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Abstract
The dynamic range of the intensity of long-wave infrared

(LWIR) cameras are often more than 8bit and its images have
to be visualized using histogram equalization and so on. Many
visualization methods do not consider effects of noise, which must
be taken care of in real situations. We propose a novel LWIR im-
ages visualization method based on gradient-domain processing
or gradient mapping. Processing based on intensity and gradient
power in the gradient domain enables visualizing LWIR images
with noise reduction. We evaluate the proposed method quantita-
tively and qualitatively and show its effectiveness.

Introduction
A long-wave infrared (LWIR) camera is a device that mea-

sures the LWIR radiation emitted from an object and obtains the
information as an image. The LWIR radiation emitted from an
object is depending on the temperature of the object and is not af-
fected by visible light as is the case with visible cameras. There-
fore, an LWIR camera can capture images of objects at night, in
dense fog, or in other situations where visible light information
is scarce. Taking advantage of this characteristic, researches have
been conducted on robust pedestrian detection using LWIR im-
ages [13][14][15][16][17], inspection of building structures using
LWIR images [18][19][20][21], and image composition of visible
and LWIR images [2][9][10][11][12].

Although the dynamic range of intensity of an LWIR camera
is very wide, pixel values are often concentrated in the intensity
range, which requires visualization processing. Figures 1 (a) and
1 (b) show the results of visualization using percentile normal-
ization (PN) and histogram equalization (HE) [6], respectively.
In the percentile normalization (PN), a linear transformation is
performed so that the pixel values of the 2.5-th percentile of the
image are set to 0 and those of the 97.5-th percentile to 1, taking
outliers into account. These processes can spread out the pixel
values that were concentrated locally, which increases the con-
trast and enables the subject to be seen well. On the other hand,
the problem of stripe noise or random noise appears.

Contrast-limited histogram equalization (CLHE) [7][8] has
been proposed as a method to reduce noise by reducing the con-
trast of an image (Figure 1 (c)). In contrast-limited histogram
equalization (CLHE), the pixel values with high frequencies in the
histogram of an image are distributed over the entire range, and
then the histogram is equalized. This avoids over-amplification of
contrast and allows visualization with less noise. However, it can-
not be said that the noise in the image is completely eliminated,
and due to the characteristic of the process, the contrast of the
output image resulting from the method is in principle lower than
that from histogram equalization (HE).

We propose a method to visualize LWIR images while re-
ducing noise by processing in the gradient domain of the image.
The gradient features obtained by the differential filter are multi-

(a) Percentile normalization (PN) (b) Histogram equalization (HE)

(c) Contrast-limited histogram
equalization (CLHE)

(d) Proposed method

(e) Visible image
Figure 1: Example of LWIR image visualization (Image A)

plied by a gain based on pixel values, and then multiplied by an-
other gain calculated from the gradient power. This enables noise
components to be reduced in the gradient domain. The gradient
is reconstructed using an image reconstruction method that takes
into account the range of the image to visualize LWIR images [1].

We experimentally demonstrate that the proposed algorithm
can effectively visualize noisy LWIR images. From visual com-
parisons, the proposed gradient-domain visualization shows bet-
ter results than existing algorithms. Quantitative comparisons also
show effectiveness of the proposed algorithm.

Proposed Method
Overview

Figure 2 shows the overview of the proposed method. The
gradient is adjusted in the gradient domain to emphasize impor-
tant edges while reducing noise components. The details are ex-
plained in the next subsection.
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Figure 2: Overview of the proposed method

Figure 3: A specific example of the intensity-based gain

Gradient Extraction
The gradient features are extracted from LWIR images by

convolving horizontal and vertical forward and backward differ-
ential filters. We apply four types of differential filters as gradient
features: horizontal forward, horizontal backward, vertical for-
ward, and vertical backward. We denote those gradient features
as gh f , ghb, gv f and gvb, respectively.

Gain Adjustment Based on Intensity Value
It is known that the contrast is lower in regions with small

intensity values than that in regions with large intensity values,
especially in images with a wide dynamic range, such as LWIR
images. Therefore, in this study, the gradient corresponding to
pixels with small intensity values is amplified to improve the con-
trast. Specifically, the gain shown in Equation 1 is obtained, and
the gradient is multiplied by the gain.

AI [i, j] =


α−1

β 2 (I[i, j]−β )2 +1 (I[i, j]< β )

1 (I[i, j]≥ β )

, (1)

where I is the input image, AI is the gain based on the intensity
value, [i, j] is the pixel position, and α and β are parameters, re-
spectively. As shown in Figure 3, a gain greater than 1 determined
by α and β is multiplied to the gradient of a pixel whose inten-
sity value is less than β . Therefore, the gradient is amplified in
regions with small intensity values.

Figure 4: A specific example of the gradient-based gain

Gain Adjustment Based on Gradient Value
In the gradient domain, small gradients are considered as

noise. Therefore, we consider attenuating small gradients while
amplifying relatively large gradients. For this purpose, we intro-
duce the gain shown in Equation 2.

