
Model Surgery :
Run any Neural Network on Embedded Processors
Kunal Ranjan Patel1,3, Parakh Agarwal2,3, Manu Mathew3, Arthur Redfern3, Debapriya Maji3, Kumar Desappan3, Pramod Swami3, and
Do-Kyoung Kwon3

1k-patel1@ti.com, 2p-agarwal@ti.com, 3Texas Instruments

Abstract
We introduce Model Surgery, a novel approach for op-

timizing Deep Neural Network (DNN) models for efficient
inference on resource-constrained embedded processors.
Model Surgery tackles the challenge of deploying complex
DNN models on edge devices by selectively pruning or
replacing computationally expensive layers with more effi-
cient alternatives. We examined the removal or substitu-
tion of layers such as Squeeze-And-Excitation, SiLU, Swish,
HSwish, GeLU, and Focus layer to create lightweight ”lite”
models. Subsequently, these lite models are trained using
standard training scripts for optimal performance.

The benefits of Model Surgery are showcased through
the development of several lite models which demonstrate
efficient execution on the hardware accelerators of com-
monly used embedded processors. To quantify the effec-
tiveness of Model Surgery, we conducted a comparison
of accuracy and inference time between the original and
lite models via training and evaluating them on the Ima-
genet1K [1] and COCO [6] datasets. Our results suggest
that Model Surgery can significantly enhance the appli-
cability and efficiency of DNN models in edge-computing
scenarios, paving the way for broader deployment on
low-power devices. The source code for model surgery
is also publically available as a part of model optimiza-
tion toolkit at https://github.com/TexasInstruments/edgeai-
modeloptimization/tree/main/torchmodelopt .

Motivation
Deep Learning Models have been witnessing signifi-

cant increase in accuracy over the last few years. This
is achieved by use of more training data, improved train-
ing techniques, and also by using more sophisticated lay-
ers. Many of these models are designed for high power
and cloud inference scenarios. These models may not be
suitable for efficient inference on the edge using low power
embedded devices as they may have suboptimal or unsup-
ported layers. Suboptimal layers could include layers that
need high memory throughput compared to the compute
time (there by not utilizing the compute resources fully).
Suboptimal layers could also include layers that give only
slight increase in accuracy compared to the complexity that
they bring. Such layers can be replaced or removed to run
efficiently on hardware accelerators on embedded devices.

Examples of such layers include Squeeze-And-
Excitation [2], SiLU [3], Swish [4], HSwish [12], GeLU [5],

Focus [14] etc. This work focuses on methods that can be
used to easily remove or replace such suboptimal layers.
We call these new models as “lite” models. We call this
process of creating lite models as Model Surgery. For ex-
ample, we could remove Squeeze-And-Excitation, replace
SiLU with ReLU, Focus layer with Convolution layer etc.

Here arises the need for the process of “model surgery”
to optimize deep learning models for edge devices. This
approach involves creating “lite” versions of these models
that are more efficient and suitable for low-power embedded
devices while trading off some percentage of accuracy. The
comparison can be seen in Table 1.

Figure 1: Model Surgery

Proposed Solution

The solution consists of three parts : Iterating through
the replacement dictionary, Key Matching using Straight
Line Searcher and finally replacing the matched modules
using Module Replacer. This heavily uses the functionali-
ties of torch.fx [8] mode. Through this, we are able to gen-
erate lite pytorch models which can further be trained and
be used for deployment over the edge devices. The individ-
ual parts of the solution are explained in the subsections.

TORCH.FX
It is a program capture and transformation library for

PyTorch [7] written entirely in Python and optimized for high
developer productivity by ML practitioners. It captures pro-
grams via symbolic tracing, represents them using a sim-
ple 6-instruction python-based IR, and re-generates Python
code from the IR to execute it. To avoid the complexities
of re-capture for JIT specialization, torch.fx makes no at-
tempt to specialize programs itself, instead relying on the
transforms to decide what specializations they want to per-
form during capture. The process of symbolic tracing can
be configured by users to work for more esoteric uses.

Our method is based on the torch.fx library. The model
is represented as a Directed Acyclic Graph where the nodes
can be torch Operators, Functions, or Modules.

https://doi.org/10.2352/EI.2024.36.3.MOBMU-322
© 2024, Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2024
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2024 322--1

https://github.com/TexasInstruments/edgeai-modeloptimization/tree/main/torchmodelopt
https://github.com/TexasInstruments/edgeai-modeloptimization/tree/main/torchmodelopt


Figure 2: torch.fx captures programs using symbolic tracing
into a simple IR and generates Python code from that IR.

Replacement Dictionary
The input for the replacement operations in the model

surgery is a replacement dictionary with source patterns as
keys and replacement patterns as values. The source as
well as the replacement patterns could be a Type (or Class)
of a torch Module, an instance of a torch module, an oper-
ator, or a function. Here the user need to ensure that the
model should be traceable after the the source pattern has
been replaced by replacement pattern.

