

Novel Watermarking and Scrambling for Convolution Neural

Network Weights

Deepak Poddar, Mihir Mody, Shyam Jagannathan, Kumar Desappan, Villarreal Jesse, JuneChul Roh, Pramod Swami, Embedded

Processors Business, Texas Instruments

Abstract
Deep Neural Networks (DNNs), has seen revolutionary progress in

recent years. Its applications spread from naïve image classification

application to complex natural language processing like ChatGPT

etc. Training of deep neural network (DNN) needs extensive use of

hardware, time, and technical intelligence to suit specific

application on a specific embedded processor. Therefore, trained

DNN weights and network architecture are the intellectual property

which needs to be protected from possible theft or abuse at the

various stage of model development and deployment. Hence there is

need of protection of Intellectual property of DNN and also there is

need of identification of theft even if it happens in some case to claim

the ownership of DNN weights. The Intellectual Property protection

of DNN weights has attracted increasing serious attention in the

academia and industries. Many works on IP protection for Deep

Neural Networks (DNN) weights have been proposed. The vast

majority of existing work uses naïve watermarking extraction to

verify the ownership of the model after piracy occurs.

In this paper a novel method for protection and identification

for intellectual property related to DNN weights is presented. Our

method is based on inserting the digital watermarks at learned least

significant bits of weights for identification purpose and usages of

hardware effuse for rightful usages of these watermarked weights

on intended embedded processor.

Introduction
Deep learning has improved in a wide range of areas, e.g.

speech recognition, image processing, pattern recognition, object

detection, natural language processing and many more. Especially

Deep learning algorithms have become de facto standard for visual

perception systems for many end-use commercial applications such

as self-driving cars. Deep learning architectures include feed-

forward deep neural networks (DNN), recurrent networks (RNN),

convolution neural networks (CNN), long/short-term memory cells

(LSTM), transformers and combinations thereof.

Typical Convolution Neural Network (CNN) structure is

illustrated as shown in Figure 1: Convolution neural network. Input

feature vectors are convolved with a set of pre-trained receptive field

weights followed by a non-linear activation function. Max-pooling

enables translation invariance and reduces the output feature vector

size. The learned output feature vector is fed to the fully connected

neural network for classification, with Softmax layer normalizes the

results. There are multiple network topologies e.g. LeNet5[1],

AlexNet[2] etc. These networks have multiple convolution layers

and fully connected layers, which results in huge compute

complexity going in hundreds of Giga or Tera Multiply and Add

operations (GOPS or TOPS) with 2D convolution function taking

more than 95% of the overall computation.

The development of a machine learning model includes two

phases: first, a training phase, and second, actual testing phase. In

“training” phase a machine is fine-tuned with large amount of data

and a specific algorithm, which gives it the ability to learn, how to

perform that specific task. Precisely training phase involves

determining a set of weights for a particular DNN model through

recursive back propagation of prediction error, and accordingly

weights are adjusted to minimize the prediction loss.

FIGURE 1: CONVOLUTION NEURAL NETWORK

However, training successful DNNs requires three ingredients:

huge amount of data, computing resources e.g. GPUs and efficient

algorithms, and is not a trivial task. For example, the dataset for

ImageNet Large Scale Visual Recognition Challenge (ILSVRC

2012) contains about 1.28 million images, and training on such a

dataset takes days and weeks even on GPU-accelerated machines.

In fact, collecting images and labeling them are also costly, and will

also consume a massive amount of resources. Moreover, algorithms

used in training a DNN model may be patented or have restricted

licenses. Therefore, trained DNNs have great business value.

Considering the expenses necessary for the expertise, money, and

time taken to train a DNN model, a model should be regarded as a

kind of intellectual property (IP). There are two things which needs

to be protected, one is the trained weights and another is the

architecture of the network itself. In current work protecting DNN

weights is the focus area. Protecting the network architecture is

another research area in the arena of DNNs IP protection.

