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Abstract 
With artificial-intelligence (AI) becoming the mainstream 

approach to solve a myriad of problems across industrial, 

automotive, medical, military, wearables and cloud, the need for 

high-performance, low-power embedded devices are stronger than 

ever. Innovations around designing an efficient hardware 

accelerator to perform AI tasks also involves making them fault-

tolerant to work reliability under varying stressful environmental 

conditions. These embedded devices could be deployed under 

varying thermal and electromagnetic interference conditions which 

require both the processing blocks and on-device memories to 

recover from faults and provide a reliable quality of service. 

Particularly in the automotive context [1], ASIL-B compliant AI 

systems typically implement error-correction-code (ECC) which 

takes care of single-error-correction, double-error detection 

(SECDED) faults. ASIL-D based AI systems implement dual lock 

step compute blocks and builds processing redundancy to reinforce 

prediction certainty, on top of protecting its memories. Fault-

tolerant systems take it one level higher by tripling the processing 

blocks, where fault detected by one processing element is corrected 

and reinforced by the other two elements. This becomes a 

significant silicon area adder and makes the solution an expensive 

proposition. In this paper we propose novel techniques that can be 

applied to a typical deep-learning based embedded solution with 

many processing stages such as memory load, matrix-multiply, 

accumulate, activation functions and others to build a robust fault 

tolerant system without linearly tripling compute area and hence 

the cost of the solution. 

Introduction 
Neural-network (NN) based AI solutions are widely applied 

to solve multiple real-world problems such as classifying different 

objects over a conveyor belt, identifying vehicles, pedestrians 

traffic signs, traffic lights, segmenting free space for autonomous 

robots to navigate and more, offering a high degree of accuracy 

and performance. By design, a neural network consists of series of 

computationally connected layers as shown in Figure 1. Each layer 

has features and the connections between features are weights 

which are learnt by training the network. Deep convolutional 

neural networks [2] (CNN) are particularly applied to image-based 

input signals coming from a camera to infer real world objects. 

These computations can be reduced to basic matrix multiply 

accumulate operations which makes hardware design simple as 

opposed to traditional computer vision techniques which required 

specialized processors to implement custom mathematical 

operations on a hardware accelerator or a Digital Signal Processor 

(DSP). [3] 

 

 

 

Figure 1. A typical neural network with one input layer, two hidden layers and 
one output layer. Circles represent features and arrows represents trained 
weights.  

While designing neural network based embedded solutions 

multiple optimization vectors need to be considered as shown in 

Figure 2. Performance of a NN processing block is measured in 

terms of Trillion-Operations-Per-Second (TOPS). Embedded 

device constrains of power [4] and cost also gets measured as 

TOPS/watt and TOPS/dollar respectively. Software scalability and 

ease-of-use also influences the hardware design decisions to make 

it easy for customers to program the device. Other important 

vectors are security, safety, system performance and multi-

modality [5]. In this paper we will discuss the challenges of 

building an embedded device which can work safely and reliably 

under stressful environmental conditions of varying temperature 

changes, electromagnetic interference which can affect the 

memories and processing block of the compute unit. 

Figure 2. Various optimization vectors to be considered while designing an 
embedded processor for running neural networks 

 

  

 

 

https://doi.org/10.2352/EI.2024.36.17.AVM-113
© 2024, Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2024
Autonomous Vehicles and Machines 2024 113--1



 

A typical embedded device implementing a processing block 

is systolic [6] by design. There is a processing block which reads 

the operands as an input and writes the result as an output to a 

memory block. CNN processing can be implemented as simple 

matrix multiply operation of trained weights and features followed 

by accumulation of partial results at every stage. The final 

accumulated result is passed through an activation function which 

helps normalize the output within a certain range. Large matrix 

multiplications are broken down as a sum of product of smaller 

matrices. Inner- product based matrix multiply accumulate units 

could be designed as shown in Figure 3 where the row vector A [1 

x M] is multiplied by matrix B [MxM] producing C matrix [MxM] 

of results.  The A row vector could directly fetch weights from 

memory whereas the B matrix could be double buffered to 

parallelize load and compute operation. The C matrix is also 

double buffered to parallelize accumulate and store operations. The 

store path of C result can have an activation function which adjust 

the output range before its stored into the memory.  

