

Efficient fault tolerant architecture for neural network compute

Shyam Jagannathan, Mihir Mody, Prithvi Shankar, Villarreal Jesse, JuneChul Roh, Kumar Desappan, Deepak Poddar, Pramod

Swami, Embedded Processors Business, Texas Instruments

Abstract
With artificial-intelligence (AI) becoming the mainstream

approach to solve a myriad of problems across industrial,

automotive, medical, military, wearables and cloud, the need for

high-performance, low-power embedded devices are stronger than

ever. Innovations around designing an efficient hardware

accelerator to perform AI tasks also involves making them fault-

tolerant to work reliability under varying stressful environmental

conditions. These embedded devices could be deployed under

varying thermal and electromagnetic interference conditions which

require both the processing blocks and on-device memories to

recover from faults and provide a reliable quality of service.

Particularly in the automotive context [1], ASIL-B compliant AI

systems typically implement error-correction-code (ECC) which

takes care of single-error-correction, double-error detection

(SECDED) faults. ASIL-D based AI systems implement dual lock

step compute blocks and builds processing redundancy to reinforce

prediction certainty, on top of protecting its memories. Fault-

tolerant systems take it one level higher by tripling the processing

blocks, where fault detected by one processing element is corrected

and reinforced by the other two elements. This becomes a

significant silicon area adder and makes the solution an expensive

proposition. In this paper we propose novel techniques that can be

applied to a typical deep-learning based embedded solution with

many processing stages such as memory load, matrix-multiply,

accumulate, activation functions and others to build a robust fault

tolerant system without linearly tripling compute area and hence

the cost of the solution.

Introduction
Neural-network (NN) based AI solutions are widely applied

to solve multiple real-world problems such as classifying different

objects over a conveyor belt, identifying vehicles, pedestrians

traffic signs, traffic lights, segmenting free space for autonomous

robots to navigate and more, offering a high degree of accuracy

and performance. By design, a neural network consists of series of

computationally connected layers as shown in Figure 1. Each layer

has features and the connections between features are weights

which are learnt by training the network. Deep convolutional

neural networks [2] (CNN) are particularly applied to image-based

input signals coming from a camera to infer real world objects.

These computations can be reduced to basic matrix multiply

accumulate operations which makes hardware design simple as

opposed to traditional computer vision techniques which required

specialized processors to implement custom mathematical

operations on a hardware accelerator or a Digital Signal Processor

(DSP). [3]

Figure 1. A typical neural network with one input layer, two hidden layers and
one output layer. Circles represent features and arrows represents trained
weights.

While designing neural network based embedded solutions

multiple optimization vectors need to be considered as shown in

Figure 2. Performance of a NN processing block is measured in

terms of Trillion-Operations-Per-Second (TOPS). Embedded

device constrains of power [4] and cost also gets measured as

TOPS/watt and TOPS/dollar respectively. Software scalability and

ease-of-use also influences the hardware design decisions to make

it easy for customers to program the device. Other important

vectors are security, safety, system performance and multi-

modality [5]. In this paper we will discuss the challenges of

building an embedded device which can work safely and reliably

under stressful environmental conditions of varying temperature

changes, electromagnetic interference which can affect the

memories and processing block of the compute unit.

Figure 2. Various optimization vectors to be considered while designing an
embedded processor for running neural networks

https://doi.org/10.2352/EI.2024.36.17.AVM-113
© 2024, Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2024
Autonomous Vehicles and Machines 2024 113--1

A typical embedded device implementing a processing block

is systolic [6] by design. There is a processing block which reads

the operands as an input and writes the result as an output to a

memory block. CNN processing can be implemented as simple

matrix multiply operation of trained weights and features followed

by accumulation of partial results at every stage. The final

accumulated result is passed through an activation function which

helps normalize the output within a certain range. Large matrix

multiplications are broken down as a sum of product of smaller

matrices. Inner- product based matrix multiply accumulate units

could be designed as shown in Figure 3 where the row vector A [1

x M] is multiplied by matrix B [MxM] producing C matrix [MxM]

of results. The A row vector could directly fetch weights from

memory whereas the B matrix could be double buffered to

parallelize load and compute operation. The C matrix is also

double buffered to parallelize accumulate and store operations. The

store path of C result can have an activation function which adjust

the output range before its stored into the memory.

