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Abstract
Automated extraction of intersection topologies from aerial

and street-level images is relevant for Smart City traffic-control
and safety applications. The intersection topology is expressed in
the amount of approach lanes, the crossing (conflict) area, and
the availability of painted striping for guidance and road delin-
eation. Segmentation of road surface and other basic information
can be obtained with 80% score or higher, but the segmentation
and modeling of intersections is much more complex, due to multi-
ple lanes in various directions and occlusion of the painted strip-
ings. This paper addresses this complicated problem by propos-
ing a dualistic channel model featuring direct segmentation and
involving domain knowledge. These channels are developing spe-
cific features such as drive lines and lane information based on
painted striping, which are filtered and then fused to determine
an intersection-topology model. The algorithms and models are
evaluated with two datasets, a large mixture of highway and ur-
ban intersections and a smaller dataset with intersections only.
Experiments with measuring the GEO metric show that the pro-
posed late-fusion system increases the recall score with 4–7 per-
centage points. This recall gain is consistent for using either
aerial imagery or a mixture of aerial and street-level orthographic
image data. The obtained recall for intersections is much lower
than for highway data because of the complexity, occlusions by
trees and the small amount of annotated intersections. Future
work should aim at consolidating this model improvement at a
higher recall level with more annotated data on intersections.

1. Introduction
Despite the promised reduction of traffic by the advent of

remote working, self-driving cars and environmental awareness,
the pressure on (urban) traffic infrastructure is still growing. This
compromises both travel times and human safety and leads to in-
creased environmental issues. To increase safety and effective
traffic flow, city management has a growing interest in Smart
City concepts, where people and traffic management are care-
fully monitored for optimizing travelling conditions and improv-
ing traffic flow. Essential elements of road infrastructures are the
intersections, which are crucial in supplying traffic to, through
and from the cities and which are attractive points for measuring
traffic throughput. Better insights on the structure of intersections
and their traffic throughput can help to improve any of the above-
mentioned issues. Accurate information on intersection topolo-
gies can be readily combined with video cameras and induction
loop measurements, so that it is important to automatically de-
rive the topology of the intersection. This topology can then be
combined with local measurements to provide the information re-

Figure 1. Example of annotated drive lines (blue), the conflict area (red)

and ignore zones (yellow).

quired for optimizing traffic flow and safety.
This paper attempts to derive the topology of an intersec-

tion in automated form using orthographic aerial and terrestrial
images. The research aims to find this topology in either one of
the two data sources, of which the images are captured by map-
ping companies. For the purpose of mapping the world, mapping
companies often opt to record during favorable capturing condi-
tions: no rain, no snow and with sufficient daylight. However,
the dataset images are captured every 5 m, which means approx-
imately 3 frames per second at typical urban cruising speed of
50 km/h, so that the vehicle and the camera are rarely in a static
position and thus always moving. Because of the low frame rate
and the moving position of the camera, traffic flow cannot be mea-
sured and should be obtained from other cameras and sources.
This implies to investigate methods for detecting the road infras-
tructure, which can be derived from lane detection and line paint-
ings (i.e. those lines which define lane boundaries) and road sur-
faces (i.e. the drive-able road surface, not parking areas) to ulti-
mately identify the intersection topology.

Automated detection of road infrastructure has been inten-
sively explored over the past decade. Some lane detection meth-
ods [1], [2] propose to detect painted striping and drive lines from
the vehicle-mounted cameras for autonomous vehicles. This type
of work mostly focuses on forward-looking cameras, while using
left, right and backward-looking cameras which should give more
information. Furthermore, these methods mainly detect lanes for
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Figure 2. Overview of the intersection topology modeling, depicting the individual segmentation functions and domain-knowledge functions. The final result

provides a geo-referenced topology model of the intersection.

the current vehicle position, but do not combine detections across
frames. He and Balakrishnan[3] are training a U-Net that can de-
tect drive lines directly. Although they gracefully published their
code and data, we could not reproduce the same results as the
authors reported. Liao et al. [4] propose MapTR, a transformer
model to detect painted striping lines in an end-to-end fashion,
but do not yet extract drive lines. Xu et al. [5] have recently pre-
sented CenterLineDet which does detect drive lines and attempts
to connect consecutive regions.

