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Abstract 
Solid-state lidar cameras produce 3D images, useful in 

applications such as robotics and self-driving vehicles. However, 

range is limited by the lidar laser power and features such as 

perpendicular surfaces and dark objects pose difficulties. We 

propose the use of intensity images, inherent in lidar camera data 

from the total laser and ambient light collected in each pixel, to 

extract additional depth information and boost ranging 

performance. Using a pair of off-the-shelf lidar cameras and a 

conventional stereo depth algorithm to process the intensity images, 

we demonstrate increase of the native lidar maximum depth range 

by 2× in an indoor environment and almost 10× outdoors. Depth 

information is also extracted from features in the environment such 

as dark objects, floors and ceiling which are otherwise not detected 

by the lidar sensor. While the specific technique presented is useful 

in applications involving multiple lidar cameras, the principle of 

extracting depth data from lidar camera intensity images could also 

be extended to standalone lidar cameras using monocular depth 

techniques. 

Introduction  
The evolution of 3D lidar from traditional mechanical scanning 

lidar to state-of-the-art solid-state “flash” lidar now allows for 

affordable 3D imaging in a compact form factor. This makes high-

performance 3D imaging commercially viable for a whole host of 

applications including robotics and self-driving vehicles, 

accelerating the lidar market from $1.8B in 2020 to a predicted 

$5.7B in 2026 [1]. Solid-state flash lidar cameras gain many 

advantages over the traditional mechanical scanning approach. 

These include higher achievable frame rate, low-cost manufacture, 

improved mechanical robustness and reduced artefacts from point 

occlusions. However, since the laser power of a flash lidar needs to 

illuminate and spread across the full field-of-view in contrast to a 

scanning approach, the maximum sensing range is limited. 

An often neglected, yet useful image also produced by lidar 

cameras is an in-tensity image, given by the total amount of light 

captured at each point in the scene. Example intensity images are 

shown below each corresponding depth im-age in Figure 1, 

uncovering details not captured by the depth images alone. Our 

work presents the first application of this inherent lidar intensity data 

to extract additional depth information. This enables an increase in 

the maximum achievable lidar depth range with no additional power 

consumption or hardware modification. Additional depth data of 

features which pose difficulties to lidar ranging such as 

perpendicular or dark surfaces are also extracted. The method 

implemented in this work uses a pair of short-range lidar cameras to 

compute stereo depth from combined intensity images, as illustrated 

in Figure 1. 

 

 

Figure 1. Illustration of extending lidar depth range by processing intensity 
images 

Related Work 
Extracting additional depth information from lidar intensity 

images is an approach that is unique to this work. However, a 

handful of prior studies have explored other means of improving 

ranging performance from multiple lidars. The refinement of lidar 

images using additional vision cameras is a more commonly 

explored topic of research. Both approaches are explored here. 

 

Lidar-Assisted Lidar 
The first work to combine multiple lidar cameras to improve 

depth performance was published by Castañeda et al. [2]. Depth 

images from two lidar cameras were used to define a cost function 

at each pixel and optimize the depth value. While this approach 

improves the accuracy of the acquired depth data, the maximum 

sensing range remains the same. 

In [3], a secondary lidar camera was used to help resolve the 

number of phase wrappings seen at each point in the primary lidar 

camera, thereby unlocking additional depth range. Phase wrapping 

is unique to indirect time-of-flight (iToF) techniques and is 

inherently overcome in many modern lidar cameras which employ 

direct time-of-flight (DToF) approaches. Nevertheless, the 

increased range enabled by this technique is still limited by the 

maximum laser power. 

 

Vision-Assisted Lidar 
While this work is unique in extracting stereo depth estimation 

from the lidar’s own intensity image, the use of an additional pair of 

vision cameras to enhance the lidar depth image is an alternative and 

commonly explored approach. These methods can be summarized 

into two categories: depth completion and error refinement. In the 

first category, vision camera images are used to upscale the 
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resolution of typically low resolution lidar cameras. The first 

published example was proposed in [4] using a Markov Random 

Fields (MRF) method by matching discontinuities in lidar depth to 

those in camera brightness. A summary of similar methods extend-

ed from this is given in [5]. The MRF method is further improved 

upon in [6] to work better under dynamic scenes.  

