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Abstract
Multi-modal pedestrian detection has been developed ac-

tively in the research field for the past few years. Multi-modal
pedestrian detection with visible and thermal modalities outper-
forms visible-modal pedestrian detection by improving robustness
to lighting effects and cluttered backgrounds because it can simul-
taneously use complementary information from visible and ther-
mal frames. However, many existing multi-modal pedestrian de-
tection algorithms assume that image pairs are perfectly aligned
across those modalities. The existing methods often degrade the
detection performance due to misalignment. This paper proposes
a multi-modal pedestrian detection network for a one-stage detec-
tor enhanced by a dual-regressor and a new algorithm for learn-
ing multi-modal data, so-called object-based training. This study
focuses on Single Shot MultiBox Detector (SSD), one of the most
common one-stage detectors. Experiments demonstrate that the
proposed method outperforms current state-of-the-art methods on
artificial data with large misalignment and is comparable or su-
perior to existing methods on existing aligned datasets.

Introduction
Pedestrian detection is one of the important research topics

in computer vision [1, 2]. The one-stage detection network [3, 4],
including SSD [5], is one of the standard architectures for many
of these vision applications. However, using only visible modal-
ity has limitations, such as adverse lighting conditions or clut-
tered backgrounds. Multiple modalities, such as visible and ther-
mal modalities, have been used together to surpass these limi-
tations for pedestrian detection. Recent studies present various
approaches that can combine different modalities’ information.

One of the main challenges of multi-modal pedestrian de-
tection is the misalignment problem. Most existing methods are
under the assumption that the alignment of those image pairs is
close to perfect. Those methods suffer performance degradation
when there is misalignment. More recent methods [6] directly ad-
dressed this issue. They proposed an alignment module to adap-
tively align features between two modalities, which improved ro-
bustness against misalignment. However, their performance is
still lackluster when the degree of misalignment is large. Fur-
thermore, their method is only applicable to two-stage detection
networks. This paper aims to design a single-stage multi-modal
pedestrian detection network that is robust against large misalign-
ment while keeping its performance in no misalignment cases.

Our work introduces several contributions, including: i)
The incorporation of a dual-regressor within a single-stage multi-
modal pedestrian detection network. ii) A specialized training
protocol and data augmentation strategy tailored for the dual-
regressor. iii) An evaluation metric specifically designed for

Figure 1: Visualization examples of detection results on KAIST
dataset by (A) MLPD [7] and (B) our proposed method. Red
boxes represent predicted bounding boxes and the lines between
them indicate their pair relation.

multi-modal data with misalignment, accompanied by experi-
ments demonstrating the effectiveness of our proposed method
across data with varying degrees of misalignment.

Related Works
Multi-modal pedestrian detection

Researchers transitioned from exclusively utilizing color im-
ages in pedestrian detection task to incorporating color-thermal
images, driven by their advantageous ability to leverage informa-
tion from both modalities to compensate for each other’s weak-
nesses. KAIST Multispectral Pedestrian Detection dataset [8] has
been extensively employed in the realm of multi-modal pedestrian
detection research, contributing to its ongoing advancements. In
recent times, The field has clearly shifted towards favoring CNN-
based methods [9–20] due to their exceptional performance rela-
tive to conventional methods. Nonetheless, a primary challenge
in the initial stages revolved around effectively combining and
leveraging information from both modalities [21–24].

Misalignment handling
The majority of existing methods operate under the assump-

tion that visible-thermal image pairs are geometrically aligned, as
shown in Fig 1(A), the bounding boxes do not precisely locate
the objects in both modalities when significant misalignment is
present. These approaches directly fuse features from both modal-
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Figure 2: The overall architecture of our network. The framework is based on SSD [5] customized by MLPD [7]. Yellow blocks represent
notable changes introduced in our method: shifting data augmentation in the training phase, detection heads with visible regressors and
thermal regressors, and detection outputs consisting of pairs of bounding boxes. Blue, green, and red blocks/paths represent properties of
visible modality, thermal modality, and fused modalities, respectively. ⊕ denotes channel-wise concatenation.

