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Abstract 
Acquisitions of mass-per-charge (m/z) spectrometry data from 

tissue samples, at high spatial resolutions, using Mass Spectrometry 
Imaging (MSI), require hours to days of time. The Deep Learning 
Approach for Dynamic Sampling (DLADS) and Supervised 
Learning Approach for Dynamic Sampling with Least-Squares 
(SLADS-LS) algorithms follow compressed sensing principles to 
minimize the number of physical measurements performed, 
generating low-error reconstructions from spatially sparse data. 
Measurement locations are actively determined during scanning, 
according to which are estimated, by a machine learning model, to 
provide the most relevant information to an intended reconstruction 
process. Preliminary results for DLADS and SLADS-LS simulations 
with Matrix-Assisted Laser Desorption/Ionization (MALDI) MSI 
match prior 70% throughput improvements, achieved in nanoscale 
Desorption Electro-Spray Ionization (nano-DESI) MSI. A new 
multimodal DLADS variant incorporates optical imaging for a 5% 
improvement to final reconstruction quality, with DLADS holding a 
4% advantage over SLADS-LS regression performance. Further, a 
Forward Feature Selection (FFS) algorithm replaces expert-based 
determination of m/z channels targeted during scans, with 
negligible impact to location selection and reconstruction quality.  

Introduction 
Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass 

Spectrometry Imaging (MSI) provides label-free measurements of 
signal intensities, across a range of mass-per-charge (m/z) channels, 
at high spatial resolutions. MALDI MSI has become an important 
tool in biological and chemical analyses for life science research and 
clinical pathology [1]. While at microscopic resolutions, MSI can 
require hours to days for complete acquisitions, combining known 
data, from sparse spatial sampling, with reconstructed values, 
derived thereof, can massively improve throughput. ~60-95% 
reductions in the number of required measurements, for multiple 
imaging technologies, have already been achieved with variants of 
a Supervised Learning Approach for Dynamic Sampling (SLADS) 
[3] [4], using least-squares regression (SLADS-LS) [5] [6] [7], a 
multilayer perceptron network (SLADS-Net) [8], and unsupervised 
hierarchical Gaussian mixture models (U-SLADS) [15]. Leveraging 
multiple channels of m/z data, re-implementations of SLADS-LS, 
SLADS-Net, and a novel Deep Learning Approach for Dynamic 
Sampling (DLADS) [9] [10], using a Convolutional Neural Network 
(CNN), improved throughput for nanoscale Electro-Spray 
Ionization (nano-DESI) MSI by ~70% in simulations [11] and ~44% 
in actual integration [12]. Both SLADS and DLADS dynamically 
select sparse sets of measurement locations during active 
acquisitions, through trained machine learning models, to maximize 
the quality of derived reconstructions.  

Advancement on Prior Work 
Novel advancements made in this study include: 1) the 

simulated application of DLADS and SLADS-LS to MALDI MSI, 
2) the creation of a multimodal DLADS variant to incorporate 
optical imaging in measurement location selection, and 3) a 
procedural method for determining a limited set of representative 
m/z during training, later used in the location selection process.  

1) Nano-DESI MSI platforms commonly acquire spectra 
across 2D samples in a static raster pattern. Integration with DLADS 
was encumbered by a proprietary control mechanism, restricting 
measurement selections to contiguous segments along a singular 
axis, reducing realizable throughput gains by ~30%. MALDI MSI 
platforms are less restrictive on measurement location selection, 
such that simulations are likely more indicative of realizable gains.  

2) The MALDI MSI equipment utilized for this work 
automatically performs optical imaging and semantic segmentation 
on examined specimens. Thereby, locations within the equipment 
Field of View (FoV), without physical material, are not scanned 
from the outset. Multimodal DLADS similarly restricts the 
measurement area, according to the available mask, and utilizes the 
optical image as an input feature for optimal scan location selection. 

