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Abstract
With the advancements made in the field of artificial intel-

ligence (AI) in recent years, it has become more accessible to
create facial forgeries in images and videos. In particular, face
swapping deepfakes allow for convincing manipulations where a
person’s facial texture can be replaced with an arbitrary facial
texture with the help of AI. Since such face swapping manipu-
lations are nowadays commonly used for creating and spread-
ing fake news and impersonation with the aim of defamation and
fraud, it is of great importance to distinguish between authen-
tic and manipulated content. In the past, several methods have
been proposed to detect deepfakes. At the same time, new synthe-
sis methods have also been introduced. In this work, we analyze
whether the current state-of-the-art detection methods can detect
modern deepfake methods that were not part of the training set.
The experiments showed, that while many of the current detection
methods are robust to common post-processing operations, they
most often do not generalize well to unseen data.

Introduction
In recent years, the rapid advancement of deep learn-

ing techniques, particularly Generative Adversarial Networks
(GANs) [1], Variational Auto-encoders (VAEs) [2] and Diffusion
Models [3], has led to the emergence of highly realistic and be-
lievable fabricated content. Among these technologies, deepfakes
stand out as a powerful tool for creating synthetic media that can
deceive the human eye.

The term deepfake is a fusion of the terms deep and fake.
Hereby, deep refers to the application of deep learning, whereas
fake refers to the synthesis and manipulation of media. It en-
compasses various modalities, such as images [4], videos [5], au-
dio [6], and even text [7]. Deepfakes have both positive appli-
cations, such as enhancing creative arts and film production, and
negative implications, including the spread of misleading infor-
mation. Images and videos are frequently shared on the internet
alongside written text to provide additional context and by this
can convey a certain trust to an underlying story of an article or a
social media post.

Face swaps are a specific type of deepfake, where the face
inside an image or video can be exchanged with any desired face
with the help of a neural network. Thus, they are especially at risk
of being utilized with malicious intent. During the Ukraine-War,
deepfakes have been used to produce fake videos showcasing the
presidents of both nations surrendering. Thus, images and videos
shared on social media or by unverified sources should not be
trusted blindly. Further, it shows the need for methods that allow
to verify the authenticity of multimedia.

Over the past years, several approaches to detecting deep-
fakes have been proposed. These can be divided into data-
driven [8, 9, 10] and model-based approaches [11, 12]. While
the former try to extract all the relevant information to distinguish
between authentic and non-authentic content automatically from
given raw input data, the latter aim to take advantage of hand-
crafted features. While these methods are able to achieve a high
accuracy on scientific data sets, they often seem to fail to gen-
eralize well to unseen data in the wild. In Facebook’s Deepfake
Detection Challenge from 2020[8] the best performing approach
was able to achieve 82.56% accuracy on the public test data set,
yet only an accuracy of 65.18% during the evaluation on the pri-
vate test data set. Another challenge is, that many classifiers are
not robust against subtle image post-processing, such as the intro-
duction of random noise or heavy compression.

In this paper, we evaluate a set of model-based and data-
driven state-of-the-art methods to assess, whether they can gen-
eralize to unseen data and are at the same time robust to var-
ious common post-processing operations. For this, we aug-
ment the FaceForensics++ dataset [13] to undergo various post-
processing steps. Moreover, we create a new test dataset contain-
ing videos from current-state-of-the-art one-shot deepfake meth-
ods and deepfake models used for real-time face swaps.

Face Swapping Deepfakes
Introduced in 2017, deepfakes involving face swaps were the

first type of deepfakes to be developed. Although various new
face swapping techniques have been proposed since then, the ar-
chitecture presented in the original implementation is still very
relevant today, as it forms the basis for many popular deepfake
algorithms [5].

It consists of a customized autoencoder architecture that con-
sists of a single encoder network and a set of two decoder net-
works. During model training, the encoder network creates em-
beddings from the input images that contains information on (a)
the identity A present in the authentic footage and (b) the iden-
tity B to be inserted into the target image and video. For each of
the identities, there is an identity-specific decoder network that at-
tempts to reconstruct the facial images based on the embeddings
provided by the encoder network. By swapping the decoder net-
works during inference, a face image with identity A fed into the
decoder trained on identity B leads to the synthesis of an image
with identity B, whereby the facial expression corresponds to that
of the input image. After the synthesis, the generated face texture
is inserted into the target medium. Hereby, facial landmarks [14]
are used to determine the position of the face and its components.
Optionally, color grading and adjustments can be made to the
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mask, which determines which parts of the face texture are to be
transferred, so that the generated face can be better blended into
the target image frame.