Our previous work [6] has derived the drive lines from the
painted striping and road edges, but this results into several rule-
based post-processing steps and does not account for merging and
splitting lanes. This method offers insufficient performance be-
cause many intersections in the dataset do not have painted strip-
ing, while edge-of-road features have been found to be very noisy.
Moreover, the approach does not solve branching and merging
lanes. In [7], we have used segmentation networks to find the
drive lines directly by learning line segmentation and line extrac-
tion. Since this initial work was based on aerial imagery, one of
the failure cases included trees covering the roads in aerial views.
This problem can be circumvented by using images captured by
terrestrial vehicles.

The first problem that is addressed in this work, is the occlu-
sion of the road in aerial views. More specifically, we will look
into the usage of Street-Ortho images [8], which are orthographic,
top-view images generated from a terrestrial vehicle to avoid oc-
clusions from the air. The second problem is based on the possible
combination of domain knowledge with extra information result-
ing from lane striping. The domain knowledge can be extracted
from images and involves information on the average width of
lanes, road surface identification and special striping for cross-
ings. This information is combined with the direct extraction of
drive lines to construct a better model of the intersection topology.
The aforementioned problem aspects have not been addressed in
other work thus far.

The contributions of this paper include two aspects. (1) A
method for late-fusion of the drive-line data by direct segmenta-
tion within the images and the domain knowledge defined by con-
ventional indications. (2) The combined use of aerial and Street-
Ortho data in order to improve drive-line extraction performance.

The remainder of this paper is organized as follows. Section
first provides an overview of the extraction pipeline and zooms in
on its stages of particular interest in subsequent sections. Section
presents the experimental results. Section discusses the results
and presents conclusions.

2. Method
This section describes the employed method to extract drive

lines for intersection topologies. The first subsection describes
an overview of the complete method. After a subsection on the
data preparation, we describe the two channels separately, i.e. di-
rect segmentation and the domain-knowledge model, but mostly
report on the improvement details.

2.1 Overview of complete topology derivation
Figure 2 depicts a block diagram with the flow of the

information-extraction model. The diagram shows a dual-channel
approach, where the upper channel involves direct segmentation
functions and the lower channel combines domain knowledge of
the topology with striping information. These two channels are
combined at the end of the modeling trajectory. The inputs are
the geographical location of the intersection and the aerial and/or
Street-Ortho image(s). From the image(s), binary segmentation
masks are extracted from which lines are extracted. These painted
striping and drive-line lines are merged with Highest Confidence
First (HCF) algorithm, i.e. a greedy, hierarchical algorithm re-
ported in [6]. The separate approaches of the intersection are fit-
ted on these merged lines. Next, the conflict area, i.e. the area
where drive lines from different approaches cross each other, is
estimated, in order to filter the painted striping lines and obtain
reliable results. These filtered painted striping lines are then used
to extract drive lines [6]. Finally, the drive lines extracted from
the drive-line mask and those derived from the directly detected
painted striping are combined via the above-mentioned greedy
merging algorithm (HCF). The final result for the intersection is
the intersection model, containing the number of approach lanes,
the type of crossing and the total complexity of the intersection.
Finally, the intersection model is converted to a geo-referenced
model to enable integration with other downstream functions or
automation.

2.2 Data preparation - Blending and artifacts
The data preparation solely consists of blending of the

Street-Ortho imagery with the aerial imagery. Unfortunately,
Street-Ortho imagery cannot be produced at all desired locations
where the research is conducted. This limitation mainly affects
the highway scenes, which are only used for training in this paper.
However, there are a couple of intersections with entries or exits
to the highway, that miss the imagery on one or a few approaches
of the intersection. In order to exploit this data maximally, the
Street-Ortho image is overlaid on top of the corresponding aerial
image to construct a proper image. The alignment of the images
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depends solely on the accuracy of the positioning and calibration
of the aerial and terrestrial cameras: No further processing is per-
formed to improve the alignment. Figure 3 shows visual examples
of aerial and blended imagery. When comparing Scene 1 aerial
to its blended counterpart, it is readily clear that in the blended
image the roads under the trees are visible. However, there are
some visual artifacts in the Street-Ortho image which occur less
in the aerial data, including artifacts around moving vehicles and
the illumination differences caused by driving variable trajectories
across the intersection at different times of the day. Scene 2 also
shows some Street-Ortho artifacts on the right approach due to il-
lumination differences. A final note of interest is that the painted
striping in the top approach in Scene 1 is still poorly visible due
to poor illumination conditions under the trees.

