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Abstract

Regression-based radiance field reconstruction strategies,
such as neural radiance fields (NeRFs) and, physics-based, 3D
Gaussian splatting (3DGS), have gained popularity in novel view
synthesis and scene representation. These methods parameterize
a high-dimensional function that represents a radiance field, from
a low-dimensional camera input. However, these problems are
ill-posed and struggle to represent high (spatial) frequency data;
manifesting as reconstruction artifacts when estimating high fre-
quency details such as small hairs, fibers, or reflective surfaces.

Here we show that classical spherical sampling around a
target, often referred to as sampling a bounded scene, inhomoge-
neously samples the target’s Fourier domain, resulting in spectral
bias in the collected samples. We generalize the ill-posed prob-
lems of view-synthesis and scene representation as expressions of
projection tomograpy and explore the upper-bound reconstruc-
tion limits of regression-based and integration-based strategies.
We introduce a physics-based sampling strategy that we directly
apply to 3DGS, and demonstrate high fidelity 3D anisotropic ra-
diance field reconstructions with reconstruction PSNR scores as
high as 44.04 dB and SSIM scores of 0.99, following the same
metric analysis as defined in Mip-NeRF360.

Introduction

Radiance field reconstruction has advanced significantly
through regression-based strategies, such as NeRFs [1, 2, 3, 4]
and 3DGS [5]. While the interopolative nature of regression gives
way to novel view synthesis, efficient processing, and estimation,
radiance reconstruction pipelines have been shown to struggle on
high frequency information [7]; at the time of this writing, Zip-
NeRF and 3DGS are reported as current state-of-the-art strategies
with their highest reconstruction PSNR scores being 28.54 and
27.21 respectively, on the Mip-NeRF360 benchmark dataset. In
“Fourier Features Let Networks Learn High Frequency Functions
in Low Dimensional Domains” Tancik et al., utilizing Neural Tan-
gent Kernel (NTK) theory [8], conducted rigorous analysis on the
numerical behavior of multilayer perceptrons (MLPs) to under-
stand and improve reconstruction of high frequency information.
Utilizing spherical sampling around a target, it was determined
regression on MLP architectures converges to the same mean-
estimator as ridgeless kernel regression with the NTK; introduc-
ing a spectral bias on reconstructions and preferentially converg-
ing on eigenvectors with larger eigenvalues. From this analysis
and the observed difficulty with reconstructing high frequency de-
tails, Tancik et al. qualitatively deduced that larger eigenvalues of
low frequency information were present compared to the rest of
the sampled domain, and introduced a tuneable Fourier features-
based positional encoder that preprocesses the Fourier domain of
the input measurements by tuneably amplifying the power spec-
trum of the high frequency components.
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Figure 1.  RIFT generalizes the ill-posed problems of radiance field view-
synthesis and scene representation as expressions of Fourier computed to-
mography; introducing a physics-based sampling strategy that is directly ap-
plicable to radiance field reconstruction methods and demonstrating high fi-
delity 3D anisotropic radiance field reconstructions with PSNR scores as high
as 44.04 dB/ SSIM 0.99; Here, RiFT is implemented on 3D Gaussian Splat-
ting to accurately reconstructing high frequency details including small hairs,
fibers, and reflective surfaces on an ornament.

With our work dubbed Radiant Field Tomography (RiFT),
we apply Fourier analysis on computed tomography to quanti-
tatively show how spherical sampling around a target results in
a calculable spectral bias in the collected image measurements;
specifically causing higher eigenvalues of the low frequency tar-
get information to be present in the measurement data compared
to the rest of the domain. Our contribution here is to generalize the
ill-posed problem of novel view synthesis and scene representa-
tion from the perspective of projection tomography. This leads to
a more sophisticated forward model and physics-based sampling
strategy that can be applied to already existing tomographic, neu-
ral, and 3DGS-based methods for orders of magnitude greater per-
formance in achieving high-fidelity 3D anisotropic radiance field
reconstructions.

