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Abstract
The Modulation Transfer Function (MTF) is an important

image quality metric typically used in the automotive domain.
However, despite the fact that optical quality has an impact on the
performance of computer vision in vehicle automation, for many
public datasets, this metric is unknown. Additionally, wide field-
of- view (FOV) cameras have become increasingly popular, par-
ticularly for low-speed vehicle automation applications. To inves-
tigate image quality in datasets, this paper proposes an adapta-
tion of the Natural Scenes Spatial Frequency Response (NS-SFR)
algorithm to suit cameras with a wide field-of-view.

Introduction
Wide field-of-view (FOV) cameras are a unique optical and

sensor combination for low-speed vehicle automation [1, 2]. The
interest in this sensor modality has spawned several datasets [3, 4,
5], which encourages the development of perception algorithms.
However, the optical quality of such datasets is unknown, despite
the fact that the connection between optical quality and vision
performance has been demonstrated [6].

In [6] an obvious impact of optical lens quality is seen on
computer vision performance, where a Cooke Triplet lens de-
graded the performance of object detection on a BDD100k dataset
using a sample of 10,000 images. The BS ISO12233:2017 stan-
dard [7] and Slanted Edge algorithm [8] were used to measure
optical quality across the spatially variant domain of the camera.
In this experiment, test charts were used to measure the optical
quality of a camera using three different lens blur models (Gaus-
sian, Superposition, and isoplanar patches). This study was lim-
ited to only one lens. This suggests that more information on
optical quality is required for publicly available datasets. As of
this moment, no datasets provide a means of measuring optical
performance using test charts, which suggests replicating optical
quality measurements from [6] is difficult and time-consuming.
As a strategy to measure image quality performance in the pub-
licly available datasets, the Natural Scenes Spatial Frequency Re-
sponse (NS-SFR) developed by van Zwanenberg et al. specializes
in extracting slanted edges from natural scenes [9, 10, 11, 12]. We
adapt NS-SFR to various datasets of spatially variant FOV.

In this paper, we introduce a modified pipeline for generaliz-
ing the NS-SFR algorithm to both narrow and wide FOV lenses.
The original NS-SFR is unable to eliminate areas not part of the
natural scene, which biases optical quality measurements. This
especially applies to automotive wide FOV cameras which have
ego-vehicle occlusion and lens aperture in the images. Thus, we
propose the following contributions in this paper:

1. We propose regional masking around the scenes in wide
FOV images to remove ego-vehicle occlusion and mechani-
cal vignetting,

2. We propose a valid and invalid Region of Interest (ROI)
Selection System which chooses edges with the least
amount of edge enhancement and noise of slanted edges,

3. We propose using an Adaptive Radial Distance Analysis
for evaluating optical measurements where radial segments
adapted to the regional mask of scene,

4. First analysis across multiple dynamic automotive scenes
where each scene has a unique camera lens,

Our experiments are focused on four datasets: three are real-life
datasets with 90°, 185°, and 190° FOV respectively, and the 4th

dataset is based on simulation with 190° FOV.

Context of NS-SFR
For this paper, we use the BS ISO12233:2017 [7] Slanted

Edge algorithm as a basis for experiments where the adapted NS-
SFR focuses on finding edges on both narrow and wide FOV nat-
ural scenes. As far as we know, these experiments are the first
attempt at Edge Spatial Frequency Response (e-SFR) for wide
FOV cameras without using test charts. More sophisticated cam-
eras exceeding 180◦ FOV require test charts with greater distor-
tion. There has been little research on taking natural scenes as
part of the measurement process for automotive scenes.

Methodology
The proposed Automotive NS-SFR pipeline is depicted in

Fig.1. As the goal is to measure the optical performance of a sin-
gle camera, the dataset must contain images from only one cam-
era. For wide FOV cameras, results are biased where NS-SFR
selects the edges that are not part of the natural scene. To avoid
result bias, regional masking is used and is applied to the dataset
only if parts of the vehicle or camera aperture cover parts of the
natural scene, biasing the results. Next, the optimized NS-SFR
[9] is applied to the dataset for ROI selection as illustrated by the
green box in Fig. 1. The ROI locations of the slanted edge mea-
surements were categorized into three spatial areas on the images:
(1) center, (2) middle, and (3) edge. Finally, the mean e-SFR of
each radial segment was calculated.

