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Abstract 

Naturalistic driving studies consist of drivers using their 
personal vehicles and provide valuable real-world data, but privacy 
issues must be handled very carefully.  Drivers sign a consent form 
when they elect to participate, but passengers do not for a variety of 
practical reasons.  However, their privacy must still be protected.  
One large study includes a blurred image of the entire cabin which 
allows reviewers to find passengers in the vehicle; this protects the 
privacy but still allows a means of answering questions regarding 
the impact of passengers on driver behavior.  A method for 
automatically counting the passengers would have scientific value 
for transportation researchers.  We investigated different image 
analysis methods for automatically locating and counting the non-
drivers including simple face detection and fine-tuned methods for 
image classification and a published object detection method.  We 
also compared the image classification using convolutional neural 
network and vision transformer backbones.  Our studies show the 
image classification method appears to work the best in terms of 
absolute performance, although we note the closed nature of our 
dataset and nature of the imagery makes the application somewhat 
niche and object detection methods also have advantages.  We 
perform some analysis to support our conclusion. 

Keywords:  Naturalistic driving studies, privacy, object 
detection, image classification 
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Introduction 
Traffic fatalities are a major problem across with world, with 35,000 
annual deaths in the United States of America alone [1].  Insight into 
how crashes and near-crashes occur can be obtained by collections 
of actual driving data in the field; such studies are called Naturalistic 
Driving Studies (NDS), with data collected including temporal data 
on vehicle dynamics, as well as radar and video data [2].  The 
Second Strategic Highway Research Project (SHRP2) was 
conducted with approximately 3000 drivers in 6 data collection sites 
in the US between 2010 and 2013 [3]. The size of the study makes 
it a valuable resource for fundamental questions about driver 
behavior, even with new advances in safety equipment.   
 
One question involves the impact of passengers on driver behavior.  
Intuitively, passengers could act as distractions, but they could also 
assist in driving by acting as a “second set” of eyes to alert the 
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drivers to issues.  Reported research has found various factors; a 
study sampling car crashes found most crashes were due to 
inattentiveness, and a major component was when drivers were 
conversing with passengers [4]. Other studies have shown similar 
results, with one showing passenger distraction as the most common 
distraction by a large margin (7.4% in distraction from passenger vs. 
*2.2% in the next highest distraction: using a mobile phone) [9] and 
another showing distractions from passengers being observed in 
53.2% of vehicles with passengers present [10].  There are many 
variables involved, including the ages of the passenger / driver and 
the nature of the driving itself, but the overall impact remains an 
open question. 
 
The SHRP2 NDS included a blurred cabin image (Figure 1) sized 
360x480 pixels, which was captured every 10 minutes to allow for 
the detection of passengers in the vehicle.  Due to the nature of the 
consent agreements, passengers were not specifically included and 
therefore their privacy must be preserved.  (Note that the image in 
Figure 1 is an example image and is not from the study itself).  Thus, 
the blurred cabin image features a means of privacy protection, and 
further removing the blur was not an option due to the privacy 
constraints.  
 

 
Figure 1:  An example of a blurred SHRP2 cabin image to show the technique.  
Note this is not an image of an actual NDS subject, but rather is an image used 
to illustrate the effect [3]. 
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This is an example of a niche “downstream task” for computer 
vision [7], which would have been more difficult prior to the advent 
of modern computer vision and machine learning tools.  In this case 
we wish to determine the number of passengers both in the front seat 
and rear seats of the vehicles to help identify NDS “trips” which 
could help yield information about passenger impacts on behavior.  
An initial study was conducted which used an image classification 
approach using the AlexNet architecture [23] for transfer learning 
by partitioning the image into regions of interest with a dataset 
selected from example images in the SHRP2 study. Subsequent 
work [11] used an object detection approach, which has the 
advantages of helping to locate anomalies in passenger positions or 
gaining better understanding of other potential safety issues such as 
unusual seating arrangements.  Overall, we believe the object 
detection approach has advantages over an image classification 
approach, but it also has some potential issues including the 
difficulty of detecting the passengers, particularly in the rear of the 
vehicle.  Thus, in this work, we sought to determine how the object 
detection approach compared with robust image classification 
methods, especially given that the overall environment is fairly 
constrained.  We were interested in comparisons with newer models 
used as backbones [5] [12][13] and combined language-imagery 
methods [8], with the latter offering promise for zero-shot 
applications where essentially no training or fine-tuning is needed. 
While there is considerable volume of data in SHRP2, finding and 
labeling data for training sets is always difficult and costly, so 
methods which use less data for training have advantages, especially 
in niche applications.  Another issue is the “unnatural nature” of the 
imagery, as the self-imposed blur is not typical of large image 
datasets used in training large models. 
 
