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Abstract 
Deep Neural Networks (DNNs), has seen revolutionary progress in 

recent years. Its applications spread from naïve image classification 

application to complex natural language processing like ChatGPT 

etc. Training of deep neural network (DNN) needs extensive use of 

hardware, time, and technical intelligence to suit specific 

application on a specific embedded processor. Therefore, trained 

DNN weights and network architecture are the intellectual property 

which needs to be protected from possible theft or abuse at the 

various stage of model development and deployment. Hence there is 

need of protection of Intellectual property of DNN and also there is 

need of identification of theft even if it happens in some case to claim 

the ownership of DNN weights. The Intellectual Property protection 

of DNN weights has attracted increasing serious attention in the 

academia and industries. Many works on IP protection for Deep 

Neural Networks (DNN) weights have been proposed. The vast 

majority of existing work uses naïve watermarking extraction to 

verify the ownership of the model after piracy occurs. 

In this paper a novel method for protection and identification 

for intellectual property related to DNN weights is presented. Our 

method is based on inserting the digital watermarks at learned least 

significant bits of weights for identification purpose and usages of 

hardware effuse for rightful usages of these watermarked weights 

on intended embedded processor.  

Introduction  
Deep learning has improved in a wide range of areas, e.g. 

speech recognition, image processing, pattern recognition, object 

detection, natural language processing and many more. Especially 

Deep learning algorithms have become de facto standard for visual 

perception systems for many end-use commercial applications such 

as self-driving cars. Deep learning architectures include feed-

forward deep neural networks (DNN), recurrent networks (RNN), 

convolution neural networks (CNN), long/short-term memory cells 

(LSTM), transformers and combinations thereof.  

Typical Convolution Neural Network (CNN) structure is 

illustrated as shown in Figure 1: Convolution neural network.  Input 

feature vectors are convolved with a set of pre-trained receptive field 

weights followed by a non-linear activation function. Max-pooling 

enables translation invariance and reduces the output feature vector 

size. The learned output feature vector is fed to the fully connected 

neural network for classification, with Softmax layer normalizes the 

results. There are multiple network topologies e.g. LeNet5[1], 

AlexNet[2] etc.  These networks have multiple convolution layers 

and fully connected layers, which results in huge compute 

complexity going in hundreds of Giga or Tera Multiply and Add 

operations (GOPS or TOPS) with 2D convolution function taking 

more than 95% of the overall computation.  

The development of a machine learning model includes two 

phases: first, a training phase, and second, actual testing phase. In 

“training” phase a machine is fine-tuned with large amount of data 

and a specific algorithm, which gives it the ability to learn, how to 

perform that specific task. Precisely training phase involves 

determining a set of weights for a particular DNN model through 

recursive back propagation of prediction error, and accordingly 

weights are adjusted to minimize the prediction loss.  

 

 
FIGURE 1: CONVOLUTION NEURAL NETWORK 

 

However, training successful DNNs requires three ingredients: 

huge amount of data, computing resources e.g. GPUs and efficient 

algorithms, and is not a trivial task. For example, the dataset for 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC 

2012) contains about 1.28 million images, and training on such a 

dataset takes days and weeks even on GPU-accelerated machines. 

In fact, collecting images and labeling them are also costly, and will 

also consume a massive amount of resources. Moreover, algorithms 

used in training a DNN model may be patented or have restricted 

licenses. Therefore, trained DNNs have great business value. 

Considering the expenses necessary for the expertise, money, and 

time taken to train a DNN model, a model should be regarded as a 

kind of intellectual property (IP). There are two things which needs 

to be protected, one is the trained weights and another is the 

architecture of the network itself. In current work protecting DNN 

weights is the focus area. Protecting the network architecture is 

another research area in the arena of DNNs IP protection. 