ities at corresponding pixel positions. Despite numerous propos-
als for geometric calibration and image alignment in the realm
of multi-modal cameras [25–28], achieving precise and dense
alignment for every pixel remains an ongoing challenge. Conse-
quently, detectors utilizing these methods experience significantly
degraded performance in regions where alignment is suboptimal.
Recent advancements in methods, such as AR-CNN [6], have di-
rectly addressed this issue. They introduced an alternative an-
notation for the KAIST dataset, KAIST-paired annotation, pin-
pointing the object positions for each modality separately. This
is especially invaluable for training models in multi-modal detec-
tion scenarios where misalignment is prevalent. They also fur-
ther innovated with an alignment module designed to dynami-
cally harmonize features between two modalities, elevating ro-
bustness against misalignment. MBNet [29] proposed Modality
Alignment (MA) module which predicts offsets for every pixel in
each modality to achieve effective alignment. Notably, existing
methods fall short of harnessing the full potential of the KAIST-
paired annotation. Instead, they often utilize the paired annotation
to detect pedestrians in only one modality, neglecting the wealth
of information the KAIST-paired annotation could offer. We pro-
pose a novel method capable of producing bounding box pairs that
explicitly account for misalignment, thus maximizing the utility
of the KAIST-paired annotation.

Method
Overview of the proposed method

We present one-stage multi-modal pedestrian detection
framework inspired by SSD [5] and MLPD [7], as shown in Fig 2.
The visible and thermal inputs initially follow distinct branches,
proceeding through shared convolutional layers. Note that shift-
ing data augmentation is only applied in the training phase, which
is an addition to semi-unpaired augmentation of MLPD [7]. They
are then unified within a fusion module before being input into the
detection head, where we implement the proposed dual-regressor.
The final output of the network is a set of bounding box pairs
locating objects in both modalities.

Dual-regressor for single-stage network
We propose a refinement to the conventional single-stage

detection head, introducing a dual-regressor approach for multi-
modal detection, as illustrated in Fig 2. Each detection head com-
prises a classifier, visible regressor, and thermal regressor. The
dual-regressor outputs are parameterized coordinates that repre-
sent the predicted object in both visible and thermal modalities.
In contrast to SSD [5], our modified loss function accounts for
the dual-regressor setup, incorporating distinct regression losses
for each modality-specific regressor. The overall loss function is
expressed as follows:
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where i denotes the index of the anchor box, a predefined bound-
ing box positioned at various points throughout the images. These
anchor boxes serve the purpose of identifying objects within spe-
cific, designated regions. Lcls denotes classification loss, which
is binary cross entropy with sigmoid activation function. Lreg de-
notes regression loss, employing L1 loss, BBv

i , BBt
i denote the

visible and thermal ground truth bounding boxes of anchor box i,
respectively. B̂B

v
i , B̂B

t
i denote the predicted visible and thermal

bounding boxes of anchor box i, respectively. wv
i , wt

i denote the
visible and thermal mask, determined by multi-label of the object,
adopted from MLPD [7]. In essence, wv

i , wt
i are set to 1 when

the corresponding object is perceivable in the visible or thermal
modality, respectively; otherwise, they are set to 0.

Cross-modal bounding boxes’ overlapping and
evaluation metric for multi-modal detection

Given the potential misalignment between modalities, the
coordinates of each object in each modality may differ. To quan-
tify the overlap between two pairs of bounding boxes, we employ
the “Multi-Modal Intersection over Union (IoUM) [20]” metric.
In essence, IoUM serves as the criterion for categorizing bound-
ing boxes into positive or negative and is applied in non-maximum
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Figure 3: Visualization examples of (A) a ground truth bound-
ing box (GTBB) pair from KAIST-paired annotation by [6] and
(B) a merged ground truth bounding box. Green boxes represent
ground truth bounding boxes. Blue boxes represent anchor boxes.
Images are artificially shifted for better understanding.

suppression (NMS) instead of the traditional IoU for multi-modal
data. The formula for IoUM is defined as

IoUM =
(GTV ∩ DTV )+(GT T ∩ DT T )

(GTV ∪ DTV )+(GT T ∪ DT T )
, (2)

where GTV and GT T denote paired ground truth bounding boxes
of the same object in visible and thermal modalities, respectively.
DTV and DT T denote paired detection bounding boxes of the
same object in visible and thermal modalities, respectively. IoUM

serves as a valuable metric for assessing the accuracy of detection
bounding boxes in both modalities, evaluating the system’s capa-
bility to handle misalignment, and ensuring correct object match-
ing between modalities. To quantify the performance, we employ
”Multi-Modal Log-Average Miss Rate (MRM),” which is derived
from the Log-Average Miss Rate [30], using IoUM as the criterion
for bounding boxes’ positive-negative categorization.