3) For each spatial measurement location, MSI acquires a data 
quantity prohibitive to analyses needed for dynamic sampling, 
where computational resources are a critical bottleneck. DLADS for 
MSI therefore only processes a selection of m/z channels during 
actual scans. These target m/z must be chosen in advance of model 
training or experimental implementation and ideally be highly 
representative of experimental objectives. Prior works relied on 
manual selection by a domain expert, injecting potential 
inconsistencies, human bias, and becoming problematic for data at 
scale. While dimension reduction strategies can be successful [13], 
they require intensity thresholding to reduce the problem 
complexity, thereby removing any low-intensity patterns from 
consideration. A Forward Feature Selection (FFS) process, inspired 
by Sequential Feature Selector (SFS) algorithms [17], mitigates 
these issues, choosing relevant and diverse representative target m/z, 
demonstrating equivalent sampling performance to expert choices.  

Methods 

Dynamic Sparse Sampling 
The SLADS-LS and DLADS algorithms follow multichannel 

implementations developed for nano-DESI MSI [11]. For each MSI 
sample, there exists a set of 𝐿 representative target m/z: 𝑍. Every 
channel 𝑧 ∈ 𝑍 denotes a mass range (1), with a peak width: Δ ppm 
(parts-per-million). Integrating measured intensities in these ranges, 
across the equipment’s FoV, forms 2D ground-truth m/z images: 𝑋.  

ሾ𝑧 ⋅ ሺ1 െ 𝛥 ⋅ 10ିሻ, 𝑧 ⋅ ሺ1  𝛥 ⋅ 10ିሻሿ (1) 
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During acquisition there exist unmeasured and measured 
location sets: 𝑇 and 𝑆, where values for 𝑡 ∈ 𝑇 are estimated with 
Inverse Distance Weighted (IDW) [20] mean interpolation, forming 
a channel reconstruction set: 𝑋. An unmeasured location to be 
scanned next: 𝑡̅, may be selected by (2), which seeks to minimize 
the absolute error between 𝑋௭ and 𝑋௭, averaged across all 𝑧 ∈ 𝑍.  

t̅ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛
௧∈

ሼ
∑ ห

ೄ∪ି
ೄ∪ห∈ೋ


ሽ (2) 

A set of Reduction in Distortion (RD) maps: 𝑅 (3) quantifies 
the spatial distribution of this ideal information gain. RD for 
measured locations: 𝑅

ௌ ൌ 0. Using the foreground mask generated 
by MALDI equipment, multimodal DLADS sets the RD at each 
background site (𝑏 ∈ 𝐵):  𝑅

 ൌ 0 (dilated with a 3-by-3 kernel for 
training). For each remaining 𝑡 ∈ 𝑇: 𝑅௭

௧  equals the sum improvement 
in 𝑋௭ resultant of measuring that position (𝑆 ∪ 𝑡ሻ. The RD map used 
to determine t̅, averages across 𝑧 ∈ 𝑍: 𝑅 ൌ ∑ ሺ𝑅௭ሻ௭∈ /𝐿.  

𝑅 ൌ ൝
∑൫ห𝑋௭ െ 𝑋௭

ௌห െ ห𝑋௭ െ 𝑋௭
ௌ∪௧ห൯: ∀𝑡 ∈ 𝑇

0: ∀𝑠 ∈ 𝑆
0: ∀𝑏 ∈ 𝐵

  : ∀𝑧 ∈ 𝑍 (3) 

The computational expense of reconstruction necessitates 
approximating the RD (4), as the sum of the absolute difference 
between the ground-truth 𝑋௭ and current reconstruction 𝑋௭ 
multiplied by a 2D Gaussian 𝐺ሺ⋅ሻ, centrally applied at 𝑡, having 
strength 𝜎௧ (5), and radius: 𝑟௧ (6). 𝜎௧ equals the nearest measured 
neighbor distance divided by a regularization parameter: 𝑐.  