For example, a simple replacement dictionary for Mo-
bileNetV3 could be:

Figure 3: Example for Replacement Dictionary

All the keys in the replacement dictionary are iterated
over, to perform the corresponding replacement operations.
Each replacement may happen multiple times in a model
as a source pattern may occur multiple times in the model.
Figure 4 shows how the replacements are done.

Figure 4: Iterative Approach of the Model Surgery API
This is just an example and in the Figures 5, 6 and

7, we show some of the other possible use cases of this
approach.

Straight Chain Searcher
We developed an algorithm to identify straight

chain patterns within a graph. The algorithm,

straight chain searcher, operates on two GraphMod-
ule objects (which are the symbolically traced models): the
main module and the pattern module.

The straight chain searcher algorithm begins by iterat-
ing through the nodes of the main module and the pattern
module. When a match is found i.e. corresponding nodes
are found to be same, the algorithm records the input and
output nodes of the matched pattern.

The algorithm uses a sliding window approach, similar
to pattern searching in a list, to traverse the main module.
If a node does not match the current pattern node, the al-
gorithm resets the pattern index and shifts the window in
the main module. If a previously matched pattern is found
again, the algorithm records the start of the second match
and continues the search from there if the current pattern
search fails.

The algorithm returns a list of tuples, each containing
the input and output nodes of a matched pattern. This
approach allows for efficient and effective identification of
straight chain patterns within a graph, contributing to our un-
derstanding and manipulation of complex graph structures.

Figure 5: Result of Model Surgery in Convnext Model from
TIMM

Module Replacer
Once, we find a match, we replace the pattern with the

corresponding value from the replacement dictionary. It op-
erates by identifying a pattern of nodes from the start node
to the end node and replacing them with the provided re-
placement module. This replacement is carried out for all
such matched keys in the original model. The function is
versatile and can handle different cases based on the type
of operation (call function, call method, call module) and
the number of operational nodes in the pattern and replace-
ment. In some cases, the replacement pattern is a simple
module, while in other cases, it could be a more compli-
cated function. For example, in Figure 5, we replace a 7x7

322--2
IS&T International Symposium on Electronic Imaging 2024

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2024



DNN Model Original Version Lite Version Speed up Factor
on hardware
acceleratorClassification

Networks

Accuracy
(Top-1

Accuracy)

CPU
inference

time (msec)

Accuracy
(Top-1

Accuracy)

CPU
inference

time (msec)

HW accelerated
inference time

(msec)

Mobilenet V2 [11] [9] 72.154 121.23 72.88 119.60 2.27 52.69

MobilenetV3-Large [12] [9] 75.274 103.40 71.7* 88.08 4.40 20.02

EfficientNet B0 [13] [9] 77.69 219.61 73.57* 163.97 2.63 62.35

EfficientNet B1 [13] [9] 79.83 314.24 74.49* 243.58 3.52 69.20

Object Detection
Networks

Accuracy
(mAP

Accuracy)

CPU
inference

time (msec)

Accuracy
(mAP

Accuracy)

CPU
inference

time (msec)

HW accelerated
inference time

(msec)

Speed up Factor
on hardware
accelerator

YoloX-Tiny [10] 32.8 839.65 30.5 777.59 5.20 149.54

*Networks trained for 150 epochs against the suggested 600 epochs.

convolution layer with a sequence of 3x3 convolution layers,
followed by a ReLU and a 5x5 convolution layer after that.
Here, the replacement functions generated the replacement
pattern on the fly considering the number of channels in the
source pattern.

Surgery Examples
Here in Figure 6, we can see the Squeeze and Excita-

tion layer is replaced with an identity layer in the Mobilenet
V3 model of Torchvision [9] [12] .

Figure 6: Replacing SE Module to Identity in the Mobilenet
V3 Model from Torchvision

Here in Figure 7, the LayerNorm layer is replaced with
a BatchNorm layer which is later fused into the above con-
volution layer of the Convnext model of TIMM.

Summary
Results

The original versions of some of the models are not
suitable for Hardware-accelerated inference. In some

Figure 7: Replacing LayerNorm to BatchNorm in Convnext
Model from TIMM

cases, they run with very high inference time while in other
cases it may not run at all. The speedup factor is the com-
parison of the inference time of the original model and the
lite model. The inference was run on AM68A SoC from
Texas Instruments.

Here we show the results for a few image classification
networks [9] and YoloX-Tiny for object detection [10]. The
same training regime as original model were used, how-
ever for MobilenetV3 [12] [9], and EfficientNet [13] [9] net-
works, instead of 600 epochs for training, 150 epochs were
used which results in accuracy degradation. Some part of
this could be reclaimed on training for 600 epochs. The
classification models have been trained on the Imagenet1K
dataset using the torchvision [9] source code and the object
detection models have been trained on the COCO dataset
using mmyolo [10] source code. The Top 1 accuracy met-
ric has been used for the classification networks whereas
the mAP metric [0.5:0.95]% is reported as defined by the
COCO dataset.