Object-based training and shifting data augmen-
tation

As discussed in the context of the dual-regressor, visible and
thermal ground truth bounding boxes is crucial for training the
dual-regressor. We adopted the KAIST-paired annotation devel-
oped by Zhang et al. [6]. While various methods have employed
this annotation in different ways, they often did not leverage its
full potential. For instance, MBNet [29] merges visible and ther-
mal bounding boxes of each pedestrian into a unified bounding
box by averaging. MLPD [7] considers the same pedestrian in
both visible and thermal modalities as two distinct objects, a
methodology we will now label as ’bounding box-based (BB-
based) training’. In contrast, our approach considers each pedes-
trian as a single object with two individual coordinates for visible
and thermal modalities. For unpaired objects visible exclusively
in one modality, whether solely in the visible or thermal domain,
they are categorized as either visible-only or thermal-only objects,
respectively. Subsequently, these objects are utilized to exclu-
sively train either the visible or thermal regressor. This training
approach is referred to as ’object-based training.’ This distinction
allows our method to precisely locate pedestrians in both modali-
ties, even in the presence of significant misalignment.

In the sampling process, positive samples are chosen based
on the overlap between each anchor box and the ground truth
bounding box. To account for potential misalignment, We unify
visible and thermal bounding boxes into a single bounding box by

utilizing the farthest points in both horizontal and vertical direc-
tions from the vertices of the original bounding boxes. This con-
solidation can improve overlap computation with the anchor box,
thereby reducing the likelihood of overlooking potential samples
with significant misalignment. However, during regressor train-
ing, we maintain the original ground truth bounding boxes as tar-
gets for the proposed dual-regressors. The visualized example of
ground truth bounding boxes is depicted in Fig 3, where the orig-
inal ground truth bounding box (Fig 3(A)) serves as the target for
our regressors’ training: the visible regressor is trained with the
visible ground truth bounding box, and the thermal regressor is
trained with the thermal ground truth bounding box. In the sam-
pling process, we utilize the merged ground truth bounding box
(Fig 3(B)) to calculate the overlap with the anchor box. This ap-
proach enhances the overlap measurement, especially when mis-
alignment is significant. Here, IoUM increases from 0.29 to 0.64.
This increase could be pivotal, potentially changing the sample’s
classification from negative to positive.

Our Non-Maximum Suppression (NMS) utilizes IoUM as a
suppression criterion to preserve pair relations between bound-
ing boxes in the visible and thermal modalities. The process be-
gins by categorizing each bounding box pair into three groups:
visible-thermal, visible-only, or thermal-only objects, based on
the prediction scores of both modalities. Pairs with prediction
scores of both modalities below the specified threshold are classi-
fied as background and discarded. In the case where only one
modality’s prediction score surpasses the threshold, the pair is
designated as a modality-specific object. Otherwise, it is iden-
tified as a visible-thermal object. Bounding box pairs are sorted
by the average prediction scores between the visible and thermal
modalities in a descending manner. The overlap calculation be-
tween pairs considers IoUM , IoU of the visible modality (IoUV ),
and IoU of the thermal modality (IoUT ). However, for visible-
only or thermal-only objects, only the bounding box in the cor-
responding modality is considered, treating the other modality as
non-existent. When either of the overlap thresholds is surpassed,
the bounding box pair with the lower score is suppressed.

Furthermore, we incorporate shifting data augmentation to
expose our network to misalignment scenarios, addressing a gap
in the original dataset. This augmentation method involves ran-
domly translating training images horizontally in one of the two
modalities, with pixel shifts ranging from -10 to 10. This pro-
cess is facilitated by a multinomial distribution, with probabili-
ties derived from a normal distribution, to randomly determine
the shift distance. Initially, the entire network is trained with-
out shifting data augmentation. Subsequently, upon achieving
a well-performing model on the validation dataset, we proceed
to freeze all layers of the network except the regressors and re-
train the previous checkpoint with shifting data augmentation.
This step further enhances localization performance, particularly
when dealing with misalignment data. This augmentation strategy
contributes to the robustness of our model in handling misalign-
ment challenges. Subsequently, other semi-unpaired augmenta-
tions adopted from MLPD [7] are still applied.

Experiments
Dataset

The KAIST dataset [8] stands out as one of the extensively
utilized multi-modal pedestrian datasets, featuring over 90,000
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deviation across shifted distances. Bold values indicate the best performance.

