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Abstract

In recent years, several deep learning-based architectures
have been proposed to compress Light Field (LF) images as
pseudo video sequences. However, most of these techniques em-
ploy conventional compression-focused networks. In this paper,
we introduce a version of a previously designed deep learning
video compression network, adapted and optimized specifically
for LF image compression. We enhance this network by incor-
porating an in-loop filtering block, along with additional adjust-
ments and fine-tuning. By treating LF images as pseudo video
sequences and deploying our adapted network, we manage to
address challenges presented by the unique features of LF im-
ages, such as high resolution and large data sizes. Our method
compresses these images competently, preserving their quality
and unique characteristics. With the thorough fine-tuning and
inclusion of the in-loop filtering network, our approach shows
improved performance in terms of Peak Signal-to-Noise Ratio
(PSNR) and Mean Structural Similarity Index Measure (MSSIM)
when compared to other existing techniques. Our method pro-
vides a feasible path for LF image compression and may con-
tribute to the emergence of new applications and advancements
in this field.

Introduction

In recent years, imaging technologies have undergone rapid
advancements in both quality and postprocessing applications.
One such technology is LF cameras, which capture the spatial and
angular information of a scene using a single camera equipped
with microlens arrays or multiple traditional cameras. LF imag-
ing has the potential to provide a wide range of post-shot manipu-
lation functionalities such as refocusing, 3D scene reconstruction,
and novel view generation. However, the challenge of efficiently
storing and transmitting the large amount of data captured by LF
cameras remains a significant obstacle.

LF imaging has progressed significantly in recent years
thanks to technological advancements and postprocessing appli-
cations. However, one pressing issue associated with LF cam-
eras is dealing with enormous amounts of captured data. To
tackle this challenge head on, researchers have developed vari-
ous compression techniques for LF images, videos, and pseudo-
video sequences. These methods leverage traditional video com-
pression technologies used in the MPEG and H.26x series of
standards from ISO/IEC and ITU respectively, which address the
unique challenges associated with working on high dimensional
data sets. For instance, High Efficiency Video Coding (HEVC)
stands out as a video compression standard specifically designed
to improve upon its predecessor (H264/AVC) by incorporating
advancements such as larger block sizes, better motion compen-
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sation algorithms and more efficient entropy coding mechanisms
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Figure 1: Four examples of GOPs for Training the network which
consist of 7-Frames for each sequence

that facilitate more effective video data compression while pre-
serving visual accuracy[1]. Versatile Video Coding (VVC) is
a recently developed standard by the Joint Video Experts Team
(JVET) that builds upon the advancements of HEVC. It employs a
complex coding structure to achieve more efficient data compres-
sion, resulting in smaller file sizes without compromising picture
quality. The technology supports a wide range of formats and
resolutions, including up to 16K, catering to diverse display re-
quirements [2].

LF data compression is a vibrant research field that attracts
significant attention from both academic and industrial commu-
nities. As mentioned above, video compression has been used
to compress LF, which is accomplished by transforming the LF
into a format resembling a video sequence and thereby allowing
for video compression tools to be used [3],[4]. Recent develop-
ment of Deep Learning Networks (DNNs) has shown competitive
or superior results in image and video compression compared to
traditional methods [5],[6],[7]. These networks are extensively
utilized in compressing LF data and have demonstrated superior
rate-distortion performance compared to conventional compres-
sion methods. DNN-based compression techniques optimize the
entire compression framework end-to-end, making them highly
adaptable and efficient. Additionally, the integration of DNNs al-
lows for the incorporation of in-loop filtering, further enhancing
the output quality.

In this paper, we propose an extension of Recurrent Learned
Video Compression (RLVC) [8], which adopts the RLVC network
architecture to suite LF compression.