By incorporating several optimizations to the trained deep-
fake models, this architecture can also be used in real-time 1, e.g.,
during online meetings. However, one major disadvantage of the
architecture is, that it requires a vast number of images during
training. In general, over 3000–5000 images are required for each
of the identities displayed. These pictures should show the peo-
ple depicted with different facial expressions, in different head
positions and in different lighting conditions. Obtaining such im-
ages may not always be feasible. As such, over the past years,
methods have been proposed that allow generating face swapping
deepfakes using a single image [15]2.

Deepfake Detection
In this paper, we compare various state-of-the-art deep-

fake detection models regarding their robustness against common
post-processing and their generalizability towards unseen data.
For this, we consider a set of model-based and data-driven ap-
proaches. The selection of approaches was based on the availabil-
ity of the source code, the date published, and the objectives (e.g.,
achieving cross-dataset generalizability or robustness).

Model-based Approaches
Model-based approaches take advantage of handcrafted fea-

tures in order to distinguish between authentic and non-authentic
content. These are usually derived from signal processing and
consist of artifacts that are absent, modified or introduced within
the manipulated material due to the deepfake creation process. In
this paper, we focus on a technique analyzing geometric features
derived from facial landmarks as well as a detection method that
takes advantage of biophysical signals.

Improving the Efficiency and Robustness of Deepfakes
Detection through Precise Geometric Features

The paper Improving the Efficiency and Robustness of Deep-
fakes Detection through Precise Geometric Features [11] pro-
poses LRNet, a framework for detecting deepfakes videos using
geometric features. In the past, most deepfakes video detection
techniques analyzed the appearance of the displayed faces using
data-driven models. However, these classification models can be-
come subject to adversarial attacks which result in forced mis-
classifications [16]. By this, the detection can be bypassed. The
paper addresses this by proposing a model-based approach taking
advantage of the analysis of the temporal consistency of geomet-
ric features. In particular, it aims at exposing manipulated faces
by detecting abnormal facial movement patterns and time discon-
tinuities.

The framework consists of three components. The face pre-
processing module is used to detect faces within a video, extract
their facial landmarks, and to align the found faces. The authors
identified, that the facial landmarks are prone to jitter in consec-
utive frames, even in cases where no head movement is involved.
Thus, the calibration module is used to refine the found facial
landmarks. By feeding the computed optical flows into a Kalman

1DeepFaceLive: https://github.com/iperov/DeepFaceLive
2FaceFusion: https://github.com/facefusion/facefusion

filter [17], the landmark coordinates can be denoised. The cali-
brated facial features and their difference along successive images
are then fed into a two-stream recurrent neural network (RNN).
The model is then trained to distinguish between authentic and
forged faces.

In experiments, the model achieved 0.999 AUC on the Face-
Forensics++ dataset [13]. In addition, it also performed well on
videos from an unseen dataset without retraining. However, the
model’s performance declined on videos that were part of the
Celeb-DF dataset [18] with an AUC score of 0.569. However,
it showed overall robustness towards noise and strong video com-
pression.

DeepFakesON-Phys: DeepFakes Detection based on
Heart Rate Estimation

The paper DeepFakesON-Phys: DeepFakes Detection based
on Heart Rate Estimation [12] introduces a deepfake detection
framework based on physiological measurement. As face swaps
are generated for each frame separately, they are prone to artifacts
with regard to temporal consistency. In this case, the paper lever-
ages from remote photoplethysmography (rPPG) to analyze video
sequences for subtle color changes in the human skin, revealing
the presence of human blood under the tissues. Faces featuring
irregular blood flow are thereby classified as fake.

DeepFakesON-Phys employs a convolutional attention net-
work (CAN) to extract spatial and temporal information from
video frames. By this, the model not only captures motion infor-
mation, but also information about the facial appearance. These
are then used to determine the overall blood flow and whether the
video containing faces has been subject to a manipulation.

The model was able to achieve AUC scores of 0.98 and be-
yond on the Celeb-DF [18] and DFDC datasets [19], and thereby
outperformed other methods tested.

Data-driven Approaches
Unlike model-based approaches, data-driven models can de-

rive all the relevant information required for detecting deepfakes
automatically during model training. They usually outperform
model-based approaches, but often suffer from various issues, in-
cluding generalizability, robustness and absence of explainability.

DeepFake Detection Challenge (DFDC) Solution
In 2020, Facebook held a deepfake detection competition [8]

which was based on the data of the DFDC dataset [19]. In the
competition, the solution proposed by Selim Seferbekov was able
to place first. The proposed solution conducts a frame-per-frame
detection that is based on the EfficientNet-B7 [20] network archi-
tecture that has been fine-tuned for the classification task. During
training, a variety of augmentations on the data were applied, in-
cluding cutouts, the introduction of blur and noise. In addition, an
ensemble classifier consisting of seven weak models was used to
further enhance the detection performance.