Methods
Thermal images’ horizontal shift distance (px)

Mean SD
-10 -8 -6 -4 -2 0 2 4 6 8 10

MSDS-RCNN [15] 27.06 18.76 15.93 12.74 12.58 11.09 11.72 13.25 15.06 21.38 27.48 17.00 5.94
AR-CNN [6] 21.61 14.65 10.43 8.67 8.22 8.79 8.68 10.10 11.02 14.65 19.84 12.42 4.69
MBNet [29] 23.14 15.31 11.02 8.92 7.70 7.76 8.64 9.88 11.17 14.87 21.70 12.74 5.43
MLPD [7] 21.33 13.07 9.57 7.10 7.07 6.97 7.89 9.49 10.59 15.27 21.86 11.84 5.48

Our past work [31] 15.46 11.60 10.21 8.51 8.43 8.28 8.50 9.14 10.31 12.51 15.87 10.80 2.77
Ours 14.82 10.21 8.20 7.27 6.76 6.84 7.21 8.34 9.35 11.93 15.22 9.65 3.08

Table 2: Performance Evaluation of Varied Components and Training Strategies in the Proposed Network on the KAIST dataset with
simulated disparity of misalignment by MRM

50, mean, and standard deviation across shifted distances.

Type of Training Shifting data Thermal images’ horizontal shift distance (px)
Mean SD

regressor strategy augmentation -10 -8 -6 -4 -2 0 2 4 6 8 10
Single BB-based - 22.91 15.01 9.74 7.87 7.04 7.17 8.43 9.66 11.04 15.19 21.12 12.29 5.57
Single Object-based - 20.36 13.27 8.78 7.72 6.93 7.21 7.69 9.18 10.32 13.61 20.41 11.41 4.98
Single Object-based ✓ 20.21 13.65 9.42 7.94 7.28 7.20 7.85 8.61 11.07 13.36 19.60 11.47 4.74
Dual BB-based - 19.74 12.92 9.84 8.24 6.90 6.94 7.95 9.50 10.51 14.04 20.34 11.54 4.77
Dual Object-based - 17.10 11.59 8.67 7.99 7.35 6.99 7.37 8.34 9.45 12.53 16.03 10.31 3.56
Dual Object-based ✓ 14.82 10.21 8.20 7.27 6.76 6.84 7.21 8.34 9.35 11.93 15.22 9.65 3.08

frames recorded during both day and night to account for varying
light conditions. Initially presumed to be geometrically aligned,
the dataset’s annotations revealed numerous errors, including im-
precise localization, misclassification, and misaligned regions, as
reported by prior studies [6, 15]. To address these issues, several
researchers [9] have created improved versions of annotations as
alternatives to the original dataset.

Implementation and evaluation details
We adopted an SSD modified into MLPD [7]. The archi-

tecture utilized VGG16 pre-trained on ImageNet with batch nor-
malization for Conv1 to Conv5, and the remaining convolutional
layers (Conv6 onwards) were initialized with values drawn from
a normal distribution (std=0.01). The model underwent training
with Stochastic Gradient Descent (SGD), using an initial learning
rate, momentum, and weight decay of 0.0001, 0.9, and 0.0005,
respectively. The mini-batch size was set to 6, and the input im-
age size was resized to 512 (H) x 640 (W) We integrated MLPD’s
semi-unpaired data augmentation, maintaining the same param-
eters, and introduced our shifting data augmentation to bolster
the training process against misalignment. The standard devia-
tion of the normal distribution for the shifting data augmentation
was set to 4. The prediction score threshold of NMS is set to 0.1.
The overlap threshold IoUM , IoUV , and IoUT of NMS are set to
0.425, 0.75, and 0.75, respectively. First, we train the whole net-
work without shifting data augmentation for 30 epochs. Then, we
continue the training from last checkpoint only on dual-regressor
with shifting data augmentation for another 30 epochs.