𝑅௭
்  ൎ ൛∑൫ห𝑋௭ െ 𝑋௭ห ⋅ 𝐺ሺ𝑡, 𝜎௧, 𝑟௧ሻ൯ : ∀𝑡 ∈ 𝑇ൟ (4) 
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 (5) 

𝑟௧ ൌ 2 ⋅ ቒ
ሺଷఙିଵሻ

ଶ
ቓ (6) 

For each training sample and potential 𝑐 ∈ ሼ1, 2, 4, 8, … , 256ሽ, 
following an initial 1% random spatial sampling, measurements are 
made up to 30% FoV, using 𝑅, generated with said 𝑐 value, as the 
selection mechanism. Integrating the Peak Signal to Noise Ratio 
(PSNR) [16] of 𝑋 at 1% intervals forms an Area Under Curve 
(AUC) score, maximized by the optimal 𝑐 tested.  

𝑋 and 𝑅 are not known during actual sampling, so machine 
learning models are used to compute a set of per-m/z Estimated RD 
(ERD) maps: 𝑅. After an initial 1% FoV random measurement for 
initialization, the next sampling location: 𝑡̅ ൌ 𝑚𝑎𝑥௧∈்ሺ𝑅௧ሻ, where 
𝑅 ൌ ∑ ሺ𝑅௭ሻ௭∈ /𝐿. Constraints that 𝑅

ௌ ൌ 0, and with multimodal 
DLADS: 𝑅

 ൌ 0, are enforced at scan time. Sampling continues 
until ∑𝑅 ൌ 0, or a specified % FoV has been measured.  

Random spatial sampling of target m/z images, extracted from 
the training samples (1% to 30% FoV at 1% intervals), with matched 
per-m/z approximated RD maps, generated using the optimized 𝑐 
value, forms a training database. SLADS-LS uses a least-squares 
regression model (7) to optimize parameters: 𝜃 from hand-crafted, 
statistical features: 𝑉௭

், extracted from 𝑋௭, such that 𝑅௭
் ൌ 𝑉௭

் ⋅ 𝜃. 

𝜃 ൌ 𝑎𝑟𝑔𝑚𝑖𝑛
ఏ∈ℝ

‖𝑅் െ 𝑉் ⋅ 𝜃‖ଶ (7) 

DLADS uses a Convolutional Neural Network (CNN) U-Net 
[19] architecture, with trained weights: 𝑤, and per-m/z input set: 𝐼௭, 
to perform an image-to-image translation: 𝐻, where 𝑅௭ ൌ 𝐻௪ሺ𝐼௭ሻ. 
𝐼௭ consists of the measured values: 𝑋௭

ௌ, their positions: 1ௌ, 
reconstruction values for unmeasured locations: 𝑋௭

், and with 
multimodal DLADS, the complete optical image. The network 
trains to minimize a Mean Absolute Error (MAE) loss (8) between 
𝑅௭ and 𝑅௭, using a Nadam optimizer and a 10ିହ learning rate.  

𝐿𝑜𝑠𝑠ொ ൌ |𝑅௭ െ 𝐻௪ሺ𝐼௭ሻ| (8) 

Target m/z Channel Selection 
Across a training set of 𝑁 fully acquired MSI samples (where 

𝑋ሾ𝑛ሿ denotes the m/z images for a sample index: 𝑛 ∈ ሼ1, … , 𝑁ሽ), 
there exists a set of spectrally non-overlapping m/z: �̅�, with global 
lower and upper m/z limits: [�̅�௪, �̅�ሿ, and peak width: Δ. For 
elucidation: �̅� ↦ ሾ�̅�௪

 ൌ �̅�௪, �̅�
 ൌ �̅�௪

 ⋅ ሺ1  Δ ⋅ 10ିሻሿ, 
where in the next range: Zത௪

ଵ ൌ Zത
 . Given a Δ ൌ 20 ppm, 

�̅�௪ ൌ 600, and �̅� ൌ 3200 there exist ~42k m/z ranges. This 
quantity of data effectively prevents direct application of dynamic 
sampling models in MSI technologies. However, not all acquired 
m/z contain information critical to experimental objectives and 
many m/z exhibit similar spatial response patterns. Therefore, to 
maximize computational efficiency, sample spectra may be reduced 
to a sparse set of 𝐿 target m/z: 𝑍 ⊂ �̅�, representative of the 
structurally diverse information expected to be encountered during 
acquisition. Ideally, target m/z images should be orthogonal to one 
another and together represent global sample spectra semantics.  
 