2.3 Direct Segmentation
The direct segmentation method extracts drive lines directly

from the image. It consists of three steps: segmentation,
drive-line extraction and drive-line clustering with HCF.

A Segmentation
The segmentation function-modeling is based on U-Net [9] for
each feature type. An initial comparison with the more modern
SWIN transformer [10] for drive-line segmentation has confirmed
the selection of U-Net for the segmentation of the desired line
information.

Data augmentation steps of the training data include hori-
zontal and vertical flipping, adding Gaussian noise, contrast vari-
ations, 180 degrees rotation. It should be noticed that, likely
due to the consistent quality of the professional source images,
the data augmentation techniques like sharpening, blurring and
adding noise are reduced in probability of occurrence by a fac-
tor 3 to 20 compared to the typical levels reported in literature.
However, the augmentation for the drive-line segmentation has
been modified at one particular point. We have found empiri-
cally that randomly cropped images should contain a minimum
amount of ground-truth information (currently at least 1%), since
the training data is rather unbalanced due to the limited thickness
of drive-lines and painted striping lines in the images.

In the data, conflict areas and ignore zones are specifically
defined and annotated. The conflict area of an intersection is the
region where drive lines are crossing on that intersection. An ig-
nore zone is an area which is ignored for the analysis for avoid-
ing uncertainties in decision making. Any pixel within a conflict
area or ignore zone does not contribute to the loss function or
validation scores during training. Ignore zones are defined in ar-
eas where typically several misclassifications of pixels occur and
which do not contribute to the intersection-topology modeling,
such as residential areas. Finally, we have employed individual
networks for automated analysis of the blended and aerial data.
B Drive-line extraction
Initial line extraction from the drive-line mask, is now performed
using the Hough transform on tiles of 64×64 pixels, instead of
using the other methods investigated in previous work [7]. In the
preliminary studies of the work, we have found that there is yet
insufficient ground-truth annotations for painted striping to train
an LCNN [11]. Furthermore, the proposed work on NEFI [12]
appears to yield unpredictable and poor results on our segmenta-
tion masks. Employing the Hough transform on small-sized tiles,

such as 64×64 pixels, has resulted in better performance, despite
that it is limited to only detecting straight lines.

2.4 Domain-knowledge model
The domain-knowledge model adds general, prior knowl-

edge about intersections with the objective to increase the
accuracy. The model uses the same segmentation model and the
associated training as described above, to create segmentation
masks of the painted striping and the road surface. For extracting
painted striping lines, line extraction (going from pixels to lines)
and merging with the HCF algorithm is executed as in the direct
segmentation branch of the drive lines. Similar to our earlier
work [6], the approaches and conflict areas are fitted from the
painted striping lines. The following subsections describe how
drive lines are added to these algorithms and how the novel
extensions are implemented in the overall framework. Finally,
the domain-knowledge model extracts the drive lines as the lines
between consecutive painted striping lines.

A. Approach fitting
Using the painted striping lines after filtering, the purpose of the
succeeding approach fitting is to find the approaching lanes of the
intersections.

A RanSaC-like approach is adopted in which the algorithm
randomly selects one pivot line, which will be considered a valid
painted striping line for an approach lane in the current iteration.
All lines on that side of the intersection with approximately the
same angle as the pivot line are projected onto a specific line, that
is orthogonal to the pivot line at the intersection. The projections
can be used in a 1D clustering problem to determine which lines
are close to the pivot line in terms of distance. Evidently, close
lines are clustered. The support for the proposed approach lane is
then computed by summing the lengths along the trajectories of
all lines in sufficiently large clusters. If the support is insufficient,
the algorithm randomly selects another line as pivot line. Assum-
ing there was sufficient support, the algorithm randomly selects
another line from the remaining, non-clustered lines and repeats
the procedure for a maximum amount of iterations.