RLVC, a deep learning-driven video compression technique,
has shown promising results in the video compression domain.
The current application of RLVC is constrained to the proper-
ties of conventional video and is not designed to provide high
quality compression for LF image data. Moreover, it relies on
non-state-of-the-art image compression for its source of temporal
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prediction. Nor does it use in-Loop Filtering, which is a crucial
component in most video compression networks.

To address these limitations, we propose to first transform
the LF images into a pseudo video sequences (PVS) format us-
ing a spiral pattern, as illustrated in Figure 2. This particular ar-
rangement method, described in [9] and [10], was selected over
others due to providing low disparity between consecutive frames
in the PVS, which facilitates compression. Secondly, state-of-
the-art static image compression is included through the use of
VVC-intra compression at the start of each group of pictures
(GOP) within the PVS. Finally in-loop filtering is incorporated
into RLVC, aiming to improve the visual quality of compressed
LF images, reduce visual artifacts, and increase compression effi-
ciency. To validate the effectiveness of our proposed method for
LF compression, we trained the adapted RLVC network using an
extensive LF dataset. Experimental results will be presented to
demonstrate the efficiency of our approach.

The main contributions are :

» Adapting RLVC for LF PVS compression as an end-to-end
video compression network.

* Replacing HEVC with VVC intra-frame compression to re-
duce keyframe size and enhance compression efficiency.

* Integrating a deep learning-based in-loop filtering network
to improve compressed frame quality and reduce artifacts.

* Proposing a novel LF image compression method that com-
bines end-to-end deep learning-based video compression,
in-loop filtering, and VVC intra-frame compression for im-
proved efficiency and performance.

The rest of the paper is organized as follows. Section 2
presents the proposed method for LF compression. The Exper-
imental setup is presented in Section 3. Subsequently, in Section
4, the results are presented along with relevant analysis, and the
paper is concluded in Section 5.

Method

This study aims to enhance LF image compression tech-
niques through a comprehensive method. The first part of our
method involves refining the RLVC model specifically for com-
pressing LF images. This goal is achieved by fine-tuning the
model using LF PVSs to optimize its performance. In addition,
we explore the advantages of employing VVC intra-frame cod-
ing, which offers improved compression efficiency compared to
the previously used HEVC. We further enhance the overall output
quality of the compressed video by integrating a deep learning-
based in-loop filtering technique. In the subsequent sections, each
part of the method will be discussed in detail, providing a com-
prehensive understanding of its components and their significant
impact on LF image compression performance.

RLVC Fine-Tuning with PVS of LFs
The adaptation process involved modifying the RLVC [8] al-
gorithm, originally designed for video compression, to accommo-
date the complexities associated with compressing LF images.
The process of adapting RLVC for LF image compression
required a thorough examination of the statistical differences be-
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tween PVS and traditional video data. PVS displayed a signif-
icant amount of redundant data arising from the numerous cap-
tures of a single scene from different perspectives, which resulted
in a unique statistical makeup. Unlike the linear representation
seen in traditional video sequences, PVS held more repetitive in-
formation. The redundancy inherent to PVS offered new avenues
for boosting the efficiency of the compression procedure when
utilized strategically.

With the limited availability of LF datasets, the decision was
made to fine-tune the RLVC network using LF images as PVS
instead of retraining it from scratch. This method effectively har-
nessed the inherent capabilities of the RLVC network and facili-
tated its successful adaptation to the unique statistical properties
of LF datasets, resulting in more efficient LF image compression.
Stress Position: The fine-tuning approach proved to be a practical
solution that catered to the unique requirements of LF datasets,
ensuring optimal compression efficiency.

To maintain technical consistency with the initial training,
the fine-tuning procedure was aligned with the GOP structure.
This structure included an Intra Frame (I-frame) compressed us-
ing the superior VVC-intra codec and six following Predicted
Frames (P-frames), examples of which are shown in Figure 1. The
choice of VVC-intra codec over the HEVC set the stage for a com-
prehensive comparative analysis to be presented in the subsequent
Section B.