In the second category - error refinement - additional data from 

vision sensors are used to refine the accuracy of generated lidar data. 

This was performed most notably in [7] where a reliability fusion 

algorithm is developed using global regularization to improve lidar 

accuracy. This improves depth accuracy in regions of varying 

texture which pose challenges to lidar. 

It is noted that the opposite approach: lidar-assisted stereo 

vision e.g. to assist solving disparity estimation [8, 9], is a frequently 

explored topic beyond the scope of this paper. 

Preliminaries 

Lidar 
Time-of-flight (ToF) lidar sensors measure depth by timing the 

roundtrip of an emitted laser pulse. This can be determined directly 

(dToF) or indirectly (iToF) through measuring the different in phase 

of the returning pulse, typically by measuring four integration 

phases as illustrated in Figure 2. 

 

 
Figure 2. Illustration of indirect vs direct time-of-flight (lidar) methods. 

In dToF, the target distance d is simply given as a function of 

the laser return time t and speed of light c by (1): 

𝒅 =
∆𝒕 × 𝒄

𝟐
 

(1) 

On the other hand, the total integrated signal in each phase φ 

using a conventional four-phase iToF scheme at a pulse period T can 

be determined using (2): 

𝒅 =
𝑻 × 𝒄

𝟒𝝅
× 𝒕𝒂𝒏−𝟏 (

𝝋𝟑 − 𝝋𝟒

𝝋𝟏 − 𝝋𝟐
) 

(2) 

In both methods, the total light gathered is used to determine 

the laser signal arrival time. As a result, an intensity image created 

by integrating the total light detected at each pixel is readily 

available. 

In both approaches, ambient background (non-signal) photons 

are also collected by the lidar sensor, impacting the accuracy of the 

resulting depth measurement. To mitigate this, the presence of 

narrow bandwidth light filter, centered around the laser wavelength 

is integrated into the optics. Nevertheless, some ambient 

background photons are still collected in this wavelength range. The 

resulting intensity image is therefore often a combination of both the 

reflected laser (solid red in Figure 2) and ambient background light 

(dashed orange in Figure 2), a feature which will be exploited in this 

work. 

Stereo Depth 
By using a pair of vision cameras and identifying the pixel 

displacement ∆p of common points between both camera images, 

the distance to each point can be determined. For a camera baseline 

separation B and focal length f, the distance is given by (3). 

𝒅 =
𝒇 × 𝑩

∆𝒑
 (3) 

Method 

Apparatus 
This work was conducted using a pair of commercially 

available Basler Blaze-101 iToF lidar cameras mounted on a rigid 

dovetail rail as shown in Figure 3. The lidar cameras output 

processed depth and intensity data at a resolution of 640×480 pixels 

and maximum range of 10 m. They operate at a wavelength of 

940 nm with an optical filter allowing only light between 920–

970 nm to be detected. A Bosch GLM 250 VF rangefinder (not 

pictured) is used to assess the ground truth accuracy of processed 

intensity images. 

 

 

Figure 3. Camera setup. 

Processing 
The processing of lidar intensity images to provide additional 

depth information is split into two parts, setup and runtime, as 

illustrated by the flow diagram in Figure 4. 

 

 

Figure 4. Processing flow diagram for enhancing depth image from processed 
intensity images. 
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Setup 
The first phase of setup consists of camera calibration using a 

checkerboard. Intensity images of a checkerboard target are taken 

using both lidar cameras processed using the MATLAB Stereo 

Camera Calibrator [10]. A unique challenge in calibrating lidar 

cameras using intensity images compared to conventional imaging 

cameras is the presence of glare introduced by the lidar laser, as 

shown in Figure 5(a). This can be overcome by acquiring numerous 

checkerboard images at a variety of positions and angles (Figure 5 

(b)) until a suitable number of glare-free images have been acquired. 