The paper is organized as follows.  First, we discuss the datasets 
and dataset preparation.  We next review the methods used in the 
evaluation.  We follow with a summary of the results and 
discussion of the method performances.  Finally, we conclude with 
additional overall discussion and suggestions for follow-on work. 

Data 
Dataset 
The SHRP2 data collection system used a set of analog cameras to 
capture video at 15 frames per second.  A single blurred snapshot of 
the entire cabin was taken every 10 minutes to provide situational 
awareness of the cabin environment, particularly the presence and 
location of passengers.  The entire SHRP2 dataset is archived at 
Virginia Tech Transportation Institute (VTTI) [25]. 
 
The dataset used was a collection of day and night images from most 
of the vehicles in the SHRP2 dataset (some vehicles were omitted 
due to issues such as a faulty camera or hang tags which blocked the 
view or had identifying information).  The data was collected from 
the VTTI archive in three phases.  The first phase was a collection 
where there were known to be passengers in the vehicle. The second 
was a collection of a daytime and nighttime image from every 
vehicle in the dataset. These two data collections consisted of 2834 
different vehicles with a median of 4 images per vehicle [24]. The 
third was a final collection obtained from the archived data in 2023 
which also used day and night views from each vehicle but were 
checked to ensure they had not been used in any earlier datasets, so 
we were certain they were images that could be used for testing 
purposes. This data collection consisted of 1081 images from 167 
different vehicles with a median of 6 images per vehicle. Although 

the images are new, all 167 vehicles were present in the other two 
data collections.  We used the first two sets for training and 
validation and the final set for testing. 
 
There were sometimes small changes in the camera position, but 
generally we were confident that the front passenger could be 
assessed with a region of interest covering the left half of the image.  
The front driver was in the right half, but the driver was always 
present, so we did not really need to estimate their presence. 
However, it served as a good data source for “person present” in the 
training set for the front-seat passengers. 
 
The rear vehicle locations were more difficult (and partially a reason 
why the object detection approaches could have benefits).  An 
example of a single vehicle with and without backseat passengers is 
shown in Figure 2.  There were typically 3 positions to assess, but 
some vehicles (large vans) had as many as six, and some vehicles 
(trucks with no rear seat) had no rear passengers. Further, the 
backseat data was unbalanced (prevalence < 0.10).  We did some 
initial experiments by balancing the data. We found that models 
performed better with the larger unbalanced datasets, so we used the 
original unbalanced data.  A summary of the datasets is shown in 
Table 1, with the number of images, unique vehicles, and 
occurrences of front passengers and rear passengers listed. 
 
Table 1. Summary of Datasets 

Name Images Vehicles Front  Rear  

Witcher 5654 2834 1515 666 

2023 1081 167 375 221 

 

Establishing Ground Truth 
We established ground truth for passenger presence in two phases.  
For the front seat, we split the images in half and manually 
checked presence or absence of people (we checked the driver side 
as well in the process).  For the backseat, locations were selected 
for each vehicle to establish the likely positions of passengers.  
This was a difficult procedure because in many cases it was not 
clear when passengers were present, because the expected signs of 
occupancy were not consistent; for example, often a rear passenger 
face was hidden due to occlusion from the front seat.  We 
examined the images from identical vehicles for comparison 
purposes which helped us detect the differences in the back seat 
occupancy when applicable.  This per-vehicle location was useful 
for the image classification approaches, with a 91x91 pixel region 
of interest selected.  For the object detection ground truth, the 
process was slightly different.  We selected the center of the face 
for the front seat passenger and a 275x320 pixel region of interest.  
Finally, we note that there were still cases where the ‘ground truth’ 
was not clear.  In these cases, we omitted this area of interest (but 
not necessarily the entire image). 