In keeping with the original training process, seven-frame
PVSs were employed during the fine-tuning stage. Using these
sequences bridged the gap between the original training and the
new adaptation approach. The inclusion of seven-frame PVS fa-
cilitated a seamless integration of the adapted RLVC algorithm,
effectively connecting the past training procedures with the cur-
rent adaptation strategy.

VVC vs HEVC I-Frame compression

In the deep learning-based RLVC model, the initial frame
is compressed using the HEVC intra frame coding method [1].
However, considering recent advancements and the enhanced ef-
ficiency of VVC [2] intra frame coding, we propose replac-
ing HEVC intra frame coding with VVC intra frame coding.
The adoption of VVC intra presents two main key benefits over
HEVC:

1. Increased coding efficiency: reducing bandwidth require-
ments.

2. Increased image quality: elevating the model’s overall per-

Figure 2: Spiral pattern of LF PVS which starts from center view
as the first frame - here a 9x9 LF is shown
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Figure 3: In-loop filtering architecture diagram in modified RLVC which ME stands for Motion Estimation, MC for Motion Compensa-

tion, and RAE for Recurrent Auto Encoder

formance.

This integration of VVC allows RLVC to be aligned with the most
recent advancements in deep learning-based video compression.

In-Loop Filtering

In-loop filtering is deployed in various coding architectures
to mitigate blockiness in the compression distortion of the de-
coded video [11],[12],[13]. However, RLVC does not utilize in-
loop filtering in its orginal form. Therefore, we have embedded
a deep learning-based in-loop filtering method within RLVC to
enhance the output quality.

More specifically, the in-loop filter used is that presented in
[14], which was adapted and tailored to align with format require-
ments within the RLVC model. In its initial design, the in-loop fil-
ter network solely uses the Y component of a YUV frame for en-
hancement. However, in our adaptation, we include the full YUV
colorspace and thereby achieve improved quantization noise re-
duction on luminance as well as chrominance components. The
in-loop filter was embedded in the RLVC architecture priore to
the motion compensation part, as illustrated in Fig 3.
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Figure 4: Histogram distribution for ’Danger’ dataset with in-loop
filtering and without in-loop filtering.

Experimental setup
Datasets and Quality Evaluation Metrics

In this study, distinct datasets were utilized across three crit-
ical stages - Training, validation, and testing, each fulfilling a
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Table 1
Dataset  Angular resolution  Spatial resolution Type
EPFL [15] 15x15 625x434 Photographic
HCI [16] 9x9 512x512 Synthetic

unique function to ensure an unbiased evaluation of the network’s
performance. The learning stage relied on fine-tuning our network
with LF data from the EPFL [15] and HCI [16] datasets which are
two different parts of JPEG Pleno datasets. The details of reso-
lution and number of views for the EPFL and HCI datasets have
been shown in Table 1.Validation, essential to prevent overfitting,
used a separate portion of the EPFL and HCI datasets, allowing
for intermittent evaluation of the network’s progress and thus pre-
venting over-training. The final phase, testing, hinged on the use
of the JPEG Pleno benchmark dataset,[15]-[16] uninvolved in the
learning or validation phases. This facilitated an exhaustive ap-
praisal of the network’s performance and provided an avenue for
comparing our method against other advanced techniques in the
field. The efficiency of our proposed light field image compres-
sion method was evaluated using PSNR and MSSIM metrics and
execution time. PSNR and MSSIM, computed on a per-frame ba-
sis and then averaged across all frames, serve as indicators of the
reconstructed image quality.
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Figure 5: Rate distortion performance comparison of 'Danger’
dataset
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Compression Methods for Reference

The compression methods for comparison include the JPEG-
Pleno VM2.0 standard specifically designed for LF compres-
sion [17], the learning-based compression methods Hierarchical
Learned Video Compression (HLVC) [18], and OpenDVC [19]
representing an open-source implementation of the Deep Video
Compression (DVC) compression approach.

