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Abstract
In the context of digital watermarking of images/video, tem-

plate based techniques rely on the insertion of a signal template
to aid recovery of the watermark after transforms (rotation, scale,
translation, aspect-ratio) common in imaging workflows. Detec-
tion approaches for such techniques often rely on known signal
properties when performing geometry estimation before water-
mark extraction. In deep watermarking, i.e., watermarking em-
ploying deep learning, focus so far has been on extraction meth-
ods that are invariant to geometric transforms. This results in a
gap in precise geometry recovery and synchronization which com-
promises watermark recovery, including the recovery of informa-
tion bits, i.e., the payload. In this work, we propose DeepSync,
a novel deep learning approach aimed at enhancing watermark
synchronization for both template-based and deep watermarks.

Introduction
Digital Watermarking (DW) is a field with a rich historical

backdrop. DW systems deployed at scale are built on core signal
processing and information theory principles which underline the
communication systems we rely on today (e.g., satellite commu-
nications, cellular networks, etc.) [1]. Successful DW applica-
tions include copyright protection, content authentication, digital
asset management, document security, recycling, factory automa-
tion, and consumer engagement, to name a few.

DW technology that can withstand geometric transforms,
digital-to-analog and analog-to-digital conversions, compression,
and noise [2] has proven to be useful in typical imaging and print
workflows, as well as streaming and embedded applications. Be-
sides the reliability of watermark extraction, this proven effec-
tiveness is driven by extremely low false positive rates, highlight-
ing DW’s reliability and performance in diverse operational con-
texts. Moreover, the technology has a long-standing track record
in large scale deployments including commodity embedded sys-
tems with minimal cost or impact to speed/throughput.

A successful watermarking framework is defined by its abil-
ity to strike a delicate balance between three key factors. (i) Im-
perceptibility: The watermarking process should embed a pay-
load into an image while causing minimal perceptual changes to
the original content. Maintaining perceptual quality ensures that
the watermarked image remains visually indistinguishable from
the original, enabling user acceptance and satisfaction. (ii) Ro-
bustness: In presence of image distortions, compression, or other
common forms of image workflows/attacks, including compres-
sion, the watermark should exhibit resilience. The payload should
be recoverable even after these manipulations, allowing for reli-
able information retrieval in real-world scenarios. (iii) Capacity:
Payload capacity is the maximum amount of information bits that

can be embedded and extracted for a given DW technique, with-
out introducing artifacts or compromising image integrity. Pay-
load capacity facilitates various applications such as data hiding,
annotation, and content identification/provenance [3].

Various DW techniques have been developed and deployed
at scale that strike a balance between these key factors. For exam-
ple, frequency domain methods such as Discrete Fourier Trans-
form (DFT) and Discrete Cosine Transform (DCT) manipulate
the frequency components of digital content (can be image or
video) to embed watermarks discreetly. Spread spectrum water-
marking disperses watermark data (payload) across digital con-
tent, enhancing resilience against various attacks [1]. Template
matching, i.e., a popular watermarking method that involves over-
laying a predefined pattern or template onto digital content for wa-
termark synchronization, can be combined with any of the above
methods. The template can be composed of either a fixed or pay-
load variable signal with known properties. Advanced methods
may use a combination of the above.

The advent of Generative Artificial Intelligence (GenAI) has
accelerated interest in DW technology, now seen as a key tenet for
communicating content provenance [3]. This resurgence is further
enhanced by government endorsements of DW, including a recent
White House executive order and other global legislative efforts
[4]. Consequently, research on the applicability of DW to GenAI
has increased with an emphasis of using AI-based tools for wa-
termarking [5–7]. The focus on AI-based watermarking has give
rise to “deep watermarking”, a domain that merges deep learning
innovations with DW. In such deep watermarking approaches, the
focus so far has largely been on watermark extraction methods
that are invariant to geometric transformations, revealing a gap in
precise geometry recovery and synchronization, in contrast to the
aforementioned DW approaches.

In this work, we propose DeepSync, a novel deep learning
approach enabling watermark synchronization applicable for both
template-based and deep watermarks.