While protecting learned weights, there are two aspects again

which needs to be taken care, one is ownership verification and

another is access control. Access control could mean to completely

denying the access, or it could be granting limited access. Our work

focuses on owner verification along with controlled access in case

of infringement. Control access here means lower accuracy of the

intended task in case of infringement, this means infringer will not

be able to get the best accuracy possible. The above goal of IP

protection of DL models can be achieved using provably-secure

cryptographic schemes to encrypt the weight parameters. However,

application of encryption/decryption on millions of model

parameters (as present in modern DNNs) will incur large

https://doi.org/10.2352/EI.2024.36.4.MWSF-331
© 2024, Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2024
Media Watermarking, Security, and Forensics 2024 331--1

time/implementation overheads and thus, conflict with the strict

response-time deadlines of DNN inference applications.

In this work, we propose a dynamic/learned watermarking

scheme. Watermark bits acts as constant signature and this signature

bits gets inserted into model weights at dynamic locations. These

dynamic locations are learned, and changes in each iteration of fine

tuning. Proposed algorithm searches the bit locations which can be

sacrificed to accommodate watermark bits. These bits locations

keep differing for each layer and will also keep differing in each

release of the model. This doesn’t increase total size of the model,

as less important bits are used to accommodate the watermark bits.

However, some meta information is needed to know certain property

of watermark insertion scheme, which will get used while extracting

the watermark bits on intended Soc. Same watermark bits are

effused into the intended Soc, and matched with extracted

watermark bits, while doing inference, to establish the legitimate

usages of the model to get expected high accuracy. If watermark bits

are not matched then inference happens with lesser accuracy which

is kind of controlled access to the model. Amount of controlling is

chosen after training while doing final model export.

Our contribution includes a novel method to find the

dynamic/learned bit locations of less importance which can be

sacrificed and method to insert constant watermark at those bit

locations.

Related Work
Ren et al. [3] propose a model-locking scheme for deep

learning, aimed at preventing attackers from achieving high

prediction accuracy even if they pirate the model. If a specific token

does not exist in the input, the locked DNN model will provide poor

prediction accuracy. When the input contains the specifically

designed authorization token, the model can make normal

predictions.

Lin et al. [4] propose a chaotic weight framework based on

chaotic mapping theory, which achieves an encryption effect by

exchanging weight positions, making the kernel of convolutional or

fully connected layers chaotic. Unless the model is decrypted, an

incorrect prediction result will be returned. These encryption-based

implementations may affect the performance of the model or

introduces high overhead.

AprilPyone and Kiya [5] propose a protection method with

keys for convolutional neural network (CNN) models, which applies

block transformations with keys to feature maps, enabling

authorized users to achieve high classification accuracy while

unauthorized users achieve low classification accuracy.

Xue et al. [6] propose an active DNN copyright protection

based on parameter perturbation, as shown in Fig. 3. The extremely

small number of parameters that have the greatest impact on model

performance are slightly perturbed based on gradient. By encrypting

a very low number of parameters, the accuracy of the model can be

significantly reduced. Authorized users can decrypt models in

MLaaS and achieve high-accuracy model performance.

Luo et al. [7] propose a multi-user hierarchical authorization

for CNN, which can help owners control output results based on

different levels of access permissions. They refer to differential

privacy and use the Laplace mechanism to perturb the output of the

model to different degrees to achieve the hierarchical performance.

Pan et al. [8] encrypt/decrypt the model weights based on

permutation and diffusion to achieve IP protection, and a key bound

to the device was generated based on Physical Unclonable Function

(PUF). This method is targeted at DL hardware and has a high

overhead.

Chakraborty et al. [9] propose a hardware neural network

confusion framework that requires a key in hardware for

authorization to be used. The model owner first uses the key based

backpropagation to train the DNN architecture, which blurs the

weight space of the model, and then hosts the deep learning model

in the shared platform. Only authorized users with hardware-trusted

roots (on-chip memory with an embedded key) can use the deep

learning model. The above-mentioned hardware DNN copyright

protection work focuses on the copyright protection of DNN

hardware devices, and requires hardware platforms for support, such

as hardware trusted roots, resulting in high costs.

Proposed Solution
Typical DNN based system development consists of two

phases, first training phase and second testing phase. Deep neural

networks weights are large in size, and they are kept in external flash

/ DDR in embedded system. While testing of the captured image,

these weights are brought into internal memory in small chunks.