The methodologies and configurations for JPEG-Pleno, in-
cluding the GOP size specifics, are detailed in [17]. Evaluation
of the HLVC and OpenDVC methods was conducted using the
respective authors’ code, adhering to recommended settings. Pre-
trained models were employed in the comparative analysis involv-
ing HLVC and OpenDVC, each offering four alternatives for the
hyper-parameter lambda(A). As outlined in [8], A, which can take
values of 256, 512, 1024, or 2048, mediates the balance between
distortion and bitrate. A high A value corresponds to lower dis-
tortion at the cost of an increased bitrate.

Results
Rate-Distortion Performance Comparison

The overall performance of our proposed method across dif-
ferent bitrates and datasets is both effective and versatile. This
efficacy is underscored by the study’s outcomes, illustrated in Fig-
ure 5, highlight the robust performance of our proposed method
across varying bitrates. The results we present here, focusing
on the ’Danger’ LF from EPFL dataset[15], exemplify the per-
formance of our model across different datasets. These results
demonstrate that for medium to high bitrates, our model consis-
tently outperforms all other methods under comparison, a pattern
that we’ve observed across other datasets as well. In low-bitrate
environments, the JPEG Pleno standard does prove to be more ef-
fective, maintaining superior visual quality compared to its coun-
terparts. However, it’s worth noting that this superiority is pri-
marily confined to low-bitrate scenarios. As the bitrate increases,
our model comes to the forefront, demonstrating significant im-
provements over all other methods. Therefore, despite JPEG’s ef-
ficiency in low-bitrate settings, our method is predominant across
the spectrum of medium to high bitrates, signifying substantial
advancements over competing techniques.

Table 2 summarizes a comparative analysis between our pro-
posed method and JPL VM2.0, focusing on Bjontegaard Delta
Signal to noise rate (B-DSNR(dB)) and Bjontegaard delta bit rate
(BD-BR(%)) [20]. In all the tested scenarios - ’Bikes’, ’Dan-
ger’, "Fountain’, and ’Pillars’ [15], our approach outperforms JPL
VM2.0. Specifically, our method consistently shows higher B-
DSNR(dB) gains, ranging from 1.26dB to 2.09dB. Furthermore,
in terms of BD-BR(%), our method reduces bit rates significantly,
with reductions from 42% to almost 65%. These results attest to
the effectiveness of our approach in comparison to JPL VM2.0.
However, it’s worth noting that JPL VM2.0 performs better than
our approach when applied to synthetic LF data. This could pos-
sibly be due to our approach fine-tuning a pre-trained network,

Table 2: Comparison of proposed method vs. JPEG Pleno for

photographic light fields
Dataset __B-DSNR (dB) _BD-BR (%)

Bikes[15] 1.66 471
Danger[15] 1.26 -58.7
Fountain[15] 1.69 -42.0
Pillars[15] 2.09 -64.7
Avg. 1.67 53.12
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originally trained on photographic data, which may affect its per-
formance when dealing with synthetic data.

In our study, we analyzed the PSNR variation for the ”Dan-
ger” LF dataset to evaluate the performance of our proposed ap-
proach. Figure 8 shows that the PSNR decreases from the first
frame (I-frame) to the other 6 predicted frames for each GOP of
7. This degradation in quality can be attributed to the loss of
information during the compression and reconstruction process,
affecting the accuracy of the predicted frames. These findings
emphasize the need for efficient compression and reconstruction
techniques to preserve the quality of LF data.