Ag[i, j] = γ

(
1− exp

(
−

g2
p[i, j]

2σ2

))
, (2)

where g2
p[i, j] is the gradient power at pixel [i, j] and calculated by

g2
p[i, j] =

1
2 ∑

k=h,v
∑

l= f ,b
g2

kl [i, j]. (3)

Here, gkl denotes the horizontal or vertical, forward or backward
difference, respectively. γ and σ are parameters. By applying this
gain to the gradient feature, the gradient value can be further at-
tenuated for pixels with small gradient values, as shown in Fig. 4.

Image Reconstruction
Based on the method in [1], image reconstruction is per-

formed from gradient features. Specifically, we optimize the ob-
jective function E(uuu) in Equation 4.

E(uuu) = F(uuu)+R(uuu) , (4)

where, uuu is the reconstructed image, F(uuu) denotes the gradient
fidelity term, and R(uuu) is the intensity range constraint term.

The gradient fidelity term F(uuu) is expressed by Equation 5.

F(uuu) = ∑
i, j

∑
d=h,v

|ud [i, j]−qd [i, j]|2, (5)
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where qd [i, j] represents the target gradient calculated from the
gradient features as follows.

qh[i, j] =
ĝh f [i+1, j]+ ĝhb[i, j]

2
, (6)

qv[i, j] =
ĝv f [i+1, j]+ ĝvb[i, j]

2
, (7)

ĝkl [i, j] = AI [i, j] ·Ag[i, j] ·gkl [i, j] ,(k = {h,v}, l = { f ,b}) .
(8)

This gradient fidelity term minimizes the residual between the
gradient of the reconstructed image and the target gradient.

The intensity range constraint term R(uuu) is expressed by the
following equation.

R(uuu) = ∑
i, j

r(u[i, j]) , (9)

r(ξ ) =

{
0 (Rmin ≤ ξ ≤ Rmax)

∞ (else)
, (10)

where Rmin and Rmax denote the lower and upper limits of the
intensity of the reconstructed image, respectively.

The actual optimization process is performed by the proxi-
mal gradient method. The update formula for the proximal gradi-
ent method is shown in Equation 11.

uuu← prox

(
uuu−η

(
∑

d=h,v

∂

∂d
(uuud −qqqd)

))
, (11)

where prox(·) denotes the proximal mapping of the intensity
range constraint term. The proximal mapping corresponding to
Equation 10 is the same as clipping pixel values in the range from
minimum Rmin to maximum Rmax. As the initial image for the op-
timization process, the histogram-equalized LWIR image is used.

Experiments
Experimental Details

We compare the results of visualization by percentile nor-
malization (PN), histogram equalization (HE), contrast-limited
histogram equalization (CLHE), and the proposed method. The
parameters of the proposed method are α = 1.6×104, β = 0.35,
γ = 128 and σ = 1.6×10−4. The limit is set to 1×10−5 as the pa-
rameter for contrast-limited histogram equalization (CLHE). This
value represents the ratio of the number of pixels to the total num-
ber of pixels. A FLIR ADK camera was used to capture the LWIR
images.

Validation
In order to demonstrate the effectiveness of the two gains

in the gradient domain in the proposed method, the following
comparisons are conducted.

(1) The case where σ = 0 in Equation 2 (without noise re-
duction)
(2) The case where only the gradient-based gain is used (without
intensity-based gain)

(a) Without noise reduction (b) Without intensity-based gain

(c) Proposed method
Figure 5: Qualitative comparison of validation

Figure 5 shows the qualitative evaluation of image B. From
these results, it can be seen that (a) without noise reduction, noise
appears in the entire image. Since only a constant is applied to the
gradient, it can be confirmed that noise appears at the same time as
the contrast increases. (b) Without intensity-based gain, the noise
is reduced, but the contrast is not sufficient in the low intensity
region. (c) The proposed method reduces the noise compared to
(a), and also improves the contrast in the area of small intensity
values compared to (b).

Comparative Experiments
Visualization is performed on eight LWIR images and a

quantitative evaluation of these images is performed. A quali-
tative evaluation of three of them is also performed.

Quantitative Evaluation
Quantitative evaluation of the visualization results from each

method is conducted from the following three perspectives: (1)
how noisy the image is, (2) how easy it is to see the image in
terms of contrast and (3) how much is the signal-to-noise ratio of
the image. In addition, as a traditional NRIQA, an evaluation by
BRISQUE [4] is also conducted. (4)

(1) In this study, as there are no ground-truth images corre-
sponding to the noisy images, a non-reference image quality as-
sessment (NRIQA) method is required in order to evaluate how
noisy the images are. We use the method proposed in [3] as
NRIQA. This method utilize an eigenvalue decomposition of the
matrix representing the features computed from the image to eval-
uate how noisy the image is.

(2) We quantitatively evaluate the legibility of the images due
to contrast. Based on the assumption that the contrast of an image
is high and the image is easily recognized when its pixel values
are widely distributed, the standard deviation of all pixel values is
used to evaluate this item. The higher this value is, the easier the
image is for people to see.