function 𝐹𝐹𝑆ሺ𝐿, �̅�, 𝑁, 𝑋തሾሼ1, … , 𝑁ሽሿሻ ↦ 𝑍: 

  #Create an empty list to store chosen m/z values 
  𝑍 ൌ ሾ ሿ 

  #Create a list of 0 arrays, as per-sample comparison images  
  𝐴 ൌ ሾ0௦௭ሺభሾሿሻ: ∀𝑛 ∈ ሼ1, … , 𝑁ሽሿ 

  #Create a zero array to hold cumulative scores for each m/z 
  𝐹 ൌ 0௦௭ሺതሻ 

  #Loop until the desired number of m/z have been selected 
  while 𝑠𝑖𝑧𝑒ሺ𝑍ሻ ് 𝐿 do: 

    #For each m/z and for each sample index 
    for 𝑧 ∈ �̅�:  for 𝑛 ∈ ሼ1, … , 𝑁ሽ: 

      #Add the sum SSIM between comparison and m/z images 
      𝐹௭ൌ 𝑆𝑆𝐼𝑀ሺ𝐴ሾ𝑛ሿ, 𝑋௭ሾ𝑛ሿሻ 

    #Find the m/z with the lowest cumulative score 
    𝑧 ൌ �̅�ሾ𝑎𝑟𝑔𝑚𝑖𝑛ሺ𝐹ሻሿ 

    #Add the selected m/z to the final list of representative m/z  
    𝑍. 𝑎𝑝𝑝𝑒𝑛𝑑ሺ𝑧ሻ 

    #Prevent potential future reselection of the selected m/z 
    𝐹௭ ൌ ∞ 

    #Set the next comparison images as those of the chosen m/z    
    𝐴 ൌ 𝑋௭ 

Figure 1. FFS pseudocode to find a set of 𝐿 m/z: 𝑍, representative of m/z set: 
�̅�, shared for 𝑁 fully acquired MSI samples, with visualizations: 𝑋തሾሼ1, … , 𝑁ሽሿ. 
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A Forward Feature Selection (FFS) algorithm (Fig. 1) was 
designed to objectively select 𝐿 m/z: 𝑍, from �̅�, given 𝑁 samples 
with images: 𝑋തሾሼ1, … , 𝑁ሽሿ, using the Structural Similarity Index 
Measure (SSIM) [14]. SSIM being selected as a common perceptual 
and structural metric. Summarily, the FFS iteratively adds m/z, not 
yet selected: ሼ𝑧 ∈ �̅�ሽ ∪ ሼz ∉ 𝑍ሽ, whose visualizations across all 
samples, are least similar to current 𝑧 ∈ 𝑍. The process initializes 
variables: 𝑍, being an empty set; 𝐴: a list of 0 arrays for initial 
comparison images (dimensions matched per-sample); and 𝐹: a list 
of cumulative scores for each 𝑧 ∈ �̅�. Looping until 𝑠𝑖𝑧𝑒ሺ𝑍ሻ ൌ 𝐿, for 
each 𝑧 ∈ �̅� and sample index 𝑛 ∈ ሼ1, … , 𝑁ሽ, an SSIM score, 
between a current sample comparison array: 𝐴ሾ𝑛ሿ, and considered 
m/z image: 𝑋௭ሾ𝑛ሿ, gets added to 𝐹௭. The m/z with lowest cumulative 
score: �̅�ሾ𝑎𝑟𝑔𝑚𝑖𝑛ሺ𝐹ሻሿ, becomes added to 𝑍, its score set to infinite 
to prevent reselection, and replaces 𝐴 with its corresponding m/z 
images. Overall, this method evaluates spectral visualizations at the 
maximum instrumentation specificity, can easily be parallelized, 
and may use alternative metrics to emphasize different criteria.  