With this thinking, we assess the Mip-NeRF360 benchmark
dataset and analyze the finite support of targets’ frequency spec-
trum sampled from the available images. Next, we introduce a
rigorous and generalized forward model for describing the full
propagation for an anisotropic radiant field; from target of in-
terest to a physically accurate camera model. Finally, utilizing
our recommended sampling strategy, we explore the upper-bound
resolution limits of regression-based and integration-based back-
projection strategies; utilizing 3DGS as a physics-based approach



for radiance field reconstruction and filtered backprojection for
non-biased sampling and estimation of object density. Under our
sampling strategy we achieve a reconstruction score of 44.04 dB
PSNR / 0.99 SSIM with 3DGS and accurately reconstruct small
hairs, fibers, and reflective surfaces; see Fig. 1.

Theory

While “computed tomography” most often connotes x-ray
imaging, Marks et al. [6] demonstrated that x-ray computed to-
mography algorithms can be applied to imaging in the visible
spectrum with a camera, and does not necessarily require ac-
tive illumination. While radiance estimation contrasts with object
density estimation, generalizing this sampling theory to NeRF’s
conventional spherical/bounded sampling around a target, we can
directly analyze the contribution each individual image serves in
reconstructing the target 3D radiometric field in the Fourier do-
main.
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Figure 2.  The Fourier slice theorem generalized for camera-based com-

puter tomography

In Fig. 2, a single dipole serves as the target of interest. For
more general targets, one can model every point of the target as a
collection of independently radiating point sources. Considering
a 7 solid angle radiating out from a point for each source point,
we can model the propagation of their individual fields rays ar-
riving at the camera’s aperture. By performing an inverse Fourier
transform on the image captured by the sensor, we can extract
a slice of the power spectrum (auto correlation) of the radiance
field that was originally in front of the lens’s aperture. This pro-
cess provides insight into the properties of the radiance field as
manipulated by the lens.
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Figure 3.  Fourier Slice theorem generalized for multi-sampling computer

tomography

As we orbit the camera around the target, each image cap-
tured corresponds to a different slices of the target’s power spec-
trum shown in Fig. 3. This process of sampling is described by
the projection slice theorem, which states that an object f that
has N dimensions, the Fourier transform of the projection in m
dimension is equivalent to the slice in 7 dimension of the Fourier
transform [10]. Intuitively as more slices encompass the target’s
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Fourier spectrum, the more effectively we can reconstruct the tar-
get’s radiance field.

High
frequency

Figure 4.  Conventional NeRF bounded scene sampling around a target
leads to non-homogeneous sampling of the target Fourier field, specifically
resulting in higher eigenvalues of the low frequency target information to be
present in the measurement data compared to the rest of the domain.

However, as shown in Fig. 4, NeRFs conventional bounded
scene sampling results in a spectral bias in the measurement data,
with a higher presence of eigenvalues in the low frequency tar-
get information compared to the high frequency information. As
demonstrated in Fig. 5, x-ray computed tomography filtered back-
projection, proper filtering on the collected measurement data is
necessary. Combining Figs. 4 and 5, we show without filter-
ing, spectrally biased measurement data will propagate its bias
through the integration-based filtered backprojection, inducing
spectrally biased reconstructions.
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Figure 5. Ultilizing x-ray computed tomography, with integration-based back-
projection, reconstructions of the target object density are achieved over 2,
12, 24, 95, and 512 projections from left to right. (Above) Reconstruction
is implemented using integration-based backprojection without filtering. (Be-
low) Reconstruction is implemented using integration-based backprojection
with filtering.