Figure 3. Systolic neural network engine comprising of key stages, matrix A
and B read from memory, matrix multiplication, accumulation and non-linear

activation and write of matrix C back to memory

Faults can occur at any stage in the operation affecting

memory and processing elements. In the automotive context, for

ASIL B safety levels the memory is protected with parity or ECC

[8]. The processing element is checked for faults with a known test

pattern in a programed time internal called Built-In-Self-Test [7]

(BIST) mechanism. For ASID-D levels dual-lockstep processing

elements are used where fault in one is detected by other. For fault

tolerant systems a minimum of triple-lockstep processing elements

is deployed where fault in one is detected by the other two and

corrected. While this makes the solution robust and fault tolerant, it

also becomes expensive as it linearly adds area and hence the cost

of the device.

Figure 4. In automotive safety, ASIL B systems have ECC/parity memory
protections, ASIL-D systems have memory protections and compute
protection with dual lockstep processing. Fault tolerant system have triple
redundancy where fault in one processing block is detected and corrected by
other two processing blocks along with memory protections

A reliable fault tolerant neural network system can be built by

breaking down the processing block into smaller processing stages

and reinforcing the data fetch and data compute integrity at each

stage as shown in Figure 5. The below proposal assumes the size

of participating matrices of size MxM with fixed-point integer

elements of 8-bit depth. However, it can be extended to apply for

any arbitrary matrix size and element bit-depth. The illustration

also shows row and column location of a potential fault which can

be corrected by algebraic corrections. These computations of

detection and correction has to occur in parallel and ahead of

actual compute to maintain real-time performance.

Stage1: Correct fault in the input data

 Compute and store row and column checksums of A and B

matrix in the memory a-priori. A column checksum could simply

be the sum of all elements along a matrix column. A row

checksum is the sum of all elements along a matrix row. While

loading the A and B matrix during inference, compute the row and

column checksums and compare it against the pre-computed

checksums fetches via separate path. Any mismatch will indicate

the exact faulty location which can be corrected. Let A be the input

matrix of size [MxM] with elements ranging from (a11 to amm), B

be the input matrix of size [MxM] with elements ranging from (b11

to bmm). Let Ac and Bc be the column sums and Ar, Br be the row

sums of A and B matrix,

Ar[i]Mx1 = SUM (aij), Br[i]Mx1 = SUM (bij)

Ac[j]1xM = SUM (aij), Bc[j]1xM = SUM (bij)

Stage2: Correct fault in the matrix multiply stage

 A matrix [MxN] times row checksum of B matrix [Nx1]

produces row checksum of C matrix [Mx1]. Similarly, column

checksum of A matrix [1xN] with B matrix [NxM] produces

column checksum of C matrix [1xM]. Fetch the column and row

checksums of C matrix via a separate path and compare against the

column and row sum of the computed C matrix [MxM] after

multiplying A and B matrix. This will provide the exact location of

fault and can be corrected by algebraic operations.

Cr[i][Mx1] = AMxM x Br[i]Mx1

Cc[j][1xM] = Ac[j]1xM x BMxM

Stage 3. Correct fault in matrix accumulation stage

 The row and column sums of A and B matrix are simply

added iteratively to produce the final row and column sums of C

matrix. This is compared against the row and column sum of C

matrix after final accumulation. This too will provide exact

location of fault which can be corrected by algebraic operations.

Cr[i]Mx1 = Ar[i]Mx1 + Br[i]Mx1

Cc[j]1xM = Ac[j]1xM + Bc[j]1xM

Stage 4. Correct fault in activation functions

 Typically, activation functions can be simple rectified-linear-

units [10] (RELU) or be non-linear in nature. These often take

much less gates when implemented as look-ups or as cordic

function units [11]. So, applying triple redundancy logic here does

not impact the overall area too much.

Stage 5. Result checksum

 After passing the final C matrix result through activation, the

row and column checksums are computed and stored in the

memory for later stages.