The algorithm is executed in parallel both for painted
striping lines and for drive lines. The use of drive lines in this
algorithm is similar to the previous approach: The drive lines are
clustered around any kind of pivot line and other candidate drive
lines are clustered using the projection method, optimizing the
support, etc.

B. Conflict area estimation
The method of finding the conflict area is based on the intersec-
tion points of the painted striping lines from different approach
lanes. The conflict area is defined by finding the hull around these
intersection points. By mixing drive lines and painted striping
lines, extra intersection points can be found by mixed crossings
of drive lines and painted striping lines.

C. Late fusion HCF
Late fusion is the final stage of the modeling process and com-
bines the output of the direct segmentation channel and the
domain-knowledge model channel. In the fusion, also the HCF al-
gorithm is applied, but with a different setting of the algorithm:
the weights are tuned more towards clustering longer line strings

IS&T International Symposium on Electronic Imaging 2024
Autonomous Vehicles and Machines 2024 114--3



(a) Scene 1 - Aerial (b) Scene 1 - Blended (c) Scene 2 - Aerial (d) Scene 2 - Blended
Figure 3. Examples of aerial and blended images illustrating the advantage of avoiding occlusions compared to aerial imagery, but also other artifacts.

together.

3. Experimental results
A. Brief data description
The dataset comprises aerial and Street-Ortho images of size
2048×2048 pixels, which corresponds to a spatial resolution of
approximately 10 cm per pixel. The dataset is split in 38 urban
intersection scenes for training and 29 scenes for validation,
where intersections from the same municipality are grouped
together. Furthermore, the training set also includes 78 highway
scenes for additional learning material, which could be easily
annotated for ground-truth information. As mentioned earlier,
the Street-Ortho images are sometimes not available for highway
scenes or parts of the other scenes. For all scenes, drive lines and
road surfaces are available in annotated form as ground truth,
where the road surfaces are partly auto-generated with scores
above 80%. For 46 scenes, also painted striping annotations are
available.

B. Initial segmentation
Table 1 shows the IoU score and the recall for the U-Net segmen-
tation stage, which includes both the intersection as the highway
scenes for training and validation. Note that the validation
results for painted striping are not presented, because the amount
of training data is so low, although visual verification on new
data shows that the segmentation appears to be of sufficient
quality. In all these cases, it is clear that both IoU score and
recall improve when using blended images albeit with a variable
number of percentage points. More specifically, the recall of
the road surface improves 7 percentage-points and the drive
line 4 percentage points. The data amount is here much higher
than for intersections only, so that a well above 80% scores are
obtained.

C. Line-detection segmentation metrics
Using segmentation metrics is a possible way for evaluating
the line-detection results. To create the segmentation masks,
the ground-truth and detected lines are rendered as lines with
5 pixels in width. The quality of these masks can be compared
using standard evaluation metrics for segmentation, i.e. recall and
precision scores.

Table 1. Performances for drive-line and road-surface segmen-
tation using aerial and blended images on a combined dataset
of highways and urban crossings.

Aerial Blended
IoU Recall IoU Recall

Road Surface 0.80 0.81 0.84 0.88
Drive line 0.85 0.55 0.86 0.59

Table 2. Measured GEO and segmentation metrics for the di-
rect segmentation method and the late-fusion approach using
aerial or blended imagery of intersections only.

Input Algorithm GEO Segmentation
recall prec. recall prec.

Prev. work [6] 0.29 0.69 n.a n.a.