 

Figure 3. Systolic neural network engine comprising of key stages, matrix A 
and B read from memory, matrix multiplication, accumulation and non-linear 

activation and write of matrix C back to memory 

Faults can occur at any stage in the operation affecting 

memory and processing elements. In the automotive context, for 

ASIL B safety levels the memory is protected with parity or ECC 

[8]. The processing element is checked for faults with a known test 

pattern in a programed time internal called Built-In-Self-Test [7] 

(BIST) mechanism.  For ASID-D levels dual-lockstep processing 

elements are used where fault in one is detected by other. For fault 

tolerant systems a minimum of triple-lockstep processing elements 

is deployed where fault in one is detected by the other two and 

corrected. While this makes the solution robust and fault tolerant, it 

also becomes expensive as it linearly adds area and hence the cost 

of the device. 

 

Figure 4. In automotive safety, ASIL B systems have ECC/parity memory 
protections, ASIL-D systems have memory protections and compute 
protection with dual lockstep processing. Fault tolerant system have triple 
redundancy where fault in one processing block is detected and corrected by 
other two processing blocks along with memory protections 

A reliable fault tolerant neural network system can be built by 

breaking down the processing block into smaller processing stages 

and reinforcing the data fetch and data compute integrity at each 

stage as shown in Figure 5. The below proposal assumes the size 

of participating matrices of size MxM with fixed-point integer 

elements of 8-bit depth. However, it can be extended to apply for 

any arbitrary matrix size and element bit-depth. The illustration 

also shows row and column location of a potential fault which can 

be corrected by algebraic corrections. These computations of 

detection and correction has to occur in parallel and ahead of 

actual compute to maintain real-time performance.   

Stage1: Correct fault in the input data 

 Compute and store row and column checksums of A and B 

matrix in the memory a-priori. A column checksum could simply 

be the sum of all elements along a matrix column. A row 

checksum is the sum of all elements along a matrix row. While 

loading the A and B matrix during inference, compute the row and 

column checksums and compare it against the pre-computed 

checksums fetches via separate path. Any mismatch will indicate 

the exact faulty location which can be corrected. Let A be the input 

matrix of size [MxM] with elements ranging from (a11 to amm), B 

be the input matrix of size [MxM] with elements ranging from (b11 

to bmm). Let Ac and Bc be the column sums and Ar, Br be the row 

sums of A and B matrix, 

Ar[i]Mx1 = SUM (aij), Br[i]Mx1 = SUM (bij) 

Ac[j]1xM = SUM (aij), Bc[j]1xM = SUM (bij) 

Stage2: Correct fault in the matrix multiply stage 

 A matrix [MxN] times row checksum of B matrix [Nx1] 

produces row checksum of C matrix [Mx1]. Similarly, column 

checksum of A matrix [1xN] with B matrix [NxM] produces 

column checksum of C matrix [1xM]. Fetch the column and row 

checksums of C matrix via a separate path and compare against the 

column and row sum of the computed C matrix [MxM] after 

multiplying A and B matrix. This will provide the exact location of 

fault and can be corrected by algebraic operations.  

Cr[i][Mx1] = AMxM x Br[i]Mx1 

Cc[j][1xM] = Ac[j]1xM x BMxM 

Stage 3. Correct fault in matrix accumulation stage 

 The row and column sums of A and B matrix are simply 

added iteratively to produce the final row and column sums of C 

matrix. This is compared against the row and column sum of C 

matrix after final accumulation. This too will provide exact 

location of fault which can be corrected by algebraic operations. 