Methods 
Object Detection and Location  
 
We tested two object detection methods which targeted face or body 
detection.  First, we used a recently developed model from 
researchers at VTTI [11]. The method was specifically fine-tuned 
for the SHRP2 blurred cabin imagery and used a Faster-RCNN 
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model [14], with a ResNet50 backbone (23M parameters).  We used 
the tool implementation from GitHub [21] and simply processed our 
newest dataset for comparison with other methods. The second 
method was an “out of the box” face detection tool “RetinaFace” 
[15][16] as we had found it operated rather robustly against other 
NDS data [22].  RetinaFace was used “as is”, with no fine-tuning, 
as a baseline method; the implementation also used a ResNet50 
backbone. 
 

 

 

 
Figure 2.  Image example from study. Top: Image from a vehicle with no 
backseat passengers.  The face of the front seat driver is occluded by a box 
added by the authors.  Middle: Image from the same vehicle but with two 
back-seat passengers.  Again, faces are occluded, but they are visible in the 
actual image, along with body components occluding parts of the back seat.  
Bottom: Same image as middle, but with the back seat passengers outlined to 
accentuate their presence.  

Image Classification  
We used three general approaches for image classification 
backbones: convolutional neural network (CNN), Vision 
Transformer (ViT), and contrastive language-image pretrained 
(CLIP) transformer models.  In our earlier unpublished work, which 
was the basis for comparison in [11], we used AlexNet for transfer 
learning, but newer models are available that should be more 
effective. We performed some initial testing to determine which 
models could be easily implemented and fine-tuned for this 
problem.  We selected pre-trained ResNet18 (to represent a smaller 

sized network) [12][20] and EfficientNetB7 (a newer, larger 
network) [13][19].  ResNet, or Residual Network, provides 
shortcuts through residual learning, allowing for less complexity 
and easier optimization. ResNet18, a form of ResNet with 18 layers, 
represents an earlier topology with advances over other models such 
as AlexNet [23], and EfficientNetB7 features a newer topology with  
lower computing power and parameter requirements than 
comparably performant models. EfficientNetB7 was shown to 
outperform ResNet50 on the ImageNet dataset. However, 
ResNet18, the scaled-down version of the ResNet50, is a good 
baseline for transfer learning, as it does not take long to train. As a 
rough measure of the magnitude of these models, ResNet18 has 
11.4M parameters and EfficientNetB7 has 66M parameters. We also 
used vision transformers (ViTs) due to their recent popularity in 
downstream tasks.  ViTs use the transformer architecture which is 
simpler than CNN architectures [5][6] but more scalable to larger 
datasets to constitute “foundation” models [7].  Our implementation 
uses a ViT B-16 model [5] with 86M parameters. We used a 
PyTorch implementation to fine-tune and test these models.  
 
For fine tuning these image classification methods, we created a 
training set of 85% of the Witcher data and reserved the rest for a 
validation set. We used a consistent batch size of 4, max epoch 
amount to 1000, and a patience of 10, based on validation accuracy. 
We also used random flips, affine, and color jitters for data 
augmentation, as well as a resize, center crop, and normalization for 
image transforming. We used a learning rate of 0.01 for all methods.  
In all cases, ten fine-tuning trials were run, and the best performing 
model based on the validation score was chosen.  
 
Finally, we used the Contrastive Language and Image Pretraining 
(CLIP) [8][18] model with a ViT backbone (totaling approximately 
63M parameters).  CLIP embeds images and text information 
together when training.  We used the Vision Transformer B16 model 
[17] for the visual component and distilBERT-base-uncased 
[27][26] for the language component. We first tested some 
preliminary prompts (see Table 2), ultimately selecting “a picture of 
a person” and “a picture of an empty seat”. Then, we fine-tuned the 
model with our own training data, and then tested it again analogous 
to the other image classifier methods.  We normalized the scores for 
these metrics based on the training data results to ensure scores 
ranged from 0 to 1 for the estimates.  We used a learning rate of 
0.00001 for the CLIP method. 
 
The initial prompt tests were performed somewhat ad-hoc, using 
both our intuition and suggestions generated by ChatGPT4 [28].  
Table 2 shows example prompts along with the F1 score.  While the 
best prompt was “A picture of a blurred empty seat” and “A blurred 
picture of a person” with an F1-score of 0.67, we elected to use the 
non-blur version of the prompts as the difference was minimal and 
we wanted to do more of a comparison leveraging natural images. 