While protecting learned weights, there are two aspects again 

which needs to be taken care, one is ownership verification and 

another is access control. Access control could mean to completely 

denying the access, or it could be granting limited access. Our work 

focuses on owner verification along with controlled access in case 

of infringement. Control access here means lower accuracy of the 

intended task in case of infringement, this means infringer will not 

be able to get the best accuracy possible. The above goal of IP 

protection of DL models can be achieved using provably-secure 

cryptographic schemes to encrypt the weight parameters. However, 

application of encryption/decryption on millions of model 

parameters (as present in modern DNNs) will incur large 
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time/implementation overheads and thus, conflict with the strict 

response-time deadlines of DNN inference applications.  

In this work, we propose a dynamic/learned watermarking 

scheme. Watermark bits acts as constant signature and this signature 

bits gets inserted into model weights at dynamic locations. These 

dynamic locations are learned, and changes in each iteration of fine 

tuning. Proposed algorithm searches the bit locations which can be 

sacrificed to accommodate watermark bits. These bits locations 

keep differing for each layer and will also keep differing in each 

release of the model. This doesn’t increase total size of the model, 

as less important bits are used to accommodate the watermark bits. 

However, some meta information is needed to know certain property 

of watermark insertion scheme, which will get used while extracting 

the watermark bits on intended Soc. Same watermark bits are 

effused into the intended Soc, and matched with extracted 

watermark bits, while doing inference, to establish the legitimate 

usages of the model to get expected high accuracy. If watermark bits 

are not matched then inference happens with lesser accuracy which 

is kind of controlled access to the model. Amount of controlling is 

chosen after training while doing final model export.  

Our contribution includes a novel method to find the 

dynamic/learned bit locations of less importance which can be 

sacrificed and method to insert constant watermark at those bit 

locations. 

Related Work 
Ren et al. [3] propose a model-locking scheme for deep 

learning, aimed at preventing attackers from achieving high 

prediction accuracy even if they pirate the model. If a specific token 

does not exist in the input, the locked DNN model will provide poor 

prediction accuracy. When the input contains the specifically 

designed authorization token, the model can make normal 

predictions. 

Lin et al. [4] propose a chaotic weight framework based on 

chaotic mapping theory, which achieves an encryption effect by 

exchanging weight positions, making the kernel of convolutional or 

fully connected layers chaotic. Unless the model is decrypted, an 

incorrect prediction result will be returned. These encryption-based 

implementations may affect the performance of the model or 

introduces high overhead.  

AprilPyone and Kiya [5] propose a protection method with 

keys for convolutional neural network (CNN) models, which applies 

block transformations with keys to feature maps, enabling 

authorized users to achieve high classification accuracy while 

unauthorized users achieve low classification accuracy. 

Xue et al. [6] propose an active DNN copyright protection 

based on parameter perturbation, as shown in Fig. 3. The extremely 

small number of parameters that have the greatest impact on model 

performance are slightly perturbed based on gradient. By encrypting 

a very low number of parameters, the accuracy of the model can be 

significantly reduced. Authorized users can decrypt models in 

MLaaS and achieve high-accuracy model performance. 

Luo et al. [7] propose a multi-user hierarchical authorization 

for CNN, which can help owners control output results based on 

different levels of access permissions. They refer to differential 

privacy and use the Laplace mechanism to perturb the output of the 

model to different degrees to achieve the hierarchical performance. 

Pan et al. [8] encrypt/decrypt the model weights based on 

permutation and diffusion to achieve IP protection, and a key bound 

to the device was generated based on Physical Unclonable Function 

(PUF). This method is targeted at DL hardware and has a high 

overhead. 

Chakraborty et al. [9] propose a hardware neural network 

confusion framework that requires a key in hardware for 

authorization to be used. The model owner first uses the key based 

backpropagation to train the DNN architecture, which blurs the 

weight space of the model, and then hosts the deep learning model 

in the shared platform. Only authorized users with hardware-trusted 

roots (on-chip memory with an embedded key) can use the deep 

learning model. The above-mentioned hardware DNN copyright 

protection work focuses on the copyright protection of DNN 

hardware devices, and requires hardware platforms for support, such 

as hardware trusted roots, resulting in high costs. 