Experiments 

Data 
MALDI MSI data was provided by Proteopath GmbH (Trier, 

Germany), who scanned Formalin Fixed Paraffin Embedded (FFPE) 
tissues, collected at the Medical Service Center for Histology, 
Cytology and Molecular Diagnostics (Trier, Germany) [2]. Imaging 
had used a Bruker rapifleX Tissuetyper (Bremen, Germany) in a 
positive-ion reflector mode, at a 100 μm spatial resolution, with 
�̅�௪ ൌ 600, �̅� ൌ 3200, and where chemical noise analysis for 
mass alignment indicated a Δ ൌ 20 ppm. Given 7 ovary sample data, 
5 were randomly chosen for training, the remaining 2 reserved for 
validation. Testing used 5 breast sample data, with the tissue type 
variation intended to emphasize model generalization capability. 10 
m/z, denoting peptides of research interest, were identified through 
expert analysis, with an alternative set of 10 found through the FFS 
method.  Fig. 2 shows visualizations of the m/z for a training sample. 
Visual inspection illustrates the FFS process succeeds in capturing 
similar molecular structures present in the expert choices.  

Quantitative Evaluation 
SLADS-LS, DLADS, and multimodal DLADS models were 

trained using expert-chosen m/z, with the latter having a second 
variant developed with the FFS set. MALDI MSI acquisitions of the 
testing samples, were then simulated, measuring up to ~30% FoV, 
in two scenarios: targeting 1) expert and 2) FFS m/z channel sets. 
Reconstructed visualizations, generated at 1% FoV intervals, of all 
measured (𝑋ത) and targeted (𝑋) m/z were compared against the 
ground-truth (𝑋ത and 𝑋), using PSNR. Results (Table 1) were 
averaged across all testing samples (Fig. 3), as an evaluation of final 
reconstruction quality, and integrated across the measured % FoV 
to obtain AUC scores, indicating overall sampling performance. 
Model effectiveness at forming ERD for targeted m/z (𝑅) was 
similarly evaluated against RD (𝑅) (computed post-sampling) and 
summarized with PSNR-based AUC scores.  

Sampling up to ~30% FoV with DLADS, targeted m/z 
reconstructions reached an average 30+ dB PSNR, matching with 
prior nano-DESI MSI results [11]. If the achieved quality were 
sufficient for a given research application, this would correspond to 
a 70% throughput improvement. Compared to SLADS-LS, DLADS 
better determined ERD by ~4%, which for both targeted and all m/z 
improved final reconstruction and AUC scores by ~1-2%.   

Multimodal DLADS immediately reduced the average 
measurable area in the test samples by ~41% and at ~30% FoV 
yielded average ~5% and ~12% advancements on PSNR and AUC 
scores for targeted m/z. This indicates a benefit to the incorporation 
of structural information present in other modalities, as may 
possibly be obtained with confocal optical microscopes.  

While targeting expert-selected m/z, with a multimodal 
DLADS model trained with FFS-based m/z and vice versa, both 
show negligible 0.1% differences to the AUC scores. Compared to 
expert-based m/z selections, the FFS process did not degrade 
performance, while being a more scalable and consistent option.  
  

Table 1: Quantitative PSNR (dB) results for simulated acquisition averaged across all samples in the testing set  

