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Abstract
Color correction involves converting device-dependent RGB

values into a device-independent color space, like XYZ or sRGB.
This paper introduces a novel method for deriving a matrix-based
transformation using tensor product B-splines, extending previ-
ous polynomial approaches. The proposed spline-based model
offers enhanced adaptability in color correction, consistently sur-
passing traditional polynomial methods across various cameras.
Splines, being piecewise polynomials, offer increased flexibility
in modeling, adapting to different spectral characteristics of cam-
eras. Performance comparison of the spline-based model against
previous methods was conducted using simulated data of natu-
ral scenes on two different cameras in both training and testing
phases.

Introduction
Color correction is an ever-growing area of interest due to ad-

vances in capture and display technologies. In the future, it is fair
to assume that reproducing the scene as it was initially seen be-
comes more critical with emerging technologies such as VR and
AR. Otherwise, reduced color fidelity might result in diminished
immersion. Although most devices only support color spaces with
limited gamuts, such as sRGB [1], in the future, we can expect
more devices to adopt larger color spaces, such as Rec.2020 [2].

The ability of humans and cameras to sense color is based
on photosensitive cells and sensors, respectively. The photosensi-
tive cells, known as cones, are located in the eye’s retina. There
are three different types of cones, namely long (L), medium (L),
and short (S). The naming is related to the ability to sense long
(blueish), medium (greenish), and short (reddish) wavelengths.
Image sensors commonly mimic this behavior by designing color
filter arrays (CFA), such as the Bayer filter, which primarily
senses red, green, and blue wavelengths.

The reference point for a camera is the response an aver-
age human would perceive for the same stimulus. For this pur-
pose, the International Commission on Illumination (CIE) has
published the spectral sensitivity curves for the average observer,
from which the responses can be calculated [5]. Typically, the
CIE XYZ color space is used, as the spectral sensitivities are all
positive, and the Y component corresponds to perceived bright-
ness. Similar functions can be obtained for an imaging sensor in
a controlled laboratory environment using a monochromator or a
similar device.

Having information about the spectral sensitivity of the aver-
age observer, it is possible to compute the responses for an infinite
amount of scenes knowing the associated reflectances and illumi-
nants. The response for light incident on the eye, after reflecting
from an object is then given by the following:

X =
∫ 780

380
E(λ )R(λ )SX (λ )dλ (1a)

Y =
∫ 780

380
E(λ )R(λ )SY (λ )dλ (1b)

Z =
∫ 780

380
E(λ )R(λ )SZ(λ )dλ , (1c)

where E(λ ) is the spectral power distribution (SPD) of the illumi-
nant, R(λ ) is the spectral reflectance of the object, and ST (λ ) is
the sensitivity of the tristimulus value T (either X ,Y, or Z). Sim-
ilarly, we can calculate the value recorded by the imaging sensor
by replacing cone sensitivities SX ,SY ,SZ with the camera sensi-
tivities SR,SG,SB and the responses X , Y , Z with R, G, B.

The need for color correction then arises from differences
in spectral sensitivities of standard observer cones and imaging
sensors. Figure 1 shows the spectral sensitivities of Nikon D5100
and Sigma SD Merill cameras measured at the National Physics
Laboratory [3] compared with the ones of an ordinary observer.
They are different and, thus, do not produce the same responses
to a given stimulus. Suppose the camera sensitivities cannot be
represented as a linear transformation of the cone sensitivities. In
that case, it violates the Luther-Ives condition [14], [17] and is
said not to be colorimetric.

The most straightforward and commonly used algorithm for
color correction is the simple linear transformation by a 3 × 3
color correction matrix (CCM). Here, an assumption is made that
the camera satisfies the Luther-Ives condition, and acceptable re-
sults are often achieved even though the assumption is not valid
in practice. Given a set of n corresponding camera and observer
responses, the mapping is then defined as follows:

Y = MX , (2)

where Y and X are matrices of size 3×n, containing the observer
and camera responses respectively, and M is the 3 × 3 color cor-
rection matrix.

There are multiple ways to find the CCM, with varying com-
plexity. As the problem is to estimate the corresponding XYZ
values given camera-recorded RGB values, it’s natural to pose it
as a regression problem. The simplest solution is then to find the
minimum least-squares solution, which is given by the Moore-
Penrose inverse [22] as follows:

M = (XT X)−1XTY = X†Y. (3)

This formulation is known as the linear color correction
model (LCC). It is often used as the initial calibration point for
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more complex schemes, such as the white-point preserving color
correction [8] or saturation and noise balancing [15]. The opti-
mization can also be done in perceptual color spaces like CIELAB
[25] using non-linear optimization algorithms, as color spaces like
XYZ are not perceptually uniform.