There is possibility of theft/snooping of DNN weights in the process

of development and also in the process of actual inference on real

embedded device.

Our solution proposes modification in training phase, model

exporting and testing phase. Training phase incorporates extra steps

to find the optimal bit locations where digital watermark

information can be embedded with minimal (near to zero) impact on

test accuracy. Also, in model exporting phase after inserting the

watermark, few bits in each byte of DNN weights are scrambled.

Loss in test accuracy due to watermark, is chosen to be near to zero,

but loss in test accuracy because of bits scrambling is to be chosen

accordingly in line with the allowed level of access. If allowed level

of access is low then more bits in each byte of weight is scrambled

whereas if allowed access is full then no bits are scrambled.

Training phase: For a given convolution layer of input

channels ‘n’ and output channels ‘m’, total filter coefficients will be

‘m*n*d*d’, where ‘d’ is the width and height of the filter coefficient.

Total filter coefficients of a given layer are partitioned in multiple

chunks of equal sizes. Let’s define total number of chunks as ‘Np’.

Quantized network weights are typically stored in 8b format. Let’s

define ‘Nb’ which indicates number of least significant bits (LSB)

which are used for inserting the constant watermark. Now for each

partition a unique value of ‘Nb’ is chosen. It means ‘Nb’ is allowed

to vary from one partition to another partition but remain constant

in a given partition. Also ‘Np’ can change from one layer to another

layer. If total number of weights is not equally partitionable then last

chunk is kept untouched in that layer. Next task is to select number

of partitions(‘Np’) for each layer and for each partition number of

bits allocated(‘Nb’) for watermark insertion. Allowed range of ‘Np’

for any layer is [1,8], and for ‘Nb’ allowed range is [0,2]. After

actual training brute force technique is applied from first layer to last

layer to select optimal ‘Nb’ for each partition for all possible value

of ‘Np’ in that layer. Fine tuning with lower learning rate is

performed after each set of ‘Np’ and ‘Nb’ in a given layer.

Whichever set gives lower drop in accuracy that set is selected for

that layer and it is frozen, and same process is repeated for next

layer.

Model exporting phase: watermark bits are inserted

sequentially from first partition of first layer to last partition of last

layer in repeated fashion. If total number of bits of constant

watermark is more than total available bit positions for insertion in

a given layer then remaining watermark bits are carry forwarded to

next layer, whereas if it is less then watermark is repeated again.

Information about each layer’s number of partitions and number of

331--2
IS&T International Symposium on Electronic Imaging 2024

Media Watermarking, Security, and Forensics 2024

bits allocated in each partition is passed to inference engine through

additional metadata. After inserting the watermark, model goes

through another round of finetuning with even lower learning rate

as it was used in the process of finding ‘Np’ and ‘Nb’. At last to

allow controlled access of model performance in case of

infringement, few bits are scrambled in each byte of weight just after

watermark bits. It is to be noted by doing this bit scrambling

watermark bits are kept intact.

Testing phase: Testing phase is shown in the Figure 2:

Proposed Inference engine. The first step is metadata parsing, which

extracts all the information of number of partition and number of

bits for each layer in DNN. Next block extracts out all the bits of

inserted watermark, and concatenated together. Subsequent block

matches the extracted watermark with effused watermark into Soc.

In our case we have used tiny image logo as constant watermark

data. If watermark match is successful then weights are

unscrambled, if they were scrambled at model exporting time.

Scrambling technique is passed through the common unified meta

data only. As mentioned earlier inserted watermark doesn’t degrade

the test accuracy much, but scrambling of weight is the method used

to control the usages access of the weights. After unscrambling of

the weight, if needed, is passed to the core CNN/DNN inference

engine which is typically a matrix multiplier accelerator (MMA).