AltFreezing for More General Video Face Forgery Detec-
tion

Wang et al. [9] propose architectural modifications to data-
driven detection methods so that they can generalize better to un-
seen data. Based on a 3D-convolutional neural network, which
not only assesses spatial but also temporal information, they in-
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troduce a method called AltFreezing. It is used to ensure that
more artifacts are considered in the classification process, thereby
achieving higher generalizability. Weights are divided into two
groups, which are alternately frozen during the training process.
To focus the learning process on both, spatial and temporal fea-
tures, the groups are built in such a way that those usually con-
cerned about spatial-related information are grouped together,
whereas those concerning temporal feature build another group.
Since data augmentation are usually only applied on a per-frame
basis, they solely affect the spatial-related features. Thus, the au-
thors present a selection of data augmentation techniques on video
level so that temporal feature extraction can be enhanced.

In their experiments, their model was able to achieve AUC
scores between 0.895 to 0.993 on various datasets including
Celeb-DF v2 [18] and Facebook’s DFDC dataset [8], even when
solely trained on data of the FaceForensics++ dataset [13]. Due
to their data augmentation techniques, their model was able to be
more robust against post-processing operations than the related
work tested against during evaluation.

Detecting Deepfakes with Self-Blended Images
The paper Detecting Deepfakes with Self-Blended Im-

ages [10] presents a novel synthetic training data called self-
blended images (SBIs) for detecting deepfakes. It takes advantage
of the fact, that the generated face texture needs to be merged with
the target frame after its synthesis. As such, synthetic training
material is generated by blending pseudo source and target im-
ages from single pristine images. By this forgery artifacts such
as blending boundaries and statistical inconsistencies between
source and target images are simulated.

By not using specific deepfake models to create a training
set, SBIs consist of more general and hardly recognizable deep-
fakes as they are derived from pristine images. The key idea is
that this encourages classifiers to learn generic and robust repre-
sentations without overfitting to manipulation-specific artifacts.

During evaluation, it was shown that their method provides
good performance on unseen data. The model, that was trained on
SBIs based on FaceForensics++, achieved an AUC of 0.7242 on
the DFDC dataset and an AUC score of 0.9318 on the Celeb-DF
dataset.

Evaluation
In this section, the results of the robustness and generaliz-

ability tests are presented. To carry out the experiments, a set of
datasets have been specially crafted. Further, some algorithms re-
quired some adjustments to be made to its source. These changes
alongside the process for creating the datasets will be presented
in the following.

Datasets
For evaluating the robustness of the models, a dataset has

been created based on the FaceForensics++ dataset [13]. Sine
the dataset has been released in 2018, the data within the dataset
consists of deepfakes following the original implementation. The
resulting face swaps are of low quality, i.e., the face textures are
limited to a low resolution of 64x64 pixels, feature visual arti-
facts such as blending artifacts, and temporal jitter. Therefore,
these videos are most likely to be classified with high confidence
by various detection methods. As such, the data can be used to

measure the influences of post-processing operations on deepfake
detection methods.

For the robustness tests, the following operations have been
applied on the 1000 videos of the FaceForensics++ c23 deepfake
dataset, which consist of videos of moderate compression.

• Blur: Blur can be applied to mitigate some of the blend-
ing artifacts occurring in deepfaked content. For the experi-
ments, box-blur with kernel sizes of 3 and 5 were chosen as
well as a median filter using a kernel size of 5.

• Noise: The introduction of artificial noise can lead to mis-
classifications in cases where the noise follows a particular
pattern. In this paper, we investigate whether random noise
can lead to similar results. Here, the Poisson as well as the
salt and pepper noise was used. While Poisson noise only
introduces minor changes into the image, the salt and pep-
per noise introduces visible artifacts and as such degrades
the image quality.

• Color Correction: A color mismatch between the authentic
and forged regions of an image may lead to the detection
of a deepfake. In addition, if the brightness is too high or
too low, some artifacts may disappear. Thus, we consider
changes in brightness and contrast of 50% as possible post-
processing operations that mail conceal a deepfake.

To analyze whether deepfake detection models can correctly
classify videos created with unseen models, another dataset was
created using real-time and one-shot deepfake algorithms. The
dataset consists of 10 authentic stock videos, that have been ma-
nipulated using DeepFaceLive, Inswapper, BlendSwap, and Sim-
Swap. For one-shot deepfakes based on Inswapper, BlendSwap,
and SimSwap, FaceFusion was used. Examples are showcased in
Figure 1.