Regional Masks
To generalize processing lenses for NS-SFR, the main inter-

est is to use the natural scene captured by each camera lens. To
do this, certain optical effects especially in wide FOV cameras
need to be removed which are not part of the natural scene. This
involves removing effects such as mechanical vignetting (part of
the camera itself is visible in the corners of fisheye images) and
ego-vehicle occlusion. These can bias the measurements of NS-
SFR where the part of the car to which the camera is attached is
visible in any image. All custom masks are created using the Free-
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Figure 1: Adapted NS-SFR.

hand ROI tool from MATLAB1 allowing the user to customize a
particular ROI mask to isolate the natural scene. If a new camera
is used, a new mask is created to fit the scene(see Fig. 2).

Adaptive Radial Distances
To further analyze the images three adaptive radial distances

were created which categorize the location of each slanted edge
according to its relative distance from the center of the image.
The technique used to create each segment is by taking the Eu-
clidean distance from the central point to the farthest edge of the
custom ROI mask. In the case of KITTI, the corner of the image
was taken as the farthest distance from the center of the image.
The Euclidean distance calculation is represented by the follow-
ing formula:

re =max
(√

(xc − xm)2 +(yc − ym)2
)
∀(xm,ym)∈ [Xm,Ym] (1)

1See Mathworks for information on Freehand ROI: https://uk.
mathworks.com/help/images/ref/drawfreehand.html

Where, re is the Euclidean distance representing the radius of the
largest radial distance (i.e. the orange circles (with the exception
of KITTI where the orange circle is not visible due to the radius
being the distance from corner to centre of the image) in Fig. 2),
the point (xc, yc) represent the location of the centre of the image
or mask, (xm, ym) represent points along the periphery of the cus-
tom ROI mask [Xm,Ym] and can be the location of the bottom right
corner of the image if no mask is present. (Note: In the case that
no ROI is set, [Xm,Ym] is the periphery of the image). The radii of
the radial distances/annuli are obtained by dividing the maximum
radius re into N proportional parts.

The ratios determined in these calculations are suitable
mainly because they give sufficient segments to divide up the im-
ages into three categories (i.e., center, middle, and edge) and gen-
eralize well regardless of camera type. Ratios smaller than this are
unsuitable (i.e., there tends to be bias towards having too many
slanted edges favored for one segment).

Re-use Optimized NS-SFR
The ROI selection technique and parameter tuning of NS-

SFR optimized algorithm [9] is reused here. Canny Edge De-
tection with edge masking is used to find edges from the natural
scenes and isolate edges of interest [9]. Unlike measurement test
charts, NS-SFR does not have a strong sharpening effect on step
edges due to the surrounding scene content [9]. The NS-SFR pa-
rameters that determine slanted edge selection in natural scenes
are the following (the parameters used are given):

1. Contrast Range (0.1 - 0.9) - the contrast range between the
transition from dark to white in a region with a slanted edge:

(a) Low contrast (<0.1) is prone to noise error,
(b) High contrast (>0.9) is prone to non-linear sharpening

and image processing,

2. Edge Angle Range (0◦ - 360◦) - there is no restriction on
the angle range of slanted edges as it limits the number of
edges that can be found in a natural scene except for 0◦ and
45◦ which are filtered out and is not possible due to errors
[7],

3. Step Edge Noise Floor (ST) (0.02 and 0.04 (for images
with greater noise)) ensures that the gradient on either side
of the edge is uniform. For example, a value of 0.02 signi-
fies a change of pixel value or digital number (DN) of 4.5
for an 8-bit image and 0.04 is twice this value at 9 [11]. It
was observed that sharper edges were found as the ST and
esfW parameters increased,

4. Edge Spread Function Width (esfW) (default value is 5
pixels) remove edges too close together. For example, edges
can be 5 pixels apart in an image,

For initial experiments, a few default parameters were used (i.e.,
ST=0.02, esfW=5 pixels) [11]. These were found to be espe-
cially suitable for narrow FOV cameras, such as KITTI. The
only difference to the default was removing the Edge Angle
range and increasing the default contrast range between (0.55-
0.65) to (0.1-0.9) to accommodate for a larger ROI selection. As
a second experiment, the default parameters were increased to
(ST=0.04,esfW=10 pixels) which showed a higher quality ROI se-
lection for wide FOV cameras (particularly for Woodscape). This
was done to understand what happens if distortion is applied to the
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(a) KITTI (b) LMS

(c) Woodscape (d) SynWoodscape

Figure 2: Adaptive Radial Distances for all four datasets: (a) KITTI (no mask), (b) LMS (circular mask), (c) Woodscape
(Front View mask) and (d) SynWoodscape (Front View mask). Note: all masks are marked by a red outline, inner radial
distances (yellow circles) and the outer radial distance (orange circle). For KITTI only the inner Radial Distances are shown
between (200-1200) pixels.

images and whether the algorithm performs better with a different
parameter combination than the default used in the experiments in
the prior art [10]. In the end, we settle on a unique parameter com-
bination for each dataset where each radial segment of the spatial
domain is well represented (i.e., each segment should have more
than 20 valid slanted edges to calculate the mean).