FIGURE 2: PROPOSED INFERENCE ENGINE

Model preparation phase is shown in Figure 3: Proposed model

. In current setup all weights are quantized to 8 bits, with one bit

reserved for sign. Training phase is split in two steps, one

identification of LSBs for watermark insertion, and second step is

fine tuning after watermark insertion. Both the steps start with

pretrained model which has already achieved reference test

accuracy. In first step for each layer

The scrambling technique used is to swap the last and second

last valid LSB. E.g. for give partition if Nb is 4, then 4th and 5th bits

are swapped leaving intact the watermark bit locations. Because of

this scrambling loss in test accuracy in current setup is observed to

be ~8% which makes it fairly unusable if it gets infringed. To have

more limited access more bits can be scrambled.

Watermarked weights with bit scrambling are stored in external

flash. Weights in current state reach to interface of DNN hardware

accelerator (e.g. MMA in current setup). So, if any snooping/theft

of the DNN weights happen before it reaching to DNN hardware

then observed accuracy by snooper will be less by ~8%.

FIGURE 3: PROPOSED MODEL PREPARATION

Testing phase needs additional preprocessing block which will

detect the watermark present in the DNN weights, and if the DNN

weights are present then reverse scrambling is performed on the

DNN weights just before the DNN hardware accelerator. And so,

the observed accuracy of the DNN network on the intended SOC

with secure hardware IP, will be equal to original accuracy.

Observed accuracy on the SOC where this secure IP is not present

there will be loos in accuracy, which will be significant, as decided

by the owner of these DNN weights.

It is important to know that DNN weights are placed at

flash/DDR memory at the boot time, and while inference execution

these weights are brought into internal memory (L2 or L3) of Soc.

Both DDR and internal memory are susceptible to snooping. If the

watermark extraction and de-scrambling of weights is done at DDR

or L2/L3 memory level then there is possibility of snooping.

Proposed silicon on chip (Soc) is shown in the Figure 4: Proposed

SOC architecture. As per the proposed architecture, a dedicated

hardware accelerator is placed in between the actual DNN/CNN

accelerator and L2 level of memory. This dedicated hardware is

responsible for watermark bits extraction and matching with

signature pattern and in case of right match de-scrambling of weight

is performed on the fly just before feeding these weights to

DNN/CNN hardware accelerator.

FIGURE 4: PROPOSED SOC ARCHITECTURE

Result
Results are illustrated for a tiny CNN network for image

classification task, and in particular for traffic sign classification. It

has three convolution layers and maximum 8 partitions (Np) are

allowed in each layer. First, second- and third-layer weights are

partitioned into 1, 8, 4 number of partitions respectively. And for

each partition ‘i’, ‘Nb_i’ represents number of LSBs used for

inserting the watermarking for that partition. Total accuracy loss for

this network is 0.7 % after watermark insertion as against of 96.1 %

of original accuracy. Additional ~8% of accuracy drop is observed

for this network after doing the swapping the two bits leaving behind

the ‘Nb_i’ bits.

IS&T International Symposium on Electronic Imaging 2024
Media Watermarking, Security, and Forensics 2024 331--3

FIGURE 5: TRAFFIC SIGN CLASSIFICATION NETWORK AND

ACCURACY RESULT AFTER WATERMARK INSERTION

Conclusion and Future Work
DNN copyright protection is a valuable potential research topic

which has received more and more attention in recent years. Still

DNN IP protection is still in its infancy. In this paper a novel method

for watermark insertion is presented at learned bit locations. We

mainly identify two areas of the future work in this field, firstly

instead of brute force technique to find watermark insertion

parameters such as ‘Np’ and ‘Nb’ there could be more intelligent

way to find these parameters. Second area of research could be

network architecture IP protection. As designing a network also

needs novel expertise in this area. There is no/less literature as per

our knowledge which focuses on network architecture IP protection.

And definitively that is interesting and challenging field to be

discovered in this area.

References

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition”, Proceeding of IEEE, 1988

[2] Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton, “ImageNet

Classification with Deep Convolutional Neural Network”, NIPS

(2012)

[3] G. Ren, J. Wu, G. Li, S. Li, and M. Guizani, “Protecting intellectual

property with reliable availability of learning models in AI-based

cybersecurity services,” IEEE Transactions on Dependable and Secure

Computing, pp. 1–18, 2022.