IS&T International Symposium on Electronic Imaging 2024
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2024 322--3

https://www.ti.com/product/AM68A


Conclusion
The ability to do the surgery without manually modify-

ing the model, has been implemented, and will be a great
advantage for the user because the models that would not
have otherwise run on the devices, can now run efficiently
with model surgery.
It is model-independent and could be used for a wide variety
of different models as the user can also define the replace-
ment patterns (source and replacement patterns) according
to the specific use case as well. This helps to support a
much larger set of models efficiently compared to what was
possible without this method.

The method searches for each of the keys in the
model’s Pytorch graph and replaces them with the corre-
sponding value keeping all the connections in the model
intact. This facilitates changing the required connections
without the actual need to interfere with the Python code.
Through this method, any module/function can be changed
to any module/function as long as the inputs and outputs
match. This makes this model, model/module independent.
The implementation of this method has been released open
source and the models will also be made available open
source.

The Model Zoo could be collaborative space to host
embedded friendly models. We have not tested transformer
networks, LSTM based networks yet. We also plan on im-
plementing the method smart enough, that it can automat-
ically change the required modules with the ones that are
supported by mobile devices without the need to manually
specify both the patterns.

References
[1] J. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and

Li Fei-Fei, ImageNet: A large-scale hierarchical image
database, 2009 IEEE Conference on Computer Vision
and Pattern Recognition, Miami, FL, USA, 2009, pp.
248-255, doi: 10.1109/CVPR.2009.5206848.

[2] J. Hu, L. Shen and G. Sun, ”Squeeze-and-
Excitation Networks,” 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 2018, pp. 7132-7141, doi:
10.1109/CVPR.2018.00745.

[3] Elfwing, S., Uchibe, E., & Doya, K. (2017). Sigmoid-
Weighted Linear Units for Neural Network Function
Approximation in Reinforcement Learning. Neural net-
works : the official journal of the International Neural
Network Society, 107, 3-11.

[4] Ramachandran, P., Zoph, B., & Le, Q.V. (2018). Search-
ing for Activation Functions. ArXiv, abs/1710.05941.

[5] Hendrycks, D., & Gimpel, K. (2016). Gaussian Error Lin-
ear Units (GELUs). arXiv: Learning.

[6] Tsung-Yi Lin et al., 2014.Microsoft COCO: Common
Objects in Context. CoRR, abs/1405.0312

[7] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Chintala, S. (2019). PyTorch: An Impera-
tive Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems 32
(pp. 8024–8035). Curran Associates, Inc.

[8] James K. Reed , Zachary DeVito , Horace He , Ansley

Ussery , Jason Ansel Torch.fx: Practical Program Cap-
ture and Transformation for Deep Learning in Python,
MLSys 2022.

[9] Sébastien Marcel and Yann Rodriguez. 2010. Torchvi-
sion the machine-vision package of torch. In Pro-
ceedings of the 18th ACM international conference
on Multimedia (MM ’10). Association for Comput-
ing Machinery, New York, NY, USA, 1485–1488.
https://doi.org/10.1145/1873951.1874254

[10] MMYOLO Contributors. MMYOLO: OpenMM-
Lab YOLO series toolbox and benchmark. In
github.com/open-mmlab/mmyolo, 2022

[11] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov
and L. -C. Chen, MobileNetV2: Inverted Residu-
als and Linear Bottlenecks, 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 2018, pp. 4510-4520, doi:
10.1109/CVPR.2018.00474.

[12] A. Howard et al., Searching for MobileNetV3, 2019
IEEE/CVF International Conference on Computer Vi-
sion (ICCV), Seoul, Korea (South), 2019, pp. 1314-
1324, doi: 10.1109/ICCV.2019.00140.

[13] Mingxing Tan, Quoc V. Le, EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks, InIn-
ternational conference on machine learning 2019 May
24 (pp. 6105-6114). PMLR.

[14] C. -Y. Wang, A. Bochkovskiy and H. -Y. M. Liao,
YOLOv7: Trainable Bag-of-Freebies Sets New State-of-
the-Art for Real-Time Object Detectors, 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), Vancouver, BC, Canada, 2023, pp. 7464-
7475, doi: 10.1109/CVPR52729.2023.00721.

322--4
IS&T International Symposium on Electronic Imaging 2024

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2024

https://github.com/TexasInstruments/edgeai-modelzoo

	Abstract
	Motivation
	Proposed Solution
	TORCH.FX
	Replacement Dictionary
	Straight Chain Searcher
	Module Replacer
	Surgery Examples
	Summary
	Results
	Conclusion