Table 3 showcases a comparison of MSSIM (Mean Struc-
tural Similarity Index) values for various methods, specifically
at a fixed bits per pixel (bpp) value of 0.2. This bpp value was
chosen as an example to ensure a fair and standardized com-
parison among all methods, allowing us to evaluate their perfor-
mance under the same compression rate for the *Danger’, *Pil-
lar’, ’Bikes’, and *Fountain’ scenarios. Our proposed method out-
performs the compared alternatives: JPEG Pleno, RLVC, HLVC,
and OpenDVC. Specifically, our approach yields MSSIM scores
of 0.983 for "Danger’, 0.987 for ’Pillar’, 0.990 for ’Bikes’, and
0.987 for ’Fountain’, the highest among all methods. The com-
mendable performance of our method in terms of structural simi-
larity underscores its effectiveness and demonstrates its ability to
deliver improved results compared to other state-of-the-art tech-
niques, establishing its value in the field of image compression.

Statistical Properties and Execution Time

Through this study, our attention was drawn towards the
’Danger’ dataset - particularly its filtered and unfiltered forms as
assessed via the use of in-Loop Filtering. Figure 4 provides an
insightful graphical representation that showcases Histograms for
residuals; When examining Figure 4 histograms again, we can
observe less deviation from zero (indicative of less noise) within
residual values found within properly filtered imagery. Moreover:
histograms within properly filtered variants tend to show more
symmetry around zero— signaling lower levels of extraneous vi-
sual disruptions persisting throughout the frame. Figures 7 and
6 illustrate the impact of in-loop filtering on quality. Figure 7
compares the performance of using in-loop filtering with either
the entire YUV color space or only the Y component. The results
show that using in-loop filtering with the whole YUV components
yields better performance. Figure 6 shows the error map with and
without using in-loop filtering, highlighting the improvement in
edge preservation achieved by in-loop filtering. Overall, these
figures demonstrate the effectiveness of in-loop filtering in im-
proving compressed frame quality, particularly for edge details.

It is worth noting that our method’s execution time for coding
was observed to be higher compared to existing methods. How-
ever, our primary focus remained on enhancing the overall com-
pressed frame quality, especially concerning edge preservation
and reducing visual disruptions, as demonstrated by the results
in Figures 4, 7, and 6. The study aims to investigate the coding

Table 3: MSSIM Comparison at bpp=0.2

Method MSSIM-Danger MSSIM-Pillar MSSIM-Bikes MSSIM-Fountain
Ours 0.983 0.987 0.990 0.987
Jpeg Pleno [17] 0.980 0.980 0.978 0.979
RLVC [8] 0.980 0.984 0.988 0.984
HLVC [18] 0.978 0.983 0.986 0.983
OpenDVC [19] 0.976 0.981 0.985 0.981
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a) b)
Figure 6: Error map of 'Pillars’ dataset for visualizing the effect of in-Loop Filtering. a) shows the Groundtruth Image, b) shows the
compressed Frame with our proposed method, c) shows the error map of the compressed frame without in-Loop Filtering, and d) shows
the error map of the compressed frame when we apply in-Loop Filtering
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Figure 7: RD-Performance of ’Fountain® dataset - shows the ef-
fect of Fine Tuning (FT), Fine Tuning in addition to use Y com-
ponent of YUV for in-Loop Filtering (ILF) and Fine Tuning and
Using YUV component together for in-loop Filtering

approach from a rate-distortion (RD) point of view, emphasizing
its effectiveness in improving compressed frame quality.

Conclusion

In conclusion, this paper offers a refinement to an exist-
ing neural network architecture specifically tailored for LF im-
age compression. Our work refines, extends, and particularly
optimizes the RLVC architecture for the compression of LF im-
ages in pseudo video sequences format. A critical addition is
the integration of a CNN-based in-loop filtering network, which
enhances the overall performance. Experimental results demon-
strated a notable 1-2 dB increase in the PSNR metric, when com-
pared to leading video compression methods.This enhancement
of image quality and rate-distortion performance not only con-
firms the efficacy of our contributions but also amplifies the po-
tential of deep learning-oriented methods for LF image compres-
sion. Future work includes optimizing our approach to improve
the RD-performance for synthetic light fields and address compu-
tational complexity such that encoding and decoding times can be
reduced.
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