Proposed Solution 
Typical DNN based system development consists of two 

phases, first training phase and second testing phase. Deep neural 

networks weights are large in size, and they are kept in external flash 

/ DDR in embedded system. While testing of the captured image, 

these weights are brought into internal memory in small chunks. 

There is possibility of theft/snooping of DNN weights in the process 

of development and also in the process of actual inference on real 

embedded device.  

Our solution proposes modification in training phase, model 

exporting and testing phase. Training phase incorporates extra steps 

to find the optimal bit locations where digital watermark 

information can be embedded with minimal (near to zero) impact on 

test accuracy. Also, in model exporting phase after inserting the 

watermark, few bits in each byte of DNN weights are scrambled. 

Loss in test accuracy due to watermark, is chosen to be near to zero, 

but loss in test accuracy because of bits scrambling is to be chosen 

accordingly in line with the allowed level of access. If allowed level 

of access is low then more bits in each byte of weight is scrambled 

whereas if allowed access is full then no bits are scrambled.  

Training phase: For a given convolution layer of input 

channels ‘n’ and output channels ‘m’, total filter coefficients will be 

‘m*n*d*d’, where ‘d’ is the width and height of the filter coefficient. 

Total filter coefficients of a given layer are partitioned in multiple 

chunks of equal sizes. Let’s define total number of chunks as ‘Np’. 

Quantized network weights are typically stored in 8b format. Let’s 

define ‘Nb’ which indicates number of least significant bits (LSB) 

which are used for inserting the constant watermark. Now for each 

partition a unique value of ‘Nb’ is chosen. It means ‘Nb’ is allowed 

to vary from one partition to another partition but remain constant 

in a given partition. Also ‘Np’ can change from one layer to another 

layer. If total number of weights is not equally partitionable then last 

chunk is kept untouched in that layer. Next task is to select number 

of partitions(‘Np’) for each layer and for each partition number of 

bits allocated(‘Nb’) for watermark insertion.  Allowed range of ‘Np’ 

for any layer is [1,8], and for ‘Nb’ allowed range is [0,2]. After 

actual training brute force technique is applied from first layer to last 

layer to select optimal ‘Nb’ for each partition for all possible value 

of ‘Np’ in that layer. Fine tuning with lower learning rate is 

performed after each set of ‘Np’ and ‘Nb’ in a given layer. 

Whichever set gives lower drop in accuracy that set is selected for 

that layer and it is frozen, and same process is repeated for next 

layer. 

Model exporting phase: watermark bits are inserted 

sequentially from first partition of first layer to last partition of last 

layer in repeated fashion. If total number of bits of constant 

watermark is more than total available bit positions for insertion in 

a given layer then remaining watermark bits are carry forwarded to 

next layer, whereas if it is less then watermark is repeated again. 

Information about each layer’s number of partitions and number of 
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bits allocated in each partition is passed to inference engine through 

additional metadata. After inserting the watermark, model goes 

through another round of finetuning with even lower learning rate 

as it was used in the process of finding ‘Np’ and ‘Nb’. At last to 

allow controlled access of model performance in case of 

infringement, few bits are scrambled in each byte of weight just after 

watermark bits. It is to be noted by doing this bit scrambling 

watermark bits are kept intact. 

Testing phase: Testing phase is shown in the Figure 2: 

Proposed Inference engine. The first step is metadata parsing, which 

extracts all the information of number of partition and number of 

bits for each layer in DNN. Next block extracts out all the bits of 

inserted watermark, and concatenated together. Subsequent block 

matches the extracted watermark with effused watermark into Soc. 

In our case we have used tiny image logo as constant watermark 

data. If watermark match is successful then weights are 

unscrambled, if they were scrambled at model exporting time. 

Scrambling technique is passed through the common unified meta 

data only. As mentioned earlier inserted watermark doesn’t degrade 

the test accuracy much, but scrambling of weight is the method used 

to control the usages access of the weights. After unscrambling of 

the weight, if needed, is passed to the core CNN/DNN inference 

engine which is typically a matrix multiplier accelerator (MMA). 