A calibration of less than 0.1 pixels of reprojection error was found 

to give sufficiently accurate camera parameters for stereo matching. 

In order to assist the disparity algorithms in matching 

corresponding points in images between the left and right camera, 

the images are first rectified. This applies a transform to both images 

such that all matching points line up along the same horizontal 

plane, thus reducing the search space for disparity algorithms. The 

drawback of rectification is that the transformed image no longer 

has a one-to-one pixel correspondence with the original intensity 

image. Since image rectification is a non-linear transformation, the 

resulting processed image cannot be directly mapped to and merged 

with the original lidar depth image. To solve this issue, image 

registration is used [11] to find a transformation (translation, 

rotation, scaling, and/or shearing) which aligns a sample rectified 

image with its corresponding pre-rectified image. Once estimated, 

the same transformation can be reapplied to any rectified image 

provided the intrinsic and extrinsic properties of the camera remain 

unchanged. Since the transform estimation only needs to take place 

during setup, the additional processing overhead during runtime is 

reduced to just a single inexpensive image transformation.  

 

 
Figure 5. The issue of flash glare (a) from lidar intensity images which can 
result in degraded calibration. Use of various calibration target angles to 
capture images without glare (b). 

Runtime 
After acquiring depth and intensity images simultaneously 

from both lidar cameras, the intensity images are processed to 

extract further depth information. The narrow bandwidth light filter 

used in lidar sensors increases the shot noise of the intensity image 

compared to a conventional camera. This makes it more difficult for 

stereo disparity algorithms to match points between images. Using 

an optional pre-filter (median) can help to reduce this effect. After 

undergoing rectification, the pixel disparity between left and right 

images can then be resolved. In this work, we use the semi-global 

matching (SGM) algorithm [12] as a well-established method of 

solving stereo matching. A second optional post-filter (median) can 

be used, this time to replace small patches of missing pixel 

disparities. Pixel disparities are then converted to depth using the 

camera extrinsic parameters established during setup, along with 

(3). Finally, the stereo depth image is de-rectified using the 

transform estimated during “setup” and combined with the original 

lidar depth image. When combining the original lidar depth image 

with the stereo depth estimates, any points from the original lidar 

depth image are considered accurate and are therefore not 

overwritten. The depth estimated from the processed intensity 

images fills in any missing data points from the original lidar image. 

A breakdown of runtime processing time is provided in Table 1. 

Table 1. Breakdown of processing time during main runtime. 

Process Time (ms) Notes 

Acquire images 33 Limited by lidar  

Pre-filter 10 Optional 

Rectification 60 - 

Disparity algorithm 60 SGM 

Post-filter 5 Optional 

Disparity to distance 2 - 

De-rectify 2 - 

Merge lidar depth 1 - 

Total 174 Equivalent to 5+ fps 

Results 

Indoor 
The first set of results is comprised of images taken in an indoor 

environment. Under these conditions most of the light captured by 

the sensor is the reflected laser light. To assess the performance of 

the processed intensity depth within a real-world environment, 

images of a real human figure have been captured at a varying 

distance away from the lidar cameras. The captured and processed 

images are shown in Figure 6. 

  

 

Figure 6. Captured lidar and processed intensity images in an indoor 
environment. 
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At the shorter distances, the benefit of the additional processed 

intensity depth data in situations that are challenging for lidar 

sensors is apparent. These include surfaces that are near-

perpendicular to the sensors such (e.g. floor, ceiling, tables) and 

narrow objects such as chair legs. As the target human figure 

approaches 8 m and beyond, the returning laser signal is no longer 

sufficient for lidar measurements. However, the processed intensity 

images continue to resolve the distance to the human target. 