Cr[i]Mx1 = Ar[i]Mx1 + Br[i]Mx1 

Cc[j]1xM = Ac[j]1xM + Bc[j]1xM 

Stage 4. Correct fault in activation functions 

 Typically, activation functions can be simple rectified-linear-

units [10] (RELU) or be non-linear in nature. These often take 

much less gates when implemented as look-ups or as cordic 

function units [11]. So, applying triple redundancy logic here does 

not impact the overall area too much. 

Stage 5. Result checksum 

 After passing the final C matrix result through activation, the 

row and column checksums are computed and stored in the 

memory for later stages. 

Cr[i]Mx1 = SUM (cij) 

Cc[j]1xM = SUM (cij) 
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Figure 5. Proposal at various stages of processing with dedicated paths to read reference matrix checksum, calculating checksums on the fly, comparing and 
correcting errors at every stage. Only the non-linear activation stage is replicated as it does not add to overall area cost significantly.  

The proposed solution is simulated assuming a matrix panel size of 

64x64 8-bit elements. We need 512-bit bus to fetch 64 8-bit 

elements in a single clock for each A and B panels. In parallel we 

fetch 16bit checksums via a 128-bit bus at a slower rate. This is 

because column and row checksums can be fetched at 1/4th the rate 

we fetch actual A and B elements. Notice the bit expansion from 8-

bit to 16-bit that occurs when we produce column and row 

checksums of each A and B matrix. The expected checksum is 

compared against the computed checksum. The row and column 

position of single or multiple single point errors can be detected 

and corrected. During the multiply stage the checksums expand to 

24bit (8bit x 16bit). A matrix times B row checksum results in C 

row checksums which are 24-bit in depth. Similarly, B matrix 

times A column checksum results in C column checksums which 

are 24-bit in depth. Hence the bus to fetch C reference checksums 

need to 24-bit wide. The expected checksum is compared against 

computed checksums and exact row and column location of the 

fault is identified. The value is corrected via algebraic operations 

before actual matrix multiplication of A and B matrix. The C 

matrix error can also be detected by comparing against reference C 

column and row checksums and corrected before it is sent to 

accumulation stage, but this requires storing and reading partial 

row and column sums of C matrix which can increase the read 

bandwidth. In the accumulation stage depends on how deep the 

convolution filters are and the accumulated result can further 

expand to 32-bits. The reference row and column checksum of C 

matrix is compared against the final accumulated C matrix 

checksum and similar to previous stages the exact row and column 

location of the faults is reported and corrected before it is passed 

on to the non-linear activation function stage. Non-linear functions 

are either implemented as lookup table with Newton-Raphson 

methods to refine precision or as cordic-units to reduce lookup 

table size and on-chip memory. As this stage does not affect the 

overall area of the chip this is implemented as redundant compute 

stage with 3X compute logic. Before storing the C panel results 

row column checksums are computed and stored back in the 

memory for future layer reference. After activation stage the 32-bit 

accumulated sum is quantized [8] back to 8-bits as this becomes 

the next set of features for subsequent layers.  

For all the logic units to work in parallel sufficient stage 

pipelining and buffering need to be handled as shown in Figure 6. 

Reference checksums must arrive before computing checksums 

and comparisons. Sufficient timing also has to be allotted for 

correction once the exact row, column of fault is identified. It takes 

64 cycles to read one full matrix of 64x64 using 512bit bus. There 

are two dedicated bus for read (A & B panel bus) and one 

dedicated bus for write (C panel bus). The A matrix is fetched in 

blocks of 64 as [A1, A2, A3 … AN]. The B matrix is also fetched in 

blocks of 64 but is kept in double buffered panel as [B1, B2, B3, . 