Deep Watermarking Background
HiDDeN [8] discusses an approach to deep watermarking

of images by utilizing CNNs for both embedding and extracting
payloads. A discriminator/adversary CNN was used for inducing
watermark imperceptibility. Robustness was induced by explic-
itly modeling a limited set of digital distortions at training time.
HiDDeN illustrated the potential of deep learning for creating ro-
bust and imperceptible watermarks capable of surviving digital
image distortions, including compression. Unlike HiDDeN, dis-
tortion agnostic deep watermarking [9] discusses a deep learning
framework for embedding watermarks in images which combines
adversarial training and channel coding to attempt to generalize
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better to unknown distortions. ReSWAT [10] focuses on signal
provenance across various signal types (e.g., image, video, audio).
This method embeds watermarks into media by means of gradient
descent optimization over the cover media and utilizes a CNN for
detection. SSL [11] explores watermarking in images by utiliz-
ing image latent spaces produced by pre-trained self-supervised
networks. The embedding of either zero-bit or multi-bit payloads
relies on gradient descent optimization in the latent space of the
image. Extraction relies on the latent space of the watermarked
image. Stable Signature [12] discusses a method for embedding
watermarks directly into the generation process of Latent Diffu-
sion Models (LDMs), with the goal that generated images carry
an invisible signature for later detection or identification. LECA
[13] discusses a deep image watermarking technique which esti-
mates and inverts a selection of geometric transforms before ex-
traction. A light-weight encoder produces a mask-pattern which
is tiled and alpha-blended with the cover image. The synchroniza-
tion network produces a signal pattern which is used to estimate
scale and translation by means of an exhaustive pattern-matching
search. The decoder network extracts the payload after inversion
of scale and translation. RoSteALS [14] discusses a data hiding
approach which takes advantage of pre-trained autoencoders for
robust payload embedding within images. This approach reduces
training and exhibits high performance with respect to payload
recovery and image quality. More recently, TrustMark [15] de-
scribes a GAN-based watermarking method designed for images
of arbitrary resolution. This approach balances watermark imper-
ceptibility and recovery accuracy through architectural designs
and loss functions, enhancing robustness against various digital
image distortions.

A noticeable pattern emerges across the above deep water-
marking methods. All approaches, with the exception of LECA,
extract watermarks without inverting geometric transforms, most
paying little attention to image rotation, thus highlighting a preva-
lent trend towards transform-invariant extraction. LECA recovers
geometric transforms by means of an exhaustive pattern-matching
search where a universal template derived from periodic signals
is matched to a template output of a synchronization network. In
contrast, our proposed approach does not necessarily rely on an
inserted template signal.

Geometric Transform Invariance Cost
Attempting to learn geometric transform invariance, rather

than explicitly recovering the geometry, has become the trend
in deep watermarking systems as AI model training can incor-
porate required imaging transforms. However, this trend is not
without its trade-offs. In this section, we probe the implicit
costs associated with learning transform invariance. First, we
define payload capacity as the number of bits a model can con-
vey while recovering payload bits with Bit Error Rate (BER)
less than 2%. Then, we consider rotation and/or scale trans-
forms without any additional noise/blur and strive to evaluate
payload capacity as a function of transform severity. For our
evaluation, we use HiDDeN [8] at a reduced complexity level
of 32 channels per convolutional layer to streamline the numer-
ical experiments, allowing for more efficient computation. Rota-
tion severity varies in the range of interest (φmin,φmax) by varying
φmin =−φmax ∈ {0,30,60,90,180}◦. The scale, when applied, is
chosen at random from range of (0.5,2). For every combination
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Figure 1. Reduced complexity HiDDeN payload capacity vs transform

severity.

of rotation and/or scale transforms, we train variants of HiDDeN
on COCO2017 [16] for increasing payload lengths until we iden-
tify the maximum payload length for which BER ≤ 2% on the
validation set. We report our findings in Figure 1. We observe
that as severity of transformation increases, payload capacity de-
creases; the relationship between transform severity and payload
capacity is inversely proportional and non-linear.

Problem Statement
Watermarking systems designed for commercial applications

need to survive geometric transforms (e.g., rotation, scale, crop)
as such transforms form the foundation of existing imaging and
print workflows. Fragility of DW would render large-scale sys-
tems unreliable. This has been accomplished by explicit estima-
tion and inversion of the transforms–i.e., watermark synchroniza-
tion. In contrast, deep watermarking systems attempt to learn ge-
ometric transform invariance during training. Empirically, learn-
ing transform invariance comes at a cost with respect to payload
capacity and/or watermark imperceptibility (see Figure 1). The
explicit estimation and inversion of geometric transforms remains
largely unexplored in deep watermarking literature. In this work,
we strive to bridge this gap. We propose DeepSync, a new deep
learning approach for watermark synchronization applicable to
watermark signaling methods, including content adaptive meth-
ods, independent of whether they employ templates or not.