By trading off frame rate, multiple consecutive intensity 

images can be taken and averaged to extract further detail. The 

resulting processed depth from averaging 25 intensity frames is 

shown in the final column of images in Figure 6. Using this 

technique, the human figure is able to be resolved to a distance as 

far as 18 m, increasing the native lidar depth range of the human 

figure by over 2×. The processed intensity depth accuracy of the 

human figure at each distance step sampled over a 5×5 window of 

pixels is summarized in Figure 7. A degradation in accuracy with 

distance is observed with a root-mean squared error of 1 m at the 

maximum distance. 

 

 

 

Figure 7. Processed intensity depth accuracy ranging a human figure indoors 
using a 25-image average. 

Outdoor 
The second set of results is comprised of images taken in an 

outdoor environment. Under these conditions most of the light 

captured by the lidar is ambient background light. The resulting 

processed images from this scene are shown in Figure 8.  

The additional challenge presented to the lidar sensor under 

these conditions compared to the indoor environment is evident by 

the lack of native lidar depth points beyond even 5 m. The additional 

challenge presented to the lidar by dark surfaces is also evident in 

the lack of depth data points present on the foreground plant pot. In 

this scenario, the additional range data extracted from the intensity 

images not only fills in the missing plant pot data, but also reveals 

the presence of a human figure at 11.5 m which was otherwise 

undetected. Furthermore, buildings as distant as 40 meters from the 

target are detected, extending the maximum range in this scenario 

by nearly 10×. 

 

 

Figure 8. Captured lidar and processed intensity images in an outdoor 
environment. 

Discussion 
To provide a basis for further discussion, a large-scale sample 

image from the indoor dataset is provided in Figure 9 with 

accompanied zoomed in window portions.  

 

 
Figure 9. Zoomed in samples windows of the captured indoor dataset 
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The figure exemplifies the ability of the processed intensity 

images to fill depth information of narrow objects, in this case the 

legs of a chair. The limited laser returns from a narrow object, 

coupled with scattering issues make such objects challenging for 

lidar but relatively unchallenging for stereo depth estimation. While 

the missing depth data on the floor is also filled in by the processed 

intensity images, the contrast between the original depth data and 

the filled in estimated depth suggests some inaccuracy in the 

estimated depth from intensity images.   

The main limitation of the presented technique in its current 

form is the requirement to average images over long acquisition 

times to achieve intensity image quality high enough for stereo 

depth estimation. In addition, while the intensity images captured 

indoors are comprised of mainly the reflected laser light, the outdoor 

scene relies on ambient illumination. As a consequence, this 

technique is limited to bright ambient conditions when conducted 

outdoors. However, this is complimentary to the performance of the 

native lidar depth performance, which improves under low ambient 

conditions as seen in Figure 6. (indoor) vs. Figure 8 (outdoor).  

Under these conditions the need for additional depth data from 

processed intensity images is less critical.   

Conclusion 
We demonstrate that the native depth range of lidar cameras 

can be increased through processing the inherent intensity images. 

This technique could provide additional useful data in applications 

such as self-driving vehicles which integrate multiple lidar sensors. 

This technique has been demonstrated using a pair of off-the-shelf 

solid-state lidar cameras and a basic stereo depth algorithm. Missing 

depth information has been successfully extracted from features in 

the environment such as floors, ceiling and dark objects. By 

averaging multiple frames of intensity images, the native lidar 

maximum depth range increased by 2× in an indoor environment 

and almost 10× outdoors. 

To develop this work further, future work should focus on 

reducing the required exposure time/averaging of intensity images. 

This can be achieved by (i) exploring alternative stereo depth 

estimation algorithms and (ii) the increased light sensitivity of state-

of-the-art single photon avalanche diodes (SPADs) based lidar 

sensors [13, 14] which will soon improve the quality of the inherent 

intensity image. Finally, exploring new learning-based monocular 

depth estimation techniques [15, 16] would enable range extension 

using only a single lidar camera.  
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