Existing Methods
Given that the Luther-Ives condition is frequently unfulfilled,

approaches utilizing non-linearities have been proposed. A com-
mon method in regression problems is to transform the features
with some non-linear function, such as different degree polyno-
mials. Given an input RGB value, the transformation is the fol-
lowing for a 2nd-degree polynomial model:

(R,G,B,R2,G2,B2,RG,RB,GR)T .

The fundamental property of this polynomial color correc-
tion (PCC) model [13] is that it is still linear in its coefficients
and thus allows us to find a closed-form solution. It also allows
us to consider interactions as features for problems. The appar-
ent downside is that the number of coefficients grows with the
polynomial degree and that we have to compute the powers of our
features at each pixel.

An issue that often prevents the practical application of the
PCC is that it is not invariant to exposure. As the exposure or gain
of a camera is varied by factor k, the output of a linear camera will
also vary by a factor of k. It is easy to see why this is false for a
polynomial model: if we scale the input R by factor k, the term

Figure 1. Comparison of Nikon D5100 (Top) and Sigma SDMerill (Bottom)

spectral sensitivities with XYZ color matching functions

will become (kR)2 after applying the polynomial transformation
of degree 2, and the function value increases quadratically.

Non-linear exposure-invariant models have been proposed
earlier in the literature, for example, Root Polynomial Color Cor-
rection (RPCC) [9], an expansion of PCC. In RPCC, the degree
root is taken for all nth-degree polynomial models, resulting in
the following terms for a 2nd-degree model:

(R,G,B,
√

RG,
√

RB,
√

GB)T .

All the features are of degree one, resulting in smoother sur-
faces, although not necessarily linear. Most importantly, inter-
actions between terms are still considered. The reason for the
massive emphasis on interaction terms is that there is an overlap
in the spectral domain between channels and corresponding tar-
get sensitivities in the XYZ domain, as one can see in Figure 1.
Both of the features then contribute to the same output features
simultaneously.

Another famous family of color correction methods, which
enable non-linear yet exposure-invariant color correction, are
multi-dimensional look-up tables (MLUT). Here, a look-up table
is first formed between some limited set of known input RGB and
XYZ values, and at run-time, the rest of the values are computed
using interpolation between the nearest values in the look-up ta-
ble. This family of models is very flexible, as the transformation
can be modified to be more colorimetric by using 3D look-up ta-
bles [26] or slightly less accurate yet exposure-invariant by using
2D look-up tables [20]. The downside of this method is the com-
putational cost, as a compromise has to be made on which sam-
ples are stored in the look-up table since storing a large table in
memory may not be feasible. Furthermore, interpolation has to
be performed for each pixel not in the table, for which a trade-
off between interpolation algorithm complexity and accuracy also
exists.

The past decade has shown immense growth in the process-
ing power of mobile devices. This has allowed us to deploy
more data-intensive models, such as deep neural, to enhance im-
ages. This has also emphasized the importance of data, as neural
networks require large and representative datasets to capture the
underlying phenomena without overfitting. Previous regression-
based methods in color correction have been modest in their di-
mensionality. Although higher-order polynomial models have
been proposed, being global, they begin to overfit early and in-
troduce ringing artifacts.

Splines for Color Correction
A natural continuum to previous polynomial models is to ex-

pand them into piecewise polynomials, namely splines. They al-
low us to include smooth non-linearities by enforcing continuity
and controllability at control points. Here, we present a method
to utilize penalized tensor product splines to produce smooth, in-
terpretable surfaces.

Mathematically, B-splines are easy to formalize. All B-
spline functions are defined as a linear combination of lower-order
splines. Unlike piecewise polynomials, a spline of order M has
a degree of M − 1 due to the continuity condition at the knots.
Increasing order of B-splines can then be computed recursively
given the first-order spline formula:
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Bi,1(x) =

{
1 if τi ≤ x < τi+1

0 otherwise
(4)

for i = 1, . . . , K + 2M - 1, where K is the number of knots
and τi and τi+1 denote the interval over which the function is non-
zero. Generally, a spline of order M has support over M knot in-
tervals, and thus, for a first-order spline, we have that the constant
function only has support over a single interval. [12, 186-189]

A B-spline of order M is defined by a sum of two shifted
order M − 1 B-splines at the current knot position i and the next
knot position i+1. The formula is then given by:

Bi,M(x)=
x− τi

τi+M−1 − τi
Bi,M−1(x)+

τi+M − x
τi+M − τi+1

Bi+1,M−1(x), (5)

as is presented in [12, pp.186-189]. Other formulations exist
for computing the B-spline basis functions, such as Cardinal B-
Splines, which can be derived through successive convolutions
and are very efficient to compute [4, pp. 89, 283].