Proposed DeepSync Approach
To lay the groundwork for explaining DeepSync, we com-

mence with an overview of the overall DW workflow within
which it functions. We consider availability of generic watermark
embedding and extraction processes Wemb and Wext, respectively.
Process Wemb embeds a length-L binary sequence of bits (i.e., the
payload) p to an RGB host image X producing the watermarked
image Y. The marked image experiences geometric transforms
(e.g., rotation, scale, translation, crop) resulting in the distorted
image Ỹ. By means of supervised learning, DeepSync learns
to estimate the transforms experienced by the watermark signal.
These estimates are used to invert the geometric transforms (i.e.,
watermark synchronization) producing the inverse transformed
image Ŷ. Finally, the inverse transformed and synchronized im-
age Ŷ is given as input to the watermark extractor Wext which, in
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Figure 2. The overall watermarking workflow in which DeepSync functions.

turn, outputs the payload estimate p̂. A visual illustration of this
watermarking workflow is offered in Figure 2. A detailed descrip-
tion of DeepSync follows.

Motivation
For simplicity in presentation, we consider that the transform

of interest is rotation in the range

Φ = [φmin, φmax) . (1)

At its core, estimating the rotation experienced by the watermark
signal is a regression problem. That is, considering that a water-
marked image experienced rotation by angle φ ∈ Φ, a straightfor-
ward approach would be to extract features (e.g., via an AI back-
bone) based on which an estimate φ̂ would be computed. We em-
pirically observed that such a straightforward approach exhibits
non-satisfactory performance. Consequently, we transform the re-
gression problem into combined classification and regression by
following a range splitting approach. Without loss of generality,
Φ can be expressed as the union of N ≥ 1 smaller ranges each of
width

w =
φmax −φmin

N
, (2)

where N is a user-configurable parameter. These smaller ranges
are commonly referred to as “bins” or “intervals”. For simplicity,
we will henceforth refer to these ranges as bins. Mathematically,
the range of interest Φ is split into N bins as

Φ =
N⋃

n=1
Φn. (3)

Bins are mutually exclusive, that is, for positive integers n ≤ N
and k ≤ N such that n ̸= k, it holds

Φn ∩Φk = /0. (4)

For every n ≥ 1, the bounds of the n-th bin are defined as a func-
tion of N (or, bin width) as

Φn =
[
φ
(n)
min, φ

(n)
max

)
= [φmin +(n−1)w, φmin +nw). (5)

We are considering one regression head for every bin Φn, 1 ≤ n ≤
N; i.e., the n-th regression head estimates angle φ̂n such that

φ
(n)
min ≤ φ̂n < φ

(n)
max. (6)

Multiple angle estimate bins introduce ambiguity because there
is no way to know which regression head’s output to consider
as the final estimate. This motivates the need for a classification
head which addresses this ambiguity. Interestingly, for N = 1, the
problem simplifies to standard regression. For N ≥ 2, the problem
transforms to classification followed by a refinement (regression)
step.

DeepSync Architecture
Image samples are given as input to generic AI backbone

(e.g., EfficientNet, ResNet, MobileNet, other) for feature extrac-
tion. In turn, the backbone returns a length-F feature vector f
which is shared by three tasks of interest in a cascaded detector
architecture.

First, features in f are given as input to a fully connected
layer which utilizes a sigmoid activation function to output a prob-
ability p. This probability indicates presence or absence of the
watermark signal

p
absent
⋚

present
τ, (7)

where τ ∈ (0,1) is a user-defined threshold enabling a trade-off
between true- and false-positive rates.

When presence of the watermark signal is detected, a sec-
ond fully connected layer takes f as input and outputs N estimates
converted to probabilities p1, p2, . . . , pN by utilizing the softmax
activation function. Identifying

n⋆ = argmax
n∈{1,2,...,N}

pn (8)

indicates that the output of the n⋆-th regression head should be
considered as the final prediction.

Finally, f is given as input to a third fully-connected layer
which outputs N estimates r1,r2, . . . ,rN which, in turn, are con-
verted to angle estimates as follows. For every n ≥ 1, rn is con-
verted to the angle estimate

φ̂n = φ
(n)
min +σ(rn)w, (9)

where σ(·) denotes the sigmoid activation function. In practice,
only φ̂n⋆ needs to be computed. A schematic illustration of the
DeepSync architecture is offered in Figure 3. Notably, DeepSync
is easily extensible to include other invertible transforms similar
to rotation, such as scaling and translation.
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presence is detected with 0.99 probability followed by selection of the 2nd regression bin leading to final angle estimate of −43◦.

