture

As alluded above, there are many other residual signals. We
based our choice on the results obtained, the independence of the
mechanism used for face swapping and the latest published re-
sults. We then implemented our two feature extractors presented
earlier and devised an architecture adapted to combine both expli-
cability and performance.

Based on the classic two-part architecture (extractor and
classifier), we have devised the following architecture, as pre-
sented in Fig. 4:

* The input video is split into frames from which the faces are
extracted.

* These faces are then analysed by our Features Extractors
(FE), which generate a vector of explainable features.

» These explainable features are then concatenated and passed
on to the deep classifier, which gives its verdict at a frame

level.
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Figure 4. The designed deep classifier

IS&T Infernational Symposium on Electronic Imaging 2024
Media Watermarking, Security, and Forensics 2024



The used deep classifier

As part of our experiments, we trained our classifier using a
decreasing learning rate starting at 0.005. The number of epochs
is 100 for a batch size of 1024. The loss used is a Binary Cross
Entropy Logit function. Our classifier is mainly based on a suc-
cession of linear layers and RELU activations. Fig. 4 provides a
detailed description of its characteristics.

More details about the proposed strategy will be given in the
final paper.

Results
Exprimental setup

To evaluation the performance of the proposed method, we
selected four datasets:

1. VidTIMIT dataset [7] which comprises of video and corre-
sponding audio recordings of 43 people, reciting short sen-
tences. This database will serve as real samples.

2. DeepFakeTIMIT dataset [4] which contains
videos where faces are swapped using the open
source GAN-based approach (adapted from
https://github.com/shaoanlu/faceswap-GAN), which,
in turn, was developed from the original autoencoder-based
Deepfake algorithm. A total of 620 total videos with faces
swapped is provided.

3. FF++ dataset [8] consisting of 1000 original video se-
quences that have been manipulated with four auto-
mated face manipulation methods: Deepfakes, Face2Face,
FaceSwap and NeuralTextures. The data has been sourced
from 977 youtube videos and all videos contain a trackable
mostly frontal face without occlusions which enables auto-
mated tampering methods to generate realistic forgeries.

4. Celeb-DF [9] is a large-scale challenging dataset for deep-
fake forensics. It includes 590 original videos collected
from YouTube with subjects of different ages, ethnic groups
and genders, and 5639 corresponding DeepFake videos.

From previously alluded databases, we generate one
database containing 79 395 real and 85 886 fake extracted frames
from

* 300 real videos randomly selected from the VidTIMIT
database,

* 320 fake videos randomly selected from the DeepFake-
TIMIT database,

* 200 real and 600 fake videos both randomly selected from
the FF++ dataset,

* 50 real and 50 fake videos both randomly selected from the
Celeb-DF databse.

These frames were then separated into 4 different sets: 1)
training set (31,627 True frames and 34,826 False frames) , 2) val-
idation set (13,474 True frames and 15,629 False frames), 3) test
set (13,590 True frames and 14,466 False frames) and 4) gener-
alization set (20,694 True frames and 20,905 False frames), used
during the learning and evaluation process of the proposed clas-
sifier model. We isolated the Celeb-DF set in order to test the
generalization capability of the designed classifier. The results
were computed with a 5-fold process.
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Set Acccuracy F1 AUC  Precision Recall

Train 0.96 0.96 0.99 0.97 0.95
Validation 0.82 0.84 0.88 0.83 0.86
Test 0.84 0.85 0.89 0.83 0.87
Generalization 0.49 0.60 0.52 0.50 0.75

Classifier Training and Evaluation results

Performance evaluation
In order to evaluate the performance of the proposed scheme,
five different measures have been used: 1) Accuracy, 2) Recall, 3)
Precision, 4) Fl-score and 5) AUC (Area Under the ROC Curve).
Tp, Ty, Fp, and Fy respectively represents true positive, true
negative, false positive, and false negative The Accuracy is the
fraction of predictions correctly identified by the model, ad is de-
fined as:
Tp + Fy

Accuracy = (1)
Tp+Fp+1Ty+Fy

The Recall is the percentage of positives well predicted by
the model, defined as:
Tp

Recall = 2
T+ Fy 2

The higher it is, the more the Machine Learning model maximizes
the number of True Positives. When recall is high, this means it
won’t miss any positives. However, this gives no indication of its
predictive quality on negatives.
The Precision is the number of positive predictions made
defined as:
Tp

Precision = 3
To+ Fp 3)

The higher the precision, the more the Machine Learning
model minimizes the number of False Positives. When precision
is high, this means that the majority of the model’s positive pre-
dictions are well-predicted positives.

The F1-score is an harmonic mean and provides a relatively
accurate assessment of our model’s performance. It is defined as

Recall.Accuracy
F1- =2x 4
seore Recall + Accuracy “®

The higher the F1 Score, the better the model’s performance.
The AUC computes the area under the ROC curve when plot-
ting the precision versus the recall value. It represents the overall
performance of the model, i.e., the probability that a randomly
chosen positive sample will be ranked higher by the model than
arandomly chosen negative sample. A perfect model would have
an AUC of 1, while a random model would have an AUC of 0.5.

Results

Table 1 displays the obtained results. Whatever the consid-
ered measure, we obtained very good performance both in train-
ing and in validation and testing, although there was a drop in
performance for the latter two, which is symptomatic of Deep
Learning. The results for the generalization base (Celeb-DF) are
much lower, which shows that our model is not yet sufficiently
robust. These results are nevertheless satisfactory since Celeb-DF
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uses the latest deepfakes models, i.e., unseen data, for which the
quality is superior to those used in the three other sets. There is
therefore a significant gap, which may explain this drop.

To face this drawback, the amount of data for the training
process is increased by adding samples that are more difficult to
diagnose from the DFDC database [10].

In order to assess the performance of the proposed strategy
with state-of-the-art approaches is not obvious. Actually the per-
formance assessment of existing methods is usually performed on
different datasets and the used metrics are not common for all pa-
pers.

For example, in [11], Li ef al. presented the performance
of their proposed approach using the AUC value on the FF++
database. It shown an AUC value equal to 0.52. In [11], Ding et
al used the accuracy value obtained from their proposed method,
but on Chicago Face Dataset, that is not the one we used.

To conclude, the performance of our model is very encour-
aging. Furthermore, the proposed scheme can be trained in just
a few minutes (less than 5 minutes on a Dell Laptop SP15 with
a NVIDIA GeForce RTX 4070, 8 Go GDDR6) and is extremely
light.

Conclusion

This work has enabled us to experiment with a hybrid ap-
proach between traditional forensic methods and state-of-the-art
deepfake detection methods based on Deep Learning.

Our architecture is more explainable and therefore viable in
an integration context. What’s more, its good performance with
just 38 features and little data seems to indicate that by digging
deeper in this direction it would be possible to achieve very good
results.

Finally, our architecture also has the advantage of being
lightweight and quick to train and use, which is increasingly rare
with the development of Deep Learning. It also makes it easy
to integrate new feature extraction modules, which guarantees its
durability.

Future works will investigate how new residual signals com-
puted in spatial, frequency and color spaces may help to increase
the performance of the approach.
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