[4] N. Lin, X. Chen, H. Lu, and X. Li, “Chaotic weights: A novel approach

to protect intellectual property of deep neural networks,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 40, no. 7, pp. 1327–1339, 2021.

[5] M. AprilPyone and H. Kiya, “A protection method of trained CNN

model using feature maps transformed with secret key from

unauthorized access,” in Asia-Pacific Signal and Information

Processing Association Annual Summit and Conference, 2021, pp.

1851–1857.

[6] M. Xue, Z. Wu, Y. Zhang, J. Wang, and W. Liu, “Advparams: An

active dnn intellectual property protection technique via adversarial

perturbation-based parameter encryption,” IEEE Transactions on

Emerging Topics in Computing, vol. 11, no. 3, pp. 664–678, 2023.

[7] Y. Luo, G. Feng, and X. Zhang, “Hierarchical authorization of

convolutional neural networks for multi-user,” IEEE Signal Processing

Letters, vol. 28, pp. 1560–1564, 2021.

[8] Q. Pan, M. Dong, K. Ota, and J. Wu, “Device-bind key-storage less

hardware AI model IP protection: A PUF and permute-diffusion

encryption enabled approach,” CoRR, vol. abs/2212.11133, 2022.

[9] A. Chakraborty, A. Mondai, and A. Srivastava, “Hardware-assisted

intellectual property protection of deep learning models,” in 57th

ACM/IEEE Design Automation Conference, 2020, pp. 1–6.

Author Biography
Deepak Poddar is software development manager and Senior Member of

Technical Staff (SMTS) for Embedded processors business unit in Texas

Instrument s(TI). His domains of interest are image processing, computer

vision, deep learning and Video coding. He received his bachelor’s degree

in electrical engineering from National Institute of Technology, Warangal in

2004.

Mihir Mody is SoC Architect lead and Distinguished Member of Technical

Staff (DMTS), responsible for roadmap and chip definition for Application

Specific MCU business in Texas Instrument (TI). His domains of interest are

real time control, image processing, computer vision, deep learning and

Video coding. He received his master’s in electrical engineering from Indian

Institute of Science (IISc) in 2000.

Shyam Jagannathan is an Edge AI architect and Senior Member of Technical

Staff (SMTS) at Embedded Processors Group, Texas Instruments. His

domains of interest include DSP architecture, SoC architecture, hardware

accelerators, deep learning, perception, sensor fusion localization, path

planning and overall system optimization He received a master’s degree in

the field of Signal Processing and Communications from Illinois Institute of

Technology, Chicago in 2013.

Kumar Desappan is Senior Member of Technical Staff (SMTS) at Texas

Instruments (TI) Incorporated. His domains of interest are Machine/Deep

learning, image processing and computer vision algorithms with a focus on

software solution for edge devices. He received Bachelor of Engineering

(BE) from Anna University - Chennai in 2005.

Jesse Villarreal is a software architect for TI’s heterogeneous multicore

SoCs and a Senior Member of Technical Staff (SMTS) at Embedded

Processors Group, Texas Instruments. He received a master’s degree from

the University of Texas at Dallas in Computer Engineering and has been

with Texas Instruments since 2001. His areas of interest include DSP

software optimization, heterogeneous multicore middleware frameworks,

vision and imaging hardware accelerators, and overall system software

scalability, portability, and optimization.

JuneChul Roh is a Senior Systems Architect and a Senior Member of

Technical Staff (SMTS) at the Embedded Processors Group, Texas

Instruments. His interests include signal processing, deep learning, radar,

edge AI, and robotics systems and applications. He received his Ph.D.

degree in Communications and Signal Processing from the University of

California, San Diego, in 2005.

Pramod Swami is Distinguished Member of Technical Staff (DMTS) at

Processors Business in Texas Instruments (TI) leading the software

development for EdgeAI processing. His domains of interest are Embedded

systems, Digital Signal Processors, Deep Learning, Computer Vision, Image

Processing, and Video coding. He received his Bachelor’s degree in

Electronics and communication engineering from Malaviya National

Institute of Technology (MNIT) Jaipur in 2001.

331--4
IS&T International Symposium on Electronic Imaging 2024

Media Watermarking, Security, and Forensics 2024