Cr[i]Mx1 = SUM (cij)

Cc[j]1xM = SUM (cij)

113--2
IS&T International Symposium on Electronic Imaging 2024

Autonomous Vehicles and Machines 2024

Figure 5. Proposal at various stages of processing with dedicated paths to read reference matrix checksum, calculating checksums on the fly, comparing and
correcting errors at every stage. Only the non-linear activation stage is replicated as it does not add to overall area cost significantly.

The proposed solution is simulated assuming a matrix panel size of

64x64 8-bit elements. We need 512-bit bus to fetch 64 8-bit

elements in a single clock for each A and B panels. In parallel we

fetch 16bit checksums via a 128-bit bus at a slower rate. This is

because column and row checksums can be fetched at 1/4th the rate

we fetch actual A and B elements. Notice the bit expansion from 8-

bit to 16-bit that occurs when we produce column and row

checksums of each A and B matrix. The expected checksum is

compared against the computed checksum. The row and column

position of single or multiple single point errors can be detected

and corrected. During the multiply stage the checksums expand to

24bit (8bit x 16bit). A matrix times B row checksum results in C

row checksums which are 24-bit in depth. Similarly, B matrix

times A column checksum results in C column checksums which

are 24-bit in depth. Hence the bus to fetch C reference checksums

need to 24-bit wide. The expected checksum is compared against

computed checksums and exact row and column location of the

fault is identified. The value is corrected via algebraic operations

before actual matrix multiplication of A and B matrix. The C

matrix error can also be detected by comparing against reference C

column and row checksums and corrected before it is sent to

accumulation stage, but this requires storing and reading partial

row and column sums of C matrix which can increase the read

bandwidth. In the accumulation stage depends on how deep the

convolution filters are and the accumulated result can further

expand to 32-bits. The reference row and column checksum of C

matrix is compared against the final accumulated C matrix

checksum and similar to previous stages the exact row and column

location of the faults is reported and corrected before it is passed

on to the non-linear activation function stage. Non-linear functions

are either implemented as lookup table with Newton-Raphson

methods to refine precision or as cordic-units to reduce lookup

table size and on-chip memory. As this stage does not affect the

overall area of the chip this is implemented as redundant compute

stage with 3X compute logic. Before storing the C panel results

row column checksums are computed and stored back in the

memory for future layer reference. After activation stage the 32-bit

accumulated sum is quantized [8] back to 8-bits as this becomes

the next set of features for subsequent layers.

For all the logic units to work in parallel sufficient stage

pipelining and buffering need to be handled as shown in Figure 6.

Reference checksums must arrive before computing checksums

and comparisons. Sufficient timing also has to be allotted for

correction once the exact row, column of fault is identified. It takes

64 cycles to read one full matrix of 64x64 using 512bit bus. There

are two dedicated bus for read (A & B panel bus) and one

dedicated bus for write (C panel bus). The A matrix is fetched in

blocks of 64 as [A1, A2, A3 … AN]. The B matrix is also fetched in

blocks of 64 but is kept in double buffered panel as [B1, B2, B3, .

BN]. The C panel output is also broken down into 64x64 chunks

but is again double buffered [C1, C2, C3, … CN] Using the 128-bit

checksum bus on the input side, A and B checksums arrive in 32

cycles. A and B error computation and correction before the next

64-cycle window begins where the actual matrix multiplication

happens [C1 = A1 x B1]. At the end of the 2nd 64-cycle window C

error computation occurs and output is corrected before the C

panel accumulation begins in the 3rd 64-cycle window. At this time

C reference checksum can arrive, note this is 32-bit checksums as

there is data expansion due to multiplication and accumulation.

This operation repeats till all accumulation iterations are complete

and the final C panel sum is forwarded to non-linear activation

function stage. Here results are generated thrice, compared for

consistency and corrected for fault if any. Before writing the

output, checksums are computed and quantized back to 16-bit for

next layer processing. In the steady-state all the stages take

deterministic amount of time and executed in parallel to meet real-

time performance requirements. The 64-cycle window is a function

of the panel size. Proper consideration of panel size and bus width

is crucial to accommodate reference checksum fetch to arrive in

the background before the computations begin.