Evaluation Comparisons 
 
Comparing the broad image classification and object detection 
methods required some attention.  The detections of the object 
detectors were evaluated by comparing the detected and ground 
truth bounding boxes with an Intersection over Union score.  Each 
object detection was tested against the ground truth and the highest 
IOU was utilized.  The confidence score of this best detection was 
logged for comparison with the image classification methods. 
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Table 2. Zero-Shot Prompt Testing 

No Person Prompt Person Prompt F1 
"Empty front 
passenger seat in a 
car" 

"A car's front passenger 
seat occupied by a person" 

0.40 

"Car's front 
passenger seat 
without any person" 

"Interior of a car with 
someone sitting in the front 
passenger seat" 

0.49 

"Automobile 
interior with no one 
in the front 
passenger seat" 

"Car with a person in the 
passenger seat" 

0.58 

"Unoccupied front 
passenger seat of a 
vehicle" 

"Automobile interior 
showing a person in the 
front right seat" 

0.32 

"Front seat of a car 
next to the driver is 
empty" 

"An individual is sitting in 
the front seat of a car next 
to the driver" 

0.55 

"A picture of an 
empty seat" 

"A picture of a person" 0.61 

"A picture of a 
blurred empty seat" 

"A blurred picture of a 
person" 

0.67 

"Blurred 
Automobile interior 
with no one in the 
front passenger 
seat" 

"Car with a blurred person 
in the passenger seat" 

0.56 

 

Results and Discussion 
Front Passengers 
The precision-recall (PR) and receiver-operating characteristic 
(ROC) curves are shown in Figure 3 and Figure 4.  Results are 
tabulated as well in Table 3, where we show the area under the curve 
(AUC) for the PR and ROC curve, the F1 score, and the precision 
and recall for the best F1 score.  We also show FPR*, which is the 
false positive rate when the true positive rate is 0.78, for comparison 
with [11].  From these results, we see that both the fine-tuned image 
classification and object detection methods perform well, with the 
baseline RetinaFace performing well but missing many of the 
passengers.  The CLIP zero-shot does have some promise but shows 
inferior performance; out of the two non-fine-tuned methods, the 
RetinaFace does seem to perform better, but it was specifically 
trained for face detection.  Of the Image Classification methods, 
excluding CLIP Zero-Shot (AUC = 0.67), each method performed 
very similarly, although EfficientNetB7 did perform the best (AUC 
= 1.00). Of the Object Detection methods, there was a significant 
increase in performance from Retinaface to the Faster-RCNN 
Object Detector from VTTI (AUC = 0.83 vs. AUC = 0.75).  

Rear Passengers 
The rear passenger results are shown in Figure 7 and Figure 8  and 
tabulated in Table 4.  The back seat task was understandably more 
difficult than the front seat due to the lower resolution, occlusion, 
and general poor visibility.  We note the CLIP Zero-Shot method 
performs similar for the ROC AUC for the front passenger case 
(AUC=0.67), but the RetinaFace method essentially does not detect 
rear passengers.  Overall, the image classification methods again 
perform better than the object detection methods. The ResNet18, 

CLIP Fine-Tuned, and ViT B 16 methods all performed similarly, 
and the best compared to other methods (AUC = 0.90, 
 

 
Figure 3 Perf-Recall curves for each method – Front Seat¬ 

 

 
Figure 4 ROC curves for each method – Front Seat 

 
Table 3. Front Seat Performance 

Method PR 
AUC 

ROC 
AUC 

F1  Prec Rec FPR* 

VTTI Faster-
RCNN 

0.97 0.83 0.97 1.00 0.94 0.18 

EfficientNet
B7 

1.00 1.00 0.98 0.98 0.99 0.00 

Vision 
Transformer 
B 16 

0.99 0.99 0.98 0.98 0.98 0.00 

RetinaFace 0.77 0.75 0.66 1.00 0.50 0.56 
CLIP Zero-
Shot 

0.54 0.67 0.61 0.46 0.93 0.46 

CLIP Fine-
Tuned 

0.93 0.98 0.95 0.94 0.97 0.02 

ResNet18 0.99 0.99 0.96 0.98 0.94 0.00 
 
0.89, 0.89, respectively), followed by EfficientNetB7 (AUC = 0.87). 
For Object Detection methods, both methods performed similarly to 
random guessing, although VTTI Faster-RCNN performed better 
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than the Retinaface (AUC = 0.56 vs. AUC = 0.51). Again, the 
backseat passenger prevalence level is very low (prevalence < 0.10), 
so guessing randomly gives around an accuracy of 90%. Therefore, 
the difference in accuracies for the backseat are not as drastic as the 
front seat.  