(3) There is thought to be a correlation between image con-
trast and noise level. Therefore, it is not valid to ignore the con-
trast of the image and compare only the noise level. For this rea-
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Metrics Method Image A Image B Image C Image D Image E Image F Image G Image H Average

PN 1.342 1.284 2.851 1.106 1.555 1.749 2.734 2.033 1.832

(1) Noise level HE 3.826 2.517 3.286 2.749 3.643 3.379 3.567 3.145 3.264

n[×10−2] CLHE 000...555777111 000...555999555 000...666333000 000...555999111 000...666999999 000...555555333 000...666111666 000...555111222 000...555999666

Proposed 0.708 0.764 0.861 0.754 0.735 0.654 0.655 0.702 0.729

PN 0.1800 0.2729 0.2615 0.2083 0.1847 0.1925 0.2365 0.2160 0.2191

(2) Std of intensity HE 000...222888999333 000...222888999444 000...222888888999 000...222888999444 000...222888999333 000...222888999000 000...222888888888 000...222888888999 000...222888999111

s CLHE 0.0849 0.1253 0.0731 0.1162 0.0904 0.0802 0.0682 0.0710 0.0887

Proposed 0.1566 0.2202 0.1974 0.2056 0.1665 0.2047 0.1599 0.1587 0.1837

PN 13.41 21.25 9.17 18.83 11.88 11.01 8.65 10.62 13.10

(3) Std to noise ratio HE 7.56 11.50 8.79 10.53 7.94 8.55 8.10 9.19 9.02

s/n CLHE 14.85 21.07 11.60 19.67 12.94 14.50 11.08 13.85 14.94

Proposed 222222...111111 222888...888111 222222...999222 222777...222666 222222...666333 333111...333111 222444...444111 222222...666111 222555...222666

(4) BRISQUE

PN 27.12 27.99 40.35 25.16 30.19 32.37 37.65 34.31 31.89

HE 31.97 27.44 38.97 222333...000333 33.97 28.93 33.33 32.40 31.26

CLHE 27.31 222000...999333 31.81 26.10 30.03 30.22 28.46 33.85 28.59

Proposed 222666...111555 31.21 222777...999777 25.71 222777...222333 222888...888666 222555...666999 222777...999666 222777...666000

Table 1: Quantitative evaluation of visualization results by each method (Bolded text indicates the best results)

son, the value in (2) is divided by the value in (1) to obtain a value
corresponding to the signal-to-noise ratio, and the image is evalu-
ated with the value.

Table 1 shows the results of evaluating the visualized images
of each method according to the above four items.

(1) For noise level, all the visualization results of CLHE are
the best. The visualization results of the proposed method are
better than those of PN and HE, which indicates that the noise is
successfully reduced in the gradient region.

(a) Percentile normalization (PN) (b) Histogram equalization (HE)

(c) Contrast-limited histogram
equalization (CLHE)

(d) Proposed method

(e) Visible image
Figure 6: Visualization example of Image B

(a) Percentile normalization (PN) (b) Histogram equalization (HE)

(c) Contrast-limited histogram
equalization (CLHE)

(d) Proposed method

(e) Visible image
Figure 7: Visualization example of Image C

(2) For the standard deviation of pixel values, all the visual-
ization results of HE are the largest and have the highest contrast.
It can be seen that the visualization results of the proposed method
have better results than CLHE.

(3) The ratio of (1) and (2) shows that all the visualization
result of the proposed method is the best. This indicates that the
proposed method is able to reduce noise in the gradient region
while maintaining the contrast of the image.

(4) In BRISQUE, the visualization results of the proposed
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method are the best in six out of the eight scenes. In light
of the qualitative evaluation that follows, it cannot be said that
BRISQUE is an index that necessarily matches human senses in
this experiment, but the results may provide evidence to support
the effectiveness of the proposed method.

Qualitative Evaluation
Figures 1, 6 and 7 show the results of visualization of im-

ages A, B and C, respectively. Images of the same scene taken
with a visible camera are also shown for reference. As seen in the
overall results, the percentile normalization (PN) and histogram
equalization (HE) show a large amount of random noise and stripe
noise. In addition, the details of the human parts are not visible
due to white-out. Although contrast-limited histogram equaliza-
tion (CLHE) significantly reduces the noise and takes out white-
out of images, it can be seen that the contrast is also reduced. On
the other hand, the proposed method succeeds in reducing noise
without reducing contrast. In addition, there is no white-out in the
human parts, and details can be confirmed.

Conclusion
In this paper, we propose a gain adjustment method in the

gradient domain of the image to visualize LWIR images while
suppressing noise. Experimental results show that the proposed
method produces images with less noise and higher contrast than
the methods such as percentile normalization, histogram equaliza-
tion and contrast-limited histogram equalization. The effective-
ness of the two proposed gains is also demonstrated by validation
experiments.
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