 

 
FIGURE 2: PROPOSED INFERENCE ENGINE 

 

Model preparation phase is shown in Figure 3: Proposed model 

. In current setup all weights are quantized to 8 bits, with one bit 

reserved for sign. Training phase is split in two steps, one 

identification of LSBs for watermark insertion, and second step is 

fine tuning after watermark insertion. Both the steps start with 

pretrained model which has already achieved reference test 

accuracy. In first step for each layer 

The scrambling technique used is to swap the last and second 

last valid LSB. E.g. for give partition if Nb is 4, then 4th and 5th bits 

are swapped leaving intact the watermark bit locations. Because of 

this scrambling loss in test accuracy in current setup is observed to 

be ~8% which makes it fairly unusable if it gets infringed.  To have 

more limited access more bits can be scrambled.  

Watermarked weights with bit scrambling are stored in external 

flash. Weights in current state reach to interface of DNN hardware 

accelerator (e.g. MMA in current setup). So, if any snooping/theft 

of the DNN weights happen before it reaching to DNN hardware 

then observed accuracy by snooper will be less by ~8%. 

 

 
FIGURE 3: PROPOSED MODEL PREPARATION 

 

Testing phase needs additional preprocessing block which will 

detect the watermark present in the DNN weights, and if the DNN 

weights are present then reverse scrambling is performed on the 

DNN weights just before the DNN hardware accelerator. And so, 

the observed accuracy of the DNN network on the intended SOC 

with secure hardware IP, will be equal to original accuracy.  

Observed accuracy on the SOC where this secure IP is not present 

there will be loos in accuracy, which will be significant, as decided 

by the owner of these DNN weights. 

It is important to know that DNN weights are placed at 

flash/DDR memory at the boot time, and while inference execution 

these weights are brought into internal memory (L2 or L3) of Soc. 

Both DDR and internal memory are susceptible to snooping.  If the 

watermark extraction and de-scrambling of weights is done at DDR 

or L2/L3 memory level then there is possibility of snooping.  

Proposed silicon on chip (Soc) is shown in the Figure 4: Proposed 

SOC architecture. As per the proposed architecture, a dedicated 

hardware accelerator is placed in between the actual DNN/CNN 

accelerator and L2 level of memory. This dedicated hardware is 

responsible for watermark bits extraction and matching with 

signature pattern and in case of right match de-scrambling of weight 

is performed on the fly just before feeding these weights to 

DNN/CNN hardware accelerator. 

 

 
FIGURE 4: PROPOSED SOC ARCHITECTURE 

Result 
Results are illustrated for a tiny CNN network for image 

classification task, and in particular for traffic sign classification. It 

has three convolution layers and maximum 8 partitions (Np) are 

allowed in each layer. First, second- and third-layer weights are 

partitioned into 1, 8, 4 number of partitions respectively. And for 

each partition ‘i’, ‘Nb_i’ represents number of LSBs used for 

inserting the watermarking for that partition. Total accuracy loss for 

this network is 0.7 % after watermark insertion as against of 96.1 % 

of original accuracy. Additional ~8% of accuracy drop is observed 

for this network after doing the swapping the two bits leaving behind 

the ‘Nb_i’ bits. 
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FIGURE 5: TRAFFIC SIGN CLASSIFICATION NETWORK AND 

ACCURACY RESULT AFTER WATERMARK INSERTION 

Conclusion and Future Work 
DNN copyright protection is a valuable potential research topic 

which has received more and more attention in recent years. Still 

DNN IP protection is still in its infancy. In this paper a novel method 

for watermark insertion is presented at learned bit locations. We 

mainly identify two areas of the future work in this field, firstly 

instead of brute force technique to find watermark insertion 

parameters such as ‘Np’ and ‘Nb’ there could be more intelligent 

way to find these parameters. Second area of research could be 

network architecture IP protection. As designing a network also 

needs novel expertise in this area. There is no/less literature as per 

our knowledge which focuses on network architecture IP protection. 

And definitively that is interesting and challenging field to be 

discovered in this area. 
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