IS&T International Symposium on Electronic Imaging 2024
Autonomous Vehicles and Machines 2024 113--3

Figure 6. Pipeline sequencing of various stages. Checksum fetch and
compute has to run in parallel to actual compute stages, just in time to perform
comparison and correction

Simulation and Results

Figure 7. HDL simulated timing diagram which shows error detected in A
panel with errors in row 1 and column 2 which is detected in next clock and
corrected in the following

The proposed solution is HDL [12] coded and simulated.

Simulation shows the ability to detect error in matrix A, B, C along

with full performance. High level waveform shown in Figure 7

shows error is detected in A panel and corrected in the following

cycle. Table 1 shows a baseline estimate for a typical matrix

multiply engine adding to roughly 25.09M gates.

Table I: Baseline area estimate for a typical matrix multiply engine

Module Gate
count

Comments

ECC A & B 18K

A panel 4K 64 8-bit elements

B panel 521K 2 panels, 4096 8-bit elements

Dot product block 20.16M 64 vector multipliers

Accumulator 128K 64 32-bit adders

C panel 1024K 4096, 32-bit elements

Activation
function

48K

ECC calculation 8K

Total gate count 21.86M

Table II lists the gate count for the proposed solution which

includes logic for ECC, correction circuitry and additional buses to

carry reference checksums. As it adds up, the proposed fault

tolerant design adds less than 15% of gate count compared to 3X

gate count with a fully redundant design.

Table II: Proposed architecture gate count

Module Gate
count

Comments

Checksum A&B 198K

A panel 256K 4096, 8-bit elements

B panel 512K 2 panels, 4096 8-bit elements

ECC A panel 48K
Generation, storage &
correction

ECC B panel 576K
Generation, storage &
correction

A correction 32K 64-bit adder

Dot product block 20.16M 64 vector multipliers

Checksum
product

1252K
2 vector multipliers
(64 x 8-bit * 16-bit) + storage

A*B correction 96K 64 24-bit adder

Accumulator 128K 64 32-bit adder

C Panel 1024K 4096 32-bit elements

ECC C Panel 192K
Generation, storage &
correction

Checksum C 360K 2 * 64, 40-bit adder + storage

C correction 128K 64 32-bit adder

Activation function 140K 3X

Checksum on C’ 99K

Total gate count 25.09M

Error in A detected

Row =1

Col = 2

Correction factor = -1

Incorrect Element

Element post correction

113--4
IS&T International Symposium on Electronic Imaging 2024

Autonomous Vehicles and Machines 2024

Conclusion and future work
In this paper we have discussed novel ways of designing a

fault tolerant system with just a marginal increase in area over a

baseline design without any memory or compute protections. This

is a significant improvement in overall area and cost of the

solution over a fully redundant (3X) fault tolerant system. Future

work involves exploration of minimizing the 15% overhead of area

by not checking fault and correcting it at every stage but delay

correction at key stages of just multiplication or accumulation.

References
[1] https://en.wikipedia.org/wiki/Automotive_Safety_Integrity_Level

[2] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classifcation with

deep convolutional neural networks. In: Advances in neural

information processing systems, 2012: 1097–1105

[3] M. Mody et al., "High Performance Front Camera ADAS

Applications on TI's TDA3X Platform," 2015 IEEE 22nd

International Conference on High Performance Computing (HiPC),

Bengaluru, India, 2015, pp. 456-463, doi: 10.1109/HiPC.2015.56.

[4] M. Mathew, K. Desappan, P. K. Swami, S. Nagori, and B. M.

Gopinath, “Embedded low-power deep learning with tidl,” Texas

Instrum., Dallas, TX, USA, Tech. Rep. SPRY314, 2018.

[5] Ngiam, Jiquan & Khosla, Aditya & Kim, Mingyu & Nam, Juhan &

Lee, Honglak & Ng, Andrew. (2011). Multimodal Deep Learning.

Proceedings of the 28th International Conference on Machine

Learning, ICML 2011. 689-696.

[6] Kung, "Why systolic architectures?," in Computer, vol. 15, no. 1, pp.

37-46, Jan. 1982, doi: 10.1109/MC.1982.1653825.