Valid & Invalid ROI Selection
We apply additional constraints to slanted edge selection

where the following constraints were applied:
1. Local Maxima < 1.4 SFR - If the local maxima exceed

a peak of 1.4 SFR (∼= 25% overshoot), the measurement is
discarded. 25% overshoot or less is acceptable2 for slanted
edges,

2. Local Minima < 0.4 SFR - If the local minima exceed 0.4
SFR, the measurement is discarded. Setting this would filter
out signals with excessive noise past the Nyquist frequency
(0.5cy/px) as shown in Oliver et al. [13],

Measurements that meet the above requirements are marked by
a green bounding box and those that do not are marked by a red
bounding box as illustrated in Fig. 3a.

2See Imattest website for information on MTF curves and Im-
age appearance: https://www.imatest.com/support/docs/23-1/
mtf_appearance/

Radial Distance Analysis
Instead of using three evenly distributed radial distances [9],

three adaptive radial distances are proposed dependent on the re-
gional mask. The mean NS-SFR per radial distance is calculated
and compared visually between all four datasets. The mean NS-
SFR are plotted against each other to gain insight into how the
varying spatial domain affects image quality.

Results
Datasets

The datasets used in this study are:

1. 1065 Front View 90° FOV KITTI city images [14],
2. 1251 LMS 185° FOV real-life images from Drive A [4],
3. 1514 Front View 190° FOV Woodscape images [3],
4. 500 Front View images of SynWoodscape [5],

Each dataset has one lens calibration and a custom ROI mask ap-
plied to the images. The first experiment is to demonstrate the
operation of the NS-SFR algorithm on a dataset with little to no
distortion (i.e., the KITTI dataset [14]). No mask is applied to
these images. The second experiment is to use a circular fish-
eye dataset from [4] with wide FOV. A custom circular mask is
applied to these images. For the third experiment, a typical auto-
motive dataset, the Woodscape dataset [2] is used in this work for
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(a) Valid and Invalid ROI Selection (b) Measurements

Figure 3: An example of ROI Selection from one of the Front View of the Woodscape dataset at (ST=0.04, esfW=10).
Observe that the local maxima (red) and local minima (blue) of each measurement are marked by an x symbol.

wide FOV (i.e., 190° field-of-view) cameras. Finally, SynWood-
scape is used which is a synthetic version of Woodscape created
in the CARLA simulator using 4th-order polynomial cube-map
projection [5, 15].

KITTI camera experiments
ROI selection was iterated over 1065 images of a natural

scene in the KITTI dataset and a resulting spatial distribution of
the slanted edges can be seen in Fig. 4a. There was no adaptive re-
gional mask required for KITTI. The yellow radial distances from
Fig. 2a were calculated by taking one of the corners of the KITTI
images which is by default the farthest location away from the
centre of each image and the radiuses were determined by a ratio
of N proportional segments. The mean MTF of each segment is
shown in Fig. 5a.

The LMS Circular fisheye camera experiments
The experiments were repeated on 185° FOV circular fisheye

images. A circular mask was created for the dataset illustrated in
Fig. 2b where the blue radial distance is calculated based on the
furthest point of the circular mask using (1). Fig. 4b represents the
resulting spatial distribution of the LMS dataset subsample used
in the experiments. In comparison to KITTI, this has a circular
aperture and a completely different ROI distribution. The default
parameters were used in the KITTI dataset. The mean MTF of
each segment is shown in Fig. 5b where all MTF50 measurements
are worse than in KITTI (see Fig. 5a). This is the first dataset to
exceed the 180◦ FOV in these experiments.