Training Methodology
Every image is resized such that its minimum spatial dimen-

sion is of length 384. Then, a random crop of size 384-by-384 is
extracted and undergoes a series of stochastic transformations that
up-sample and rotate the image, in randomized order, resulting in
the host image X. This pre-processing step is designed to pre-
vent DeepSync from relying on the natural orientation and scale
of the host image [18], thereby encouraging the network to learn
features associated with the watermark signal. Next, X is marked
by means of Wenc with probability ρ = 0.5, producing Y. When
marked, Y is assigned label y = 1 indicating watermark presence,
else y = 0. Thereafter, Y is rotated and resized by random angle
φ ∈ Φ and scale coefficient s ∈ S = [0.5,2], respectively. A ran-
dom crop of size 128-by-128 is extracted from the resulting im-
age producing the distorted image Ỹ, input to DeepSync. Angle
φ and scale coefficient s serve as supervision signals for training
the regression heads. Moreover, assuming N regression heads for
rotation, by definition of {Φn}N

n=1, ∃k ∈ {1,2, . . . ,N} satisfying

φ
(k)
min ≤ φ < φ

(k)
max. (10)

Ỹ is assigned to the k-th regression head. In addition, a length-
N one-hot encoded vector j–i.e., [j]k = 1 and [j]n = 0 for every
n ̸= k–serves as the supervision signal for training the classifica-
tion head for rotation. Like rotation, we create one-hot encoded
vector h for scale. We utilize the Binary Cross Entropy (BCE) loss
for training the watermark presence/absence classifier. For rota-
tion/scale regression, we utilize the Mean-Squared-Error (MSE)
loss. Finally, we utilize the Cross Entropy (CE) loss for train-
ing the classifiers responsible for selecting the correct regression
head. MSE and CE losses are only calculated for watermarked
images.

Numerical Experiments
We evaluate the performance of DeepSync across an array

of tasks of interest, including recovering geometric transforms,
both with template-based and deep watermarks without explicit
templates. All models in this Section are trained and tested on the
COCO2017 [16] train and test sets which comprise 118,000 and
41,000 images, respectively.

Template-Based Signaling
The watermark template signal used in this investigation is a

zero-mean spread-spectrum watermark as described in [17]. The

Table 1: Template Watermark presence/absence classification.

Model AUC

Regression (N=1) 0.998
DeepSync (N=40) 0.995
DeepSync (N=80) 0.996
DeepSync (N=120) 0.996
DeepSync (N=160) 0.995

process of watermark embedding combines an original RGB im-
age with grayscale watermark tile uniformly scaled by a strength
factor α ∈ (0.05,0.5) along the luminance direction. More elab-
orate implementations may use visual masking models such as
in [19]. We consider both rotation and scale transforms in
Φ = [−180◦,180◦) and S = [0.5,2], respectively. Following
the training methodology above, we train DeepSync with an Ef-
ficientNet B0 as a backbone, N regression heads for rotation,
N ∈ {40,80,120,160}, and 10 regression heads for scale. As a
benchmark, we train a model with one regression head for rota-
tion and one regression head for scaling. This model attempts to
solve the synchronization problem via regression directly.

We commence with a performance evaluation with respect to
detecting watermark presence or absence by measuring the Area
Under the Curve (AUC) metric. This metric offers a comprehen-
sive assessment of classification performance by integrating the
trade-off between true- and false-positive rates. We report AUC
performance in Table 1. All models exhibit very high AUC per-
formance with the benchmark model marginally outperforming
the DeepSync models.

Next, we evaluate the rotation estimation performance by
measuring the empirical Cumulative Distribution Function (CDF)
of an estimators’ errors. The CDF curves are illustrated in Figure
4. For every N ≥ 40, DeepSync markedly outperforms the bench-
mark model which clearly illustrates the merit of range splitting.
As N increases, the rotation estimation precision increases. For
instance, for N = 160 and N = 80, about 79% and 70% of the
samples, respectively, exhibit an error less than |2|◦.