Testing 𝒁ഥ Model Training 𝒁ഥ Multimodal 𝑹𝒁ഥ 
AUC

𝑿𝒁ഥ 
~30% FoV

𝑿𝒁ഥ 
AUC

𝑿𝒁 
~30% FoV

𝑿𝒁 
AUC

Expert 

SLADS-LS 
Expert 

False 
712.50 36.89 928.14 31.97 793.17

DLADS 
740.41 37.57 933.79 32.57 804.98

True 
746.99 39.53 994.11 34.08 900.66 

FFS 750.26 39.29 993.74 33.91 900.41 

FFS 

SLADS-LS 
Expert 

False 
803.38 37.93 935.67 32.11 780.96 

DLADS 
828.46 38.63 941.80 32.63 793.07

True 
832.29 41.04 1023.91 34.22 901.03

FFS 835.22 40.76 1022.52 34.06 900.27

Figure 2. Ground-truth visualizations of a training sample for expert-selected m/z, corresponding to peptides of research interest, and FFS-based m/z, 
progressively determined though a computationally efficient SSIM-based FFS algorithm that seeks to maximize spectral representation and structural distinction.  
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Qualitative Evaluation 
 Measurement masks and reconstructions of a test sample for 
example target m/z (Expert: 1060.49; FFS: ~944.51), at 10%, 20%, 
and 30% measured FoV are shown in Fig. 4. SLADS-LS 
demonstrates a greater tendency to oversample tissue edges, where 
DLADS manages to reduce this behavior. The incorporation of 
spatial relationships through convolutional layers, intrinsic to the 
DLADS U-Net architecture, yields more diverse location selection, 
with greater focus on localized structures. Multimodal DLADS 
further spreads measurement selections inside the tissue area. Even 
without using the optical image data, the algorithm quickly 
distinguishes and focuses on foreground regions, resulting in 

improved reconstruction quality. This points to a distinct benefit in 
integration of DLADS with MALDI MSI.  

Regardless of training DLADS with expert or FFS m/z sets, the 
resultant sampling patterns are comparable. It may be noted that 
when any of the models targeted the FFS m/z set, there was a greater 
propensity to scan localized biological structures. This indicates that 
the FFS m/z set was less biased to particular tissue features. This 
behavior was not distinguishable through the utilized PSNR metrics 
since they quantify global image differences. It would be more 
beneficial, from a biological research perspective (e.g., proteomics), 
to emphasize the reconstruction quality of local structures.  

Figure 4. Ground-Truth (GT) visualizations from expert and FFS m/z sets, with corresponding m/z reconstructions (Recon.) and measurement masks (Measured) 
generated during simulated acquisition of a testing sample using SLADS-LS, DLADS, and multimodal DLADS.  

Figure 3. Averaged for all acquired m/z, the reconstruction PSNR scores over the percent FoV measured, as resultant from SLADS-LS, DLADS, and multimodal 
DLADS dynamic sparse sampling, either targeting expert-based m/z, or those found with the FFS process. 

143-5
IS&T International Symposium on Electronic Imaging 2024

Computational Imaging XXII



 

 

Conclusions 
This work simulated integration of multichannel and 

multimodal DLADS with MALDI MSI, achieving 30+ dB PSNR 
for reconstructions of targeted m/z, for ~70% throughput gains. A 
SSIM-based FFS m/z selection method was introduced as an 
alternative to expert annotation, achieving near-identical 
performance in testing. Integration of more modalities, such as 
optical imaging shows potential for additional performance gains.  

While the DLADS CNN architecture demonstrated an 
advantage over SLADS-LS in regression, with positive effects to 
sampling patterns, this did not translate well in the final 
reconstruction PSNR scores. For future work, PSNR may need to be 
replaced with an alternative perceptual difference metric that can 
better quantify the relative quality of local structure reconstructions.  

The FFS process may also be improved. Since the variance in 
cumulative SSIM scores decreases with each m/z channel selection, 
a cutoff value could be specified to determine how many m/z are 
actually needed to represent the underlying spectra. DLADS may 
also be able to use the determined SSIM scores to weight target m/z 
during acquisition, by their relative importance.  

 Lastly, DLADS remains bottlenecked by its approximation of 
RD for generation of static training datasets and continued reliance 
on IDW mean interpolation for reconstruction. There exists 
potential for overcoming these limitations through incorporation of 
novel network architectures, such as Generative Adversarial 
Networks (GANs), which should be pursued in future research.  

Code 
 The DLADS and SLADS-LS programs, utilized in this study, 
have been made available at: github.com/Yatagarasu50469/SLADS, 
under GNU General Public License v3.0, as release v0.9.5.  
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