Implementation
During evaluation, the open-source implementations and the

provided pre-trained models of the aforementioned methods were
used34567.

In the case of LRNet, the new checkpoints and scripts from
2024 were used that are supposed to provide better generalizabil-
ity towards unseen data by improving the facial landmark calibra-
tion.

DeepFakesON-Phys provides a log for each of the classified
videos indicating which frames are likely to be modified. During
experiments, it was revealed that the model performs less well
when averaging the scores. Instead, computing the standard devi-
ation resulted in an improved performance of 2−8%.

Robustness Test
The results of the robustness test are displayed in Table

1. As it can be seen, AltFreezing performs best alongside the
model trained on Self-Blended Images. It showcases well that
data-driven models outperform model-based techniques, but also

3DFDC Solution: https://github.com/selimsef/dfdc deepfake challenge
4Self-Blended Images: https://github.com/mapooon/SelfBlendedImages
5AltFreezing: https://github.com/ZhendongWang6/AltFreezing
6LRNet: https://github.com/frederickszk/LRNet
7DeepFakesON-Phys: https://github.com/BiDAlab/DeepFakesON-

Phys
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(a) Authentic Image (b) DeepFaceLive (c) Inswapper

(d) SimSwap (e) BlendSwap
Figure 1: Examples of the videos used during the generalizability tests.
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Noise
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Brightness

0.5

Brightness

1.5

Contrast

0.5

Contrast

1.5
All

DFDC Solution 0.9280 0.9232 0.9144 0.9512 0.9224 0.9040 0.9152 0.9007 0.9104 0.8976 0.9013

AltFreezing 1.0 1.0 1.0 1.0 1.0 0.6864 1.0 1.0 1.0 1.0 0.9790
Self-Blended Images 1.0 0.9184 0.8736 0.8879 0.9744 0.8976 0.9792 0.9551 0.9840 0.9552 0.9226

LRNet 0.7976 0.8288 0.8056 0.7672 0.8992 0.6872 0.8152 0.7504 0.8064 0.8064 0.7888

DeepFakesON-Phys 0.5232 0.5200 0.5264 0.4640 0.5392 0.5312 0.4320 0.5120 0.4960 0.4832 0.5005

Table 1: Results of the robustness test. All values displayed represent the AUC-score measured on each of the modified datasets.

DeepFaceLive Inswapper SimSwap BlendSwap All

DFDC Solution 0.96 0.88 0.88 0.88 0.9000
AltFreezing 0.1666 0.3999 0.36 0.16 0.3769

Self-Blended Images 0.6799 0.72 0.88 0.84 0.78

LRNet 0.56 0.5399 0.52 0.56 0.545

DeepFakesON-Phys 0.44 0.44 0.48 0.6799 0.51

Table 2: Results of the generalizability test. All values displayed represent the AUC-score measured on each of the datasets.

332--4
IS&T International Symposium on Electronic Imaging 2024

Media Watermarking, Security, and Forensics 2024



that not all the results presented in the respective papers could
be reproduced using the provided checkpoints. Although train-
ing models using heavily augmented data did help to stabilize
the classification performance even when trying to classify post-
processed videos, some augmentations still have a strong influ-
ence on the performance. This is especially the case for salt and
pepper noise. Unfortunately, DeepFakesON-Phys did not perform
well on either dataset.

Generalizability Test
Table 2 showcases how the selected methods perform when

classifying unseen data from newer deepfake creation methods.
Especially Altfreezing showed a drastic decline in performance
when classifying unseen data. The DFDC solution still performs
best with an AUC-score of 0.9. However, it cannot classify
one-shot deepfakes with the same confidence as real-time deep-
fakes generated using DeepFaceLive. As in the previous experi-
ment, the model-based approaches performed worst on the crafted
dataset.

Conclusion
In this paper, we evaluated various state-of-the-art meth-

ods for detecting face swapping deepfakes. We thereby mainly
focussed on assessing the robustness against common post-
processing operations as well as the generalizability towards un-
seen data. During experiments, it was revealed that data-driven
approaches performed best across all test scenarios, especially
when it comes to the robustness of the models. However, videos
that had salt and pepper applied could not be classified with high
confidence. Regarding generalizability, only the winning solution
of the DFDC deepfake challenge was able to classify unseen data
with high accuracies along with a model trained on Self-Blended
Images. The experiments indicated that there does not exist a
single detector that could detect all deepfakes with very high con-
fidence. Thus, future work could revolve around combining sev-
eral data-driven models to not only improve robustness, but also
the generalizability at the same time.
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