Woodscape experiments
The Woodscape dataset is composed of 190◦ FOV cameras

[2]. Out of the four camera perspectives available, the Front View
perspective was chosen for experiments that consisted of 1514
images. To demonstrate the proposed pipeline on wide FOV, a
sample slanted edge ROI selection is shown in Fig. 3 where the
green boxes represent valid slanted edge measurements with mini-
mal edge enhancement and noise as specified by the local maxima
and minima constraints. As can be seen, NS-SFR has identified
10 potential edges of which only 5 were chosen as valid which

is approximately 50%. Considering the amount of noise natural
scenes tend to have it can be concluded that Woodscape has good
selection of slanted edges. Slanted Edge measurements of each
ROI from Fig. 3a are shown in Fig. 3b where all 5 slanted edges
are graphed. The ROI mask of Woodscape is shown in Fig. 2c
where the images had both ego-vehicle body occlusion and me-
chanical vignetting. The experiments resulted in another unique
spatial distribution shown in Fig. 4c. For this experiment, both ST
and esfW were increased to 0.04 and 10 respectively. The mean
MTF of each segment is shown in Fig. 5c.

SynWoodscape experiments
For SynWoodscape experiments, the custom ROI mask can

be seen in Fig. 2d. Unlike Woodscape SynWoodscape does not
have dark corners from mechanical vignetting and only ego-body
occlusion needs to be removed from the images. The spatial dis-
tribution of this experiment can be seen in Fig. 4d. By compar-
ing Fig. 4d to Fig. 4c, SynWoodscape has a much denser and
wider spread of points than Woodscape using the same parame-
ter settings despite having only 500 images to work with. This
comparison proves that in a perfect world simulated scenes tend
to have more ideal slanted edges than in real life. For consistency,
the same NS-SFR parameters as for Woodscape were used. The
mean MTF of each segment is shown in Fig. 5d.

Discussion
In Fig. 4 we show the spatial distribution of slanted edges

found by NS-SFR and we can observe distinct patterns emerg-
ing where scene dependence affects ROI selection in images with
greater distortion. For example, the selection of slanted edges for
KITTI Fig. 4a is mostly uniform whereas for wide FOV, ROI
selection follows the distortion of the natural scenes. The LMS
dataset has a significant number of slanted edges identified on the
buildings or in the sky (see Fig. 4b) whereas, for both Woodscape
and SynWoodscape, clusters of slanted edges are found along the
horizon where the road meets the sky and the buildings (see Fig.
4c and 4d). However, a greater density of slanted edges does not
imply better quality selection as is evident in the LMS MTF50 re-
sults in Fig. 5b where the quality of slanted edge selection is poor
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(a) KITTI (ST = 0.02, esfW = 5) (b) LMS (ST = 0.02, esfW = 5)

(c) Woodscape (ST = 0.04, esfW = 10) (d) SynWoodscape (ST = 0.04, esfW = 10)

Figure 4: Horizontal Slanted Edge Locations of all four datasets (refer to Fig. 2 for Adaptive Distances): (a) KITTI, (b)
LMS, (c) Woodscape and (d) SynWoodscape. Distributions show the pattern of ROI selection for NS-SFR for both narrow
and wide FOV cameras. Here, we can see the trend of the location of slanted edges in the scenes for the given datasets.

(mean MTF50 is between 0.15-0.18 cy/px). Parameter variations
visibly provide higher quality but fewer slanted edge selections
for Woodscape (as shown in Fig. 4c) whereas the periphery pro-
vides better-slanted edge selection than the centre as shown in
Fig. 5c. In contrast to LMS, Woodscape has better MTF50 be-
tween (0.31-0.35 cy/px). The SynWoodscape dataset has lower-
quality slanted edges than Woodscape suggesting that simulation
does not imply higher-quality slanted edges. The central radial
segment has the least sharp slanted edges, the middle segment is
the second sharpest and finally, the third radial segment has the
sharpest edges. Peter Burns et al [16], shows 3rd order and 5th

order polynomial measurements on curved edges with similar re-
sults. All measurements are of 5th order in these natural scenes.

Future Work
• Consider automated regional masking for each fisheye per-

spective as originally proposed by Hogan et al. [17].
• Differentiate SFR of different objects in natural scenes.

Conclusion
In this paper, we have demonstrated the adaptation of NS-

SFR to automotive datasets. We have demonstrated a novel ap-
proach to isolate natural scenes by applying regional masking
(where required) and measuring image quality using an Adap-

tive Radial Distance Analysis on four datasets (i.e., KITTI, LMS,
Woodscape and SynWoodscape). It was found that Woodscape
provided the best selection of slanted edges where MTF50 mea-
surements are the highest out of the four datasets. For horizontal
edges, image quality degrades at the centre of the image.
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