 
Figure 5 Perf-Recall curves for each method – Back Seat 

 
Figure 6 ROC curves for each method – Back Seat 

Dataset Size Impact 
As a final test, we were interested in determining the impact of 
different amounts of training data.  In many cases in real-world 
problems, data is limited and labeled training data can be costly, so 
methods that require less data should be favored.  In particular, we 
reasoned that larger models should require less training data since 
they have essentially “learned” more effectively in their pre-training 
stages.  To test this, we ran 3 trials on lower percentages of training 
data by randomly removing 5%, 10%, 25%, 50%, and 75% of data 
from the Witcher set, and again picking the best performer in the 
validation set, then testing against the test sets (which were not 
reduced in size). Other procedures were identical.  

Discussion 
As expected, each method did experience a decrease in performance 
when going from the front passengers to the back passengers, likely 
due to obstructed views (behind the front seats), lower resolution, 
and possibly cases where the passenger was not within the ideal 
regions of interest for each vehicle. 

 
Table 4. Back Seat Performance 

Method PR 
AUC 

ROC 
AUC 

F1  Prec Rec FPR* 

VTTI Faster-
RCNN 

0.36 0.56 0.22 0.59 0.14 0.75 

EfficientNet
B7 

0.59 0.87 0.58 0.61 0.55 0.19 

Vision 
Transformer 
B 16 

0.61 0.89 0.59 0.67 0.53 0.15 

RetinaFace 0.16 0.51 0.15 0.08 1.00 0.78 
CLIP Zero-
Shot 

0.20 0.67 0.24 0.15 0.56 0.54 

CLIP Fine-
Tuned 

0.56 0.89 0.54 0.57 0.52 0.17 

ResNet18 0.58 0.90 0.55 0.52 0.58 0.16 
 

 
Figure 7 F1 scores for each training data size – Front Seat 

 
Figure 8 F1 scores for each training data size – Back Seat 

 
The results are summarized in Figure 7 and Figure 8. (Note that the 
vertical scales are different on both these plots.) For the front 
passengers, the EfficientNetB7 and CLIP Fine-Tuned methods 
seem to be noticeably the most resilient to smaller training data 
sizes. The ResNet18 is the least resilient to the smaller data set 
sizes.  For the rear passengers, a similar effect is shown with 
ResNet18 showing the least resilience to small training data sizes, 
while EfficientNetB7 and CLIP Fine-Tuned methods show the 
most resilience with the back passengers.  We note that the CLIP 
zero-shot model had a ROC AUC very similar from the front 
passengers to the back (AUC for front and back = 0.67). However, 
its F1 score was significantly worse for the back seat case (F1 of 
0.61 vs 0.24).  
 
The four fine-tuned image classification methods performed both 
tasks similarly, but ResNet18 had issues with smaller training data.  
Finally, we note an object detector could be retrained with CLIP and 
VIT as well. 
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Conclusions 
The image classification methods outperformed the object and face 
detection methods. However, the image classification methods, 
regardless of their performance, still have a distinct disadvantage in 
that they presuppose the locations of passengers in the vehicles.  
This is likely not a practical issue for a controlled or semi-controlled 
environment such as within vehicles, or in some industrial 
applications, but generally an object detection method would be 
preferred based on its ability to generalize to the location variability.  
A combination of the two may be the best method, however.  We 
acknowledge that our dataset is closed and that the way we 
performed this study may not be an option for many application 
cases.  The use of pre-existing detections such as RetinaFace or the 
CLIP zero-shot models did not seem to perform well, which is 
understandable given the “non-natural” nature of the imagery. Due 
to the nature of the images, no matter the method, fine-tuning seems 
to be imperative to getting effective results. Zero-shot functions may 
serve well for more “natural” images, or to get quick classifications. 
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