B-splines have a few desirable properties that make them at-
tractive for color correction. First, for a degree d spline, the for-
mulation imposes a constraint that the derivatives are defined up
to degree d − 1, making them continuous at knot positions and
enforcing smoothness. Consequently, this also results in the ba-
sis functions becoming smoother as the degree increases, at the
cost of each spline taking up a larger domain and increased com-
plexity. In practice, often third-order basis functions are used as a
compromise for all things considered [6].

Utilizing interactions between variables, as was done with
polynomial models, is also straightforward with splines via tensor
products. Assuming we have transformed our red and green chan-
nel features using n splines per feature, the interactions would be
captured as follows:

r⊗g = rgT =

r1g1 r1g2 r1g3
r2g1 r2g2 r2g3
r3g1 r3g2 r3g3

 , (6)

Where r and g are n×1 vectors containing the values of the n
B-spline basis evaluated at the position of the input pixel’s inten-
sity level for the red and green channels. All two-way interactions
can then be considered using three tensor-product matrices: r⊗g,
r⊗b and g⊗b. Combining these into one matrix forms our de-
sign (or basis) matrix for regression.

As one might guess, introducing tensor products to the model
increases the dimensionality quadratically. It is well known that
high dimensionality might lead to overfitting if the model is too
complex for given training data. Often, regularization techniques
are used, which impose a penalty on the model’s coefficients to
limit them from becoming too large, causing the model to become
sensitive to small changes in the input.

It is possible that without regularization, the resulting model
could have drastic differences in coefficients around some neigh-
borhoods, violating our condition of smoothness. Eiler and Marx
proposed a solution to problems of a similar nature by penalizing
differences in adjacent coefficients of splines [7]. They appro-
priately named the method as Penalized Splines (P-splines). The

penalty can be applied to the least-squares minimization problem
as follows:

∥y−MXXX∥2 +λ∥DMMM∥2. (7)

When applied to the coefficients M, the matrix D computes
the difference between adjacent coefficients, and by taking the
norm, we get a single representative number of the roughness.
The term λ is a regularization parameter that helps balance the
trade-off between fitting the model closely to the target values
and promoting smoothness in the model output. Lower values of
λ emphasize the goal of interpolating the target function, while
higher values drive the function towards a linear fit.

Figure 2. Partial dependencies of different terms on the predicted Y-

component

As only two-way interactions are used, it is possible to vi-
sualize the partial dependencies of different terms of the fitted
model. In Figure 2, the partial dependencies on the Y-predictor
can be seen for a model with ten splines per feature and λ of 0.1.
Each of the red dots indicates a knot of the tensor product spline.
The figures show that all predictors form a smooth surface, as is
desired in color correction, yet lots of freedom is available.

Experimental Results
The model performance was evaluated on the two cameras in

Figure 1, Nikon D5100 and Sigma SDMerill. These were chosen
as they possess very different spectral sensitivities, and one might
expect that the transformations from device-dependent RGB val-
ues to device-independent XYZ values are quite different.

Dataset
The primary datasets used for training and testing in this

study consisted of hyperspectral images of natural scenes. These
images were recorded in the Minho Region, Portugal, and were
collected by Foster et al. for their work in color constancy
[21, 11]. The photos consist of nature and city landscapes, veg-
etation, and human-made objects, recorded using a hyperspectral
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camera at 10 nm intervals from 400 to 720 nm. To create a more
diverse dataset, we merged the training set with images from the
CAVE Multispectral Image Database [27], which consists of com-
mon household objects, skin, hair, and so on with varying satura-
tion captured in a laboratory. This resulted in a diverse data set
for training, with various reflectance spectra that we may run into
daily. The reason for using a large dataset of hyperspectral im-
ages instead of, say, color checkers with precisely measured re-
flectances, is that training strictly on a small set of color patches
does not guarantee that the mapping performs well in real-life
scenes. Typical colors in real life are not very saturated, which
is the opposite of what we see in typical color checker charts. The
models should thus be trained and evaluated based on their target
application.

The dataset of Foster et al. consisted of 58 hyperspectral im-
ages of sizes ranging from 336 × 256 to 819 × 812. As even
one image comprised millions of reflectances when considering
each pixel, the images were downsampled to 32 × 32 spatially. It
is also clear that neighbouring pixels in an image are often very

Figure 3. Top: training set. Bottom: test set

similar as most of the content is low-frequency. So, they do not
add significant information during the training process. Similar
processing was performed for the CAVE dataset, originally con-
sisting of images of size 512 × 512. This resulted in 39935 sam-
ples for training and 204800 samples for testing.