Aerial Direct 0.50 0.47 0.25 0.26
Aerial L-fusion 0.54 0.40 0.29 0.24
Blended Direct 0.45 0.55 0.23 0.29
Blended L-fusion 0.52 0.46 0.28 0.28

D. Line-detection GEO metric
Following other work on metrics [3], the evaluation includes
performance in terms of GEO recall and precision. First, the
GEO metric prescribes to sample the ground-truth lines and
then the detected lines in equidistant points. For this, 0.25 m
is adopted for the sampling distance similar to recent related
work [3]. Second, using an optimal assignment [13] to assign
ground-truth points within a certain range to detected points,
allows to determine true positives, false negatives etc., and hence
recall and precision scores. During conversations with users of
the algorithms, it became clear that positional accuracy is not
essential for their traffic-control applications, therefore we select
a threshold of 1 m for the distance between ground-truth points
and detected points.

E. Line-detection results
Both image sources (blended vs aerial) are used for testing with
respect to: (a) whether drive lines are extracted directly (only
using drive-line segmentation, line extraction and line merging)
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or (b) late-fusion results. Table 2 lists the achieved performance
in terms of the GEO metric and segmentation metrics. The
obtained results show that higher segmentation metrics are also
coupled to higher GEO metrics in nearly all cases, except one for
which we have no explanation. The results show that using the
proposed pipeline typically results in higher GEO recall (e.g. 0.54
instead of 0.5 for aerial) at the cost of lower precision (e.g. 0.40
instead of 0.47). Furthermore, when using blended source data,
the obtained results show higher precision with lower recall than
when using aerial imagery as input. For example, the late-fusion
result achieves a precision of 0.40 for aerial images and 0.46
for blended images, for nearly the same recall values of 0.54
and 0.52, respectively. The measured recall scores are lower for
segmentation, since the implied distance threshold of 5 pixel line
models between neighboring lines is 2.5 pixels, corresponding to
approximately 25 cm, compared to the range threshold of 1 m
used in the GEO metric.

F. Execution time
The dual-channel approach takes significantly more time (20 min-
utes) than than the direct segmentation approach (2.5 minutes).
This increase is mostly due to the iterative algorithms Clustering
and Approach Fitting as described in Section , although both are
implemented in python code with few optimizations.

4. Discussion and Conclusions
In this paper, we have presented a dualistic segmentation ap-

proach for drive lines on lanes of roads and direct segmentation
of painted stripes on roads for creating a intersection-topology
model, using either aerial or combined aerial/street-level ortho-
graphic images as input. The late-fusion system is based on direct
segmentation of drive-lines and a domain-knowledge model that
derives drive lines from painted stripe lines. In this way, a more
richer input to the final determination of drive lines can be ex-
ploited.

The experiments on pixel-level segmentation of road surface
and drive lines when sufficient data is available, using a combined
dataset of highways and intersections, results in recall scores 80–
88% for road surface and 50–59% for drive lines.

Using only the intersection dataset, reduces all scores drasti-
cally because the total dataset size is more than halved and much
more complex in terms of lane structures and it has more occlu-
sions by trees which corrupts the delineation of roads.

For the intersection data only, the GEO metric results show
that the proposed late-fusion system increases the recall score
with 4–7 percentage points at the cost of a lower precision, albeit
at a much lower recall value of about 50-60%. This is less harm-
ful for this application, since manual removal of false positives
costs less time than adding false negatives manually. The higher
recall is explained by the fact that the late-fusion system incor-
porates domain knowledge as well as direct segmentation results.
This recall improvement is consistent when using conventional
segmentation metrics.

A further discussion is required on the low absolute values
of the scores, even with the domain-knowledge incorporated in
the late-fusion system. The high scores of 80% as reported by [3]
can be reproduced for the mixed highways-intersections data, but
not for intersections only because this data is much more complex.

For example, a considerable amount of intersections in our dataset
is partially occluded by trees so that the striping of lanes in the
ground truth of aerial views is regularly corrupted. The planting
of trees along roads is commonly applied along virtually all roads,
which is part of the Dutch culture. This makes accurate modeling
of complex topologies with multiple lanes a difficult task.

Future work should focus on more intersection data and
specifically developing ground-truth data for blended imagery, not
only for aerial imagery. Finally, it is interesting to combine and
compare our complete model involving the domain-knowledge
model with recently reported direct extraction approaches such
as CenterLineDet [5].
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