Lastly, like rotation, we measure the distribution of absolute
errors for scale estimation by utilizing the empirical CDF metric.
We plot the CDF curves in Figure 5. All methods exhibit high es-
timation performance. DeepSync models exhibit marginally dif-
ferent performances due to the influence of the number of regres-
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Figure 5. Cumulative distribution of scale estimation errors using Deep-

Sync with template-based watermarks for varying number of regression

heads N for rotation and 10 regression heads for scale.

sion heads for rotation N, while the number of regression heads
for scaling is fixed at 10.

HiDDeN Deep Watermark
HiDDeN deep watermarks are used in this investigation to

compare with our proposed method. HiDDeN watermarks are
content-adaptive–i.e., there is no predefined pattern or template
overlayed on the marked images for watermark synchronization
[8]. Briefly, an image and a length-L bit payload are given as
input to a CNN which outputs the watermarked image. For
simplicity, in this study we consider only rotation transform in
Φ = [−180◦,180◦).

We first train a reduced complexity HiDDeN invariant to
very small rotations–i.e., we train encoder, decoder, and discrimi-
nator with 32 channels per convolutional layer for payload length
L ∈ {21,22}. A host image is resized and cropped to size 384-
by-384 before encoding. The watermarked image is rotated by
random angle φ ∈ Φ. The rotated image is then inverse trans-
formed by angle φ̃ = P (−φ ± ε), where P(·) projects its input
argument onto Φ and ε ∼ U (0,εmax = 10◦).1 Then, a random
crop of size 128-by-128 is extracted from the inverse transformed
within |ε| degrees image and given as input to the decoder for
payload extraction. By introducing rotation and its inversion in
the training process, we allow the decoder to learn payload ex-
traction despite rotation artifacts. Moreover, by inverting the im-
age within |ε| degrees, we introduce some synchronization error-
tolerance. In fact, a visual inspection of Figure 1 suggests that a
precise synchronization may not be necessary.

Then, we freeze HiDDeN and train DeepSync by utilizing
the HiDDeN encoder as the embedding process. We utilize Effi-
cientNet B3 as a backbone and fix N = 40 regression heads for
rotation. As before, we train a model with one regression head for
rotation as a benchmark attempting to solve the synchronization
problem via direct regression.

We commence with an evaluation of the watermark pres-
ence/absence classification. We illustrate the AUC curves in Table
2 where we observe that, like with template watermarks, all mod-

1U (a,b) denotes the uniform distribution with lower bounds a and b,
respectively.

Table 2: HiDDeN Watermark presence/absence classification.

Model L AUC

Regression (N=1) 22 1.000
DeepSync (N=40) 21 0.998
DeepSync (N=40) 22 0.997

els exhibit high AUC performance with the benchmark model–
i.e., regression–exhibiting marginally higher performance. Ad-
ditionally, the marginally higher best AUC for HiDDeN can be
attributed to the use of a larger backbone.

We continue with an assessment of the rotation estimation
performance that DeepSync exhibits. We plot the CDF curves in
Figure 6. We notice that DeepSync exhibits high estimation per-
formance, estimating rotation within εmax-accuracy for over 90%
of the samples. In contrast, the benchmark model achieves same
accuracy levels for only 60% of the samples. Interestingly, when
DeepSync makes errors, these align within either a 90-degrees or
180-degrees symmetries indicating informed and systematic inac-
curacies rather than random mistakes.

Finally, we measure the per sample Bit Error Rate (BER)
that the HiDDeN decoder exhibits after watermarked images are
inverse transformed based on DeepSync rotation estimates be-
fore payload extraction. We plot the corresponding CDF curves
in Figure 7. As expected, we notice exact payload recovery for
over 90% of the samples when relying on DeepSync rotation es-
timates compared to exact payload recovery for less than 80% of
the samples when relying on rotation estimates from the bench-
mark model.

Conclusions
Transform invariant extraction has become the norm in deep

watermarking literature. Consequently, existing deep watermark-
ing approaches lack precise recovery of geometry–i.e., synchro-
nization. We empirically observe that absence of precise recov-
ery is associated with reduced payload capacity and/or watermark
imperceptibility degradation. Reduced payload capacity, in turn,
influences false positive rates and applicability to large scale de-
ployments. In this work, we proposed DeepSync, a new deep
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learning approach for watermark synchronization applicable to
both template-based and deep watermarks which explicitly esti-
mates geometry enabling inversion. DeepSync lays the ground-
work for developing deep watermarking systems that have the
potential to be more practical at scale, paving the way for further
advancements in the field.
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