[7] E. J. McCluskey, "Built-In Self-Test Techniques," in IEEE Design &

Test of Computers, vol. 2, no. 2, pp. 21-28, April 1985, doi:

10.1109/MDT.1985.294856.

[8] R. W. Hamming, "Error detecting and error correcting codes," in The

Bell System Technical Journal, vol. 29, no. 2, pp. 147-160, April

1950, doi: 10.1002/j.1538-7305.1950.tb00463.x.

[9] K Desappan, et.al, “CNN Inference: Dynamic and Predictive

Quantization”, IEEE International Conference on Consumer

Electronics, (ICCE) , Berlin, 2018.

[10] Agarap, Abien Fred. (2018). Deep Learning using Rectified Linear

Units (ReLU).

[11] Vachhani, Leena & Sridharan, K. & Meher, P.K.. (2009). Efficient

CORDIC Algorithms and Architectures for Low Area and High

Throughput Implementation. Circuits and Systems II: Express Briefs,

IEEE Transactions on. 56. 61 - 65. 10.1109/TCSII.2008.2010169.

[12] https://en.wikipedia.org/wiki/Hardware_description_language

Author Biography
Shyam Jagannathan is an Edge AI architect and Senior Member of

Technical Staff (SMTS) at Embedded Processors Group, Texas

Instruments. His domains of interest include DSP architecture, SoC

architecture, hardware accelerators, deep learning, perception, sensor

fusion localization, path planning and overall system optimization He

received a master’s degree in the field of Signal Processing and

Communications from Illinois Institute of Technology, Chicago in 2013

Mihir Mody is SoC Architect lead and Distinguished Member of Technical

Staff (DMTS), responsible for roadmap and chip definition for Application

Specific MCU business in Texas Instrument (TI). His domains of interest

are real time control, image processing, computer vision, deep learning

and Video coding. He received his master’s in electrical engineering from

Indian Institute of Science (IISc) in 2000

Prithvi Shankar is SoC Architect and Senior Member of Technical Staff

(SMTS) responsible for chip definition for Application Specific MCU

business in Texas Instrument (TI). His domains of interest are VLSI design,

IP and SoC architecture and use case modelling.

Jesse Villarreal is a software architect for TI’s heterogeneous multicore

SoCs and a Senior Member of Technical Staff (SMTS) at Embedded

Processors Group, Texas Instruments. He received a master’s degree from

the University of Texas at Dallas in Computer Engineering and has been

with Texas Instruments since 2001. His areas of interest include DSP

software optimization, heterogeneous multicore middleware frameworks,

vision and imaging hardware accelerators, and overall system software

scalability, portability, and optimization

JuneChul Roh is a Senior Systems Architect and a Senior Member of

Technical Staff (SMTS) at the Embedded Processors Group, Texas

Instruments. His interests include signal processing, deep learning, radar,

edge AI, and robotics systems and applications. He received his Ph.D.

degree in Communications and Signal Processing from the University of

California, San Diego, in 2005

Kumar Desappan is Senior Member of Technical Staff (SMTS) at Texas

Instruments (TI) Incorporated. His domains of interest are Machine/Deep

learning, image processing and computer vision algorithms with a focus on

software solution for edge devices. He received Bachelor of Engineering

(BE) from Anna University - Chennai in 2005

Deepak Poddar is software development manager and Senior Member of

Technical Staff (SMTS) for Embedded processors business unit in Texas

Instrument s(TI). His domains of interest are image processing, computer

vision, deep learning and Video coding. He received his bachelor’s degree

in electrical engineering from National Institute of Technology, Warangal

in 2000
Pramod Swami is Distinguished Member of Technical Staff (DMTS) at

Processors Business in Texas Instruments (TI) leading the software
development for EdgeAI processing. His domains of interest are Embedded

systems, Digital Signal Processors, Deep Learning, Computer Vision,

Image Processing, and Video coding. He received his Bachelor’s degree in
Electronics and communication engineering from Malaviya National

Institute of Technology (MNIT) Jaipur in 2001

IS&T International Symposium on Electronic Imaging 2024
Autonomous Vehicles and Machines 2024 113--5

https://en.wikipedia.org/wiki/Hardware_description_language