In Fig. 4, filtered backprojection measurement data is first
preprocessed by utilizing a high-pass filter to suppress the low fre-
quency eigenvalues; from the reconstruction it can be seen that by
removing the inherent spectral bias over the entire measurement
distribution, the spectral bias in the reconstructions are attenu-
ated. Figure 6 demonstrates the numerical trend between recon-
struction quality and number of projections. As we increase the
number of projection angles, along with applying this filtering,
the reconstruction’s PSNR and SSIM increase; while the PSNR
and SSIM for unfiltered does not show significant variation be-
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Figure 6. PSNR & SSIM vs. number of projections.

yond 20 projections. This is because the high contribution of the
low frequency results in washing out the high frequency compo-
nents of the reconstructions. While using the filtering strategy,
on the other hand, the PSNR and SSIM grow significantly, until
saturation, as the number of projection angles increase.

The benchmark data used to reconstruct the radiant fields
in Mip-NeRF’s datasets are taking slices in distinct directions of
the power spectrum of the real world. As depicted in Fig. 7 a),
each red line in the power spectrum can be considered as a pic-
ture from one direction. However, by slicing the power spectrum
more densely or with greater extent, shown in Fig. 7 b), results
in a greater finite support and improved reconstruction. To obtain
more slicing information in the power spectrum, we can either try
moving close towards the object (greater extent) or utilize a longer
focal length imaging system. Denser slicing can be achieved by
sampling more images in different perspectives. Ideally, denser
and wider slices shown in Fig. 7 c¢) will result in the highest sam-
pling of the Fourier domain, and thus the best reconstruction.

Figure 7. a) Power spectrum with 5 slices and far away from the object. b)
Power spectrum with 250 slices and close to the object. c) Power spectrum
with 570 slices and close to the object.
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Forward Model

In this section we will introduce a rigorous and generalized
forward model from the target anisotropic radiant field to a cam-
era. A target scene can be represented as a collection of inde-
pendently radiating point sources. The radiance field at any point
in space can therefore be represented by the combination each
point-radiator’s contribution at that point. The target of interest
generates a field which can then be propagated to the camera lens
by following the procedure described in the next section.

Propagating from Target to the Camera Lens

R 1 Xa — X0
kovj = s , L | Yamo |
V=30 + 0a—y0)* + (za— 20 | 20

where xg,yo,z0 denote the objection location, and x,,y,,z, de-
notes the location of the camera aperture. Let f([xo,y0,z0]), rep-
resent the radiance field of the object we seek to recover. In ob-
ject space, the frequency passing through the aperture of the lens
A(Xa,Yas2a) is

_Yath =¥
A(za —20)

_Xath X0,

$ = Aea—z0)’ @

After transforming from the aperture to the image sensor, centered
at r;, we can express the image space frequencies as:

g = Hxal_xo‘_x”;n/: [[Ya — ol =il 3)
f/#mA Af/#mA
where m is the magnification of the imaging system. We can also
simplify equation 3 to cancel A because f/# is a function of aper-
ture size. Notice the image space frequency can be related back to
the frequency passing through the aperture, via the magnification
term m:

mE =& mn' =n “)

To obtain the image of the sensor, we integrate over wave-
length and time to obtain the irradiance for each camera position.
Figure 8 illustrates our entire model, which spans from the sun
to the camera sensor, where kg, stands for the propagation from
the sun to the target. Since the sun is far from us, it can be con-
sidered as plane wave illumination with coherence length in the
visible range from 40 to 60 micrometers [11]. As mentioned pre-
viously, the improved density of sampling enhances the resolution
and accuracy of the reconstructed target radiance field.

In the following section we step through a rigorous camera
reduction defining a direct physical mapping from a physically
accurate camera model to a pinhole camera model, allowing for
direct interpretability and interoperability between computational
photographic, tomographic and pinhole model based reconstruc-
tions such as NeRFs and 3DGS.

Physics-based Camera Model

In our camera model, we begin with a basic configuration as
depicted in Fig. 9 a), consisting of a simple lens group and a sen-
sor. Using Gaussian reduction [12], we simplify this lens group
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Figure 8. Pipeline of model from the sun to high frequency-sampling strat-
egy

into two principal planes, as shown in Fig. 9 b). This process is
then followed by a further simplification, reducing the system to
a basic aperture stop in Fig. 9 c).