BN]. The C panel output is also broken down into 64x64 chunks 

but is again double buffered [C1, C2, C3, … CN] Using the 128-bit 

checksum bus on the input side, A and B checksums arrive in 32 

cycles. A and B error computation and correction before the next 

64-cycle window begins where the actual matrix multiplication 

happens [C1 = A1 x B1]. At the end of the 2nd 64-cycle window C 

error computation occurs and output is corrected before the C 

panel accumulation begins in the 3rd 64-cycle window. At this time 

C reference checksum can arrive, note this is 32-bit checksums as 

there is data expansion due to multiplication and accumulation. 

This operation repeats till all accumulation iterations are complete 

and the final C panel sum is forwarded to non-linear activation 

function stage. Here results are generated thrice, compared for 

consistency and corrected for fault if any. Before writing the 

output, checksums are computed and quantized back to 16-bit for 

next layer processing. In the steady-state all the stages take 

deterministic amount of time and executed in parallel to meet real-

time performance requirements. The 64-cycle window is a function 

of the panel size. Proper consideration of panel size and bus width 

is crucial to accommodate reference checksum fetch to arrive in 

the background before the computations begin. 
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Figure 6. Pipeline sequencing of various stages. Checksum fetch and 
compute has to run in parallel to actual compute stages, just in time to perform 
comparison and correction 

Simulation and Results 
 

 
Figure 7. HDL simulated timing diagram which shows error detected in A 
panel with errors in row 1 and column 2 which is detected in next clock and 
corrected in the following 

 

The proposed solution is HDL [12] coded and simulated. 

Simulation shows the ability to detect error in matrix A, B, C along 

with full performance. High level waveform shown in Figure 7 

shows error is detected in A panel and corrected in the following 

cycle. Table 1 shows a baseline estimate for a typical matrix 

multiply engine adding to roughly 25.09M gates. 

Table I: Baseline area estimate for a typical matrix multiply engine 

Module Gate 
count  

Comments 

ECC A & B 18K  

A panel 4K 64 8-bit elements 

B panel 521K 2 panels, 4096 8-bit elements 

Dot product block 20.16M 64 vector multipliers 

Accumulator 128K 64 32-bit adders 

C panel 1024K 4096, 32-bit elements 

Activation 
function 

48K  

ECC calculation 8K  

Total gate count 21.86M  

 

Table II lists the gate count for the proposed solution which 

includes logic for ECC, correction circuitry and additional buses to 

carry reference checksums. As it adds up, the proposed fault 

tolerant design adds less than 15% of gate count compared to 3X 

gate count with a fully redundant design.  

Table II: Proposed architecture gate count  

Module Gate 
count 

Comments 

Checksum A&B 198K  

A panel 256K 4096, 8-bit elements 

B panel 512K 2 panels, 4096 8-bit elements 

ECC A panel 48K 
Generation, storage & 
correction 

ECC B panel 576K 
Generation, storage & 
correction 

A correction 32K 64-bit adder 

Dot product block 20.16M 64 vector multipliers 

Checksum 
product 

1252K 
2 vector multipliers  
(64 x 8-bit * 16-bit) + storage 

A*B correction 96K 64 24-bit adder 

Accumulator 128K 64 32-bit adder 

C Panel 1024K 4096 32-bit elements 

ECC C Panel 192K 
Generation, storage & 
correction 

Checksum C 360K 2 * 64, 40-bit adder + storage 

C correction 128K 64 32-bit adder 

Activation function 140K 3X 

Checksum on C’ 99K  

Total gate count 25.09M  

 
 

 

 

Error in A detected 

Row =1 

Col = 2 

Correction factor = -1 

Incorrect Element 

Element post correction 
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Conclusion and future work 
In this paper we have discussed novel ways of designing a 

fault tolerant system with just a marginal increase in area over a 

baseline design without any memory or compute protections. This 

is a significant improvement in overall area and cost of the 

solution over a fully redundant (3X) fault tolerant system. Future 

work involves exploration of minimizing the 15% overhead of area 

by not checking fault and correcting it at every stage but delay 

correction at key stages of just multiplication or accumulation. 
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