The chromaticity gamut of the training and test sets is shown
in Figure 3, with the white triangles displaying the edges of the
sRGB color space gamut and red dots displaying the samples. Our
training set occupies much of the visible spectrum, even more
than the sRGB color space. The training and test sets, both repre-
sentative, could switch places and produce even better results, but
the training data was kept smaller for computational limitations.

Selected Models
For these experimentations, we conducted comparisons

against established models in the polynomial family, namely LCC
and degrees two and three of PCC and RPCC. Higher-order poly-
nomial models were not considered because they are known to be
too prone to overfitting. Neural networks and MLUTs were also
not considered in this paper, as the focus was kept on the expan-
sion of polynomial models.

For the P-spline model, the smoothing parameter λ was
found by hyperparameter tuning on the training dataset, and the
best model was then retrained on the complete training dataset
before testing. Other parameters that could have been tuned were
the order of the spline basis functions and the number of them
per input channel. As for the order, it was concluded that the 3rd
order splines would produce a good compromise of smoothness,
computational complexity, and support.

In prior research on P-splines, it has been emphasized that
better performance can always be achieved using more spline ba-
sis functions as long as the smoothing parameter is chosen appro-
priately [6, p. 3]; we decided to present results at 5, 10, and 20
basis functions per input channel. The complexity of the resulting
model can easily be computed: for each of the three output chan-
nels, three tensor product features are used, resulting in the total
3×3×n2 = 9n2 terms, where n is the number of basis functions
per feature. The models then have 225, 900, and 3600 parameters
respectively.

Results
The results are divided into two tables according to the cam-

era model. For both cameras, the RGB responses were computed
by numerical integration from 400 nm to 700 nm at 10 nm in-
tervals under D65 illuminant. Before finding the color correction
matrix, white balance was applied by dividing each channel by
response to a perfect reflecting diffuser (PRD), resulting in an in-
put domain of [0,1]. The exposure is then equal to the situation
where the image sensor would be just short of clipping for the
PRD. Numerical integration was again performed to obtain the
XYZ responses for modeling the human eye. Since it is often
convenient to have the Y channel, corresponding to luminance,
be treated as a percentage, all three channels were normalized by
the Y channel response to a PRD so that Y has a [0,1] range.

The mean, max, 95%, and 99% errors for the Nikon D5100
are seen in Table 1. The numbers 5, 10, and 20 after the name ”P-
splines” indicate the number of spline basis functions, while the
numbers for LCC, PCC, and RPCC indicate the used polynomial
order. Models ending with ”LAB” (e.g., LCC-LAB) were trained
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using the CIEDE2000 [24] objective function within the CIELAB
color space. Since a closed-form solution does not exist, the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) [10] algorithm was used
to find the best solution.

Our P-spline models lead in performance across all cate-
gories, albeit by a narrow margin. The mean error is under the just
noticeable difference (JND, 1 ∆E), while typically, even the 95th
percentile errors are around 2 ∆E. Less surprisingly, the model
with the least spline features has the lowest maximum error, as
with lower flexibility, the model is more likely to capture mean
characteristics across control points.

Surprisingly, both LCC models produced results that were
even with the more complex models. One hypothesis is that the
transformation is close to linear. Due to their global nature, the
more complex polynomial features might overshoot or undershoot
the data at a mean level. Spline models can consider this by con-
trolling the fit locally but are computationally much higher in de-
mand than the basic LCC model. From a complexity-accuracy
point of view, LCC will likely be the best choice for this camera
model.

Algorithm Mean Max 95% 99%

P-Splines-5 0.94 4.81 2.08 2.48
P-Splines-10 0.86 5.16 1.94 2.45
P-Splines-20 0.83 5.77 1.92 2.42
LCC 1.00 5.56 2.18 2.93
LCC-LAB 0.94 5.51 2.04 2.66
PCC-2 1.13 5.58 2.43 3.05
PCC-3 1.07 5.40 2.37 2.98
PCC-3-LAB 0.91 7.07 2.03 2.49
RPCC-2 1.05 5.54 2.44 3.06
RPCC-3 1.06 5.69 2.43 3.00
RPCC-3-LAB 0.92 8.04 2.22 3.04
Table 1: CIEDE2000 Errors for Nikon D5100

The second set of experiments was conducted on Sigma
SD Merrill due to its significantly different spectral sensitivities.
Here, transforming from RGB to XYZ responses is much more
complex, and we see much higher errors, especially in the outlier
performance (Max, 95th, and 99th). Similar to the Nikon results,
spline models beat most competing polynomial models. Surpris-
ingly, the 3rd-order PCC models perform comparably to the spline
models, with its maximum error being half that of the 3rd-order
RPCC model. A hypothesis for the excellent performance is that
the spectral sensitivities are relatively flat across the domain, and
the RPCC is not flexible enough for such a complex transform.