We conducted our experiments using KAIST Dataset [8].
Given our specific focus on addressing the misalignment problem,
we adopted the annotations provided by Zhang et al. [6] for both
training and testing. Recognizing that the test data did not include
sufficient scenes with significant misalignment, we conducted a
”simulated disparity experiment” to replicate misalignment at var-
ious degrees. We horizontally shift thermal images of the test data
by 2, 4, 6, 8, and 10 pixels in both directions, while the visible im-
ages remained unchanged. This process will net us 11 subsets of
test data with different degrees of misalignment. We evaluated the
performance of our methods against all available state-of-the-art

methods with accessible source code. For methods producing a
single bounding box for each object, we substituted visible and
thermal bounding boxes with that single bounding box. The de-
tection performance was quantified using the Multi-Modal Log-
Average Miss Rate (MRM) over the range of [10−2,100] False
Positive Per Image (FPPI) with an IoUM threshold of 0.5 (MRM

50).

Comparison with existing methods
Performance comparison. Table 1 shows the performance com-
parison between various state-of-the-art methods, including our
past work [20]. The proposed method emerges as the top-
performing solution, consistently outperforming state-of-the-art
approaches across various simulated disparity distances on the
KAIST dataset. Specifically, at smaller misalignment distances,
our model showcases performance comparable to the MLPD
baseline, indicating that the introduced modifications maintain
competitive accuracy under standard conditions. However, the
strength of the proposed method emerges at larger misalignment
distances (e.g., -10 pixels), where it significantly surpasses MLPD
and other methods, which is particularly evident at larger mis-
alignment distances, emphasizing the effectiveness of the pro-
posed model in addressing challenges associated with substantial
misalignment. Additionally, the proposed method consistently
outperforms our previous work across all shift distances, demon-
strating enhanced robustness and performance in handling mis-
alignment challenges. The mean and standard deviation values
further support the reliability and stability of the proposed method
across diverse misalignment scenarios.
Qualitative comparison. Fig 4 illustrates comparison examples
of detection results on the KAIST dataset, showcasing the per-
formance of our method against other state-of-the-art approaches.
i) First Scene: In a scene where pedestrians are separate but chal-
lenging to recognize due to dark lighting and substantial misalign-
ment, our method stands out, producing precise bounding boxes
for all pedestrians, whereas alternative methods either struggle
to locate pedestrians accurately or generate multiple bounding
boxes for a single pedestrian, leading to false positives. ii) Sec-
ond Scene: In a more crowded scene where pedestrians are nu-
merous and clearly distinct, but serious misalignment is present,
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(a) AR-CNN [6] (b) MBNet [29] (c) MLPD [7] (d) ours
Figure 4: Qualitative comparison examples of detection results on KAIST dataset of (a) AR-CNN [6], (b) MBNet [29], (c) MLPD [7], and
(d) ours. Green boxes represent ground truth bounding boxes. Red boxes represent predicted bounding boxes. Image pairs are cropped in
the same position to make the contrast between methods more apparent. Prediction score threshold is set to 0.1. Thermal images of scene
1 and 2 are shifted to the left and right direction by 10 pixels, respectively.

our method showcases its ability to generate accurate bounding
boxes for all pedestrians. In contrast, other methods encounter
challenges in precise localization. For instance, MLPD resorts to
creating two bounding box pairs for a single pedestrian, attempt-
ing to cover them in both modalities.

Impact of components and training strategies
Table 2 provides an insightful ablation study, exploring the

impact of different components and training strategies on our pro-
posed network’s performance. We examined variations in the
type of regressor, training strategy (BB-based or Object-based),
and the inclusion of shifting data augmentation. The results in-
dicate that the performances of single-regressor networks are al-
most the same. They could not utilize from the object-based train-
ing and misalignment data. Furthermore, the integration of dual-
regressors, combined with a BB-based training strategy, does not
lead to any performance improvement. This is because BB-based
training does not consider the relationship between objects in dif-
ferent modalities. In contrast, combining dual-regressors with an
object-based training strategy ensures precise pedestrian localiza-
tion, facilitating accurate pedestrian matching even under varying
degrees of misalignment, ultimately leading to improved perfor-
mance. Additionally, the incorporation of shifting data augmen-
tation allows the model to learn from data exhibiting diverse mis-
alignment, providing valuable insights not present in the original
training data and contributing to the best performance.

Conclusion
This paper proposed the one-stage multi-modal pedestrian

detection network, leveraging a dual-regressor and object-based
training to address the misalignment challenges prevalent in exist-
ing methods. The proposed Multi-Modal Log-Average Miss Rate
(MRM) metric provides a comprehensive evaluation criterion for
multi-modal detection, accounting for misalignment. The simu-
lated disparity experiments on the KAIST dataset demonstrated
the superiority of our proposed method.
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