Conclusion
In this paper, we proposed a novel method for color correc-

tion that can be seen as an extension of the previous polynomial
models. Although narrowly, we noticed that the model produced
the best results on two very different cameras. In contrast, for the
other models, we saw that the rank order can change depending
on the spectral characteristics. The flexibility of spline models
can explain this, as the transformation can be tuned locally rather
than globally.

A valid point of criticism for the proposed model is its in-
creased computational complexity. The dimensionality grows
quadratically with the number of spline basis functions per fea-

Algorithm Mean Max 95% 99%

P-Splines-5 1.77 18.27 4.14 5.90
P-Splines-10 1.74 17.74 4.03 5.92
P-Splines-20 1.73 16.95 4.00 5.94
LCC 2.20 23.49 6.98 10.56
LCC-LAB 2.57 19.60 5.59 7.84
PCC-2 2.02 22.07 5.82 9.20
PCC-3 1.92 20.78 5.01 8.16
PCC-3-LAB 1.98 17.92 4.42 6.38
RPCC-2 2.17 25.38 6.84 10.04
RPCC-3 2.32 34.32 6.90 11.37
RPCC-3-LAB 2.02 43.49 5.55 9.71
Table 2: CIEDE2000 Errors for Sigma SDMerrill

ture, so a compromise must be made on model accuracy versus
performance. For example, the model with five splines has 225
coefficients in total, and in comparison, the model with 20 splines
has 3600 coefficients. On the other hand, computing splines is
simple, and the coefficients can be applied by a simple matrix
multiplication. The model is thus similar in computational com-
plexity to neural networks for color correction [18, 16].

Despite our model performing well, there is still room to im-
prove. Here, we proposed a simple model based on uniform tensor
product splines, but non-uniform or shifted knot placement could
increase the performance depending on the transformation. We
also optimized purely in XYZ color space, but further improve-
ments will likely be obtained by fine-tuning in a perceptually uni-
form color space.

An important topic, exposure invariance, was not discussed
in this work. We predict that the model we used here for com-
parison is not entirely exposure invariant, but a higher amount of
penalization would likely achieve better results across exposure
changes. This is because higher penalties drive the fitted surface
towards a hyperplane. The penalty we applied here was equal for
all input features. Still, an elegant way to impose a constraint on
exposure invariance would be to use a higher penalty on control
points near the achromatic axis.

We make the code and dataset publicly available at https:
//github.com/JoniSuominen/SplineColorCorrection.
We thank the authors of pyGAM [23] for their fantastic imple-
mentation of generalized additive models (GAMs), which we
used extensively in this paper. In addition, we are grateful to the
contributors of the Python package Colour [19] for their work
in producing an amazing Python implementation of typical color
science functions.
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Français de la Couleur, 30(1):21–30, 2005.

[25] CIE Standard et al. Colorimetry-part 4: Cie 1976 l* a* b* colour
space. International Standard, 2007.

[26] Michael J. Vrhel. Use of simulated reflectance spectra in camera
transform creation. Color and Imaging Conference, 24(1):306–306,
2016.

[27] Fumihito Yasuma, Tomoo Mitsunaga, Daisuke Iso, et al. Gener-
alized assorted pixel camera: postcapture control of resolution, dy-
namic range, and spectrum. IEEE transactions on image processing,
19(9):2241–2253, 2010.

Author Biography
Joni Suominen received his B. Eng. from Tampere University of Ap-

plied Sciences in 2022 and is currently pursuing an MSc in Signal Pro-
cessing at Tampere University. Along with his studies, he is also working
for the imaging team at Axon in Tampere, Finland, where his work focuses
on imaging software and sensor characterization.

Karen Egiazarian (Eguiazarian) received the M.Sc. degree in math-
ematics from Yerevan State University, Yerevan, Armenia, in 1981, the
Ph.D. degree in physics and mathematics from Moscow State University,
Moscow, Russia, in 1986, and the Doctor of Technology degree from the
Tampere University of Technology (TUT), Tampere, Finland, in 1994. He
is a Professor with the Signal Processing Department, Tampere Univer-
sity, Tampere, leading the Computational Imaging Group, and a Docent
with the Department of Information Technology, University of Jyväskylä,
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