If we reduce the optical space inside the principle planes, we
can obtain the pinhole camera model in Fig. 9 d). However, re-
ducing to a pinhole camera model neglects the aperture size and
depth of field, which is non ideal for real imaging conditions be-
cause the real camera system has a cutoff frequency and depth of
focus band limiting the information from the target/object space
to the image space. Furthermore, reducing the aperture size will
decrease the highest frequency passing through the system but
increase the depth of field, bringing more information along the
optical axis direction to focus. The frequency in 3D space passed
into the camera system is constrained by:

=B ®)
where &, 1, and { are frequencies in the Fourier transform of the
real space. By decreasing the aperture size, § and ) will decrease,
but ¢ will increase correspondingly; as a result, depth of field is
increased. On the other hand, increasing the aperture size results
in a narrower depth of field.

By swapping the aperture size, we create a natural filter for
an imaging system because a smaller aperture size will pick up
lower frequencies in the power spectrum, while larger apertures
pass the higher frequencies as demonstrated in Fig. 4.

This step-by-step approach allows us to methodically sim-
plify the camera model, making it easier to analyze and under-
stand its fundamental optical properties.

Experiments

Fourier computed tomography sampling strategies assist
with amplifying eigenvalue contributions from a target’s high fre-
quency information. To explore the upper-bound resolution limits
of regression-based and integration-based backprojection recon-
struction strategies we conducted one set of regression-based ex-
periments, using 3DGS, for reconstructing a target’s radiance field
and one set of integration-based experiments, using unfiltered and
filtered backprojection, for reconstructing a target’s object den-
sity.
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Figure 9. a) An example of an camera with lens group, stop, and a sensor.
b) Reduced lens group with an example object and image. c) Further reduce
to a stop only. d) Reducing optical space between two principle plane we can

obtain a pinhole camera visualized in 3D.
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Figure 10. An ornament is shown as an example of an imperfect lambertian
object producing an aniostropic radiance field.

For both experiments targets were sampled at 10, 64, 250
and 570 projections, respectively. For our regression-based exper-
iments, we used an Allied Vision camera 1800U 1240m to sample
a target aniostropic radiance field shown in Fig. 10. Note, as the
ornament was the target subject for this experiment, sampled im-
age projections were first preprocessed to remove an optical post
holding the target object. Unlike the nominal 250 images pro-
vided in the Mip-NeRF360 benchmark dataset, we sampled 570
images at 4024 x 3036 pixel resolution over a full 360° rotation at
a distance of approximately 27 centimeters from the target. Un-
der our sampling condition, the collected samples provide a much
higher frequency range than that of the Mip-NeRF360 bench-
marks. For our integration-based experiments, we constructed a
target object and simulated Magnetic Resonance Imaging (MRI)
projections of the same sampling.

We evaluated the performance of 3DGS with reconstruct-
ing the radiance field by varying the number of input projected
views. To evaluate its PSNR/SSIM reconstruction accuracy, re-
constructed projections were compared with unseen views follow-
ing the evaluation method described in Mip-NeRF360; utilizing a
test/train split every 8th photo in the dataset was used for test-
ing as an unseen view. For evaluating the performance of unfil-
tered and filtered backprojection we followed the same methodol-
ogy of evaluating the performance over different number of input
views, but instead calculated PSNR and SSIM reconstruction ac-
curacy by directly comparing the whole reconstructed object den-
sity against the known ground truth.

Observations & Results

See Fig. 11 for a plot of our results. As discussed in
Fig. 5, our integration-based backprojection results aligned with
our initial hypothesis, which posits that more projections results
in higher reconstruction accuracy up to a certain extent without
proper filtering; as increased sampling without filtering leads to
a bias with greater low frequency eigenvalues washing out the
higher frequency information in reconstruction.

For our regression-based backprojection results, interesting
trends were observed. Although 3DGS does not have a built-
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Figure 11.  PSNR (above) with PSNR of current 3DGS and Zip-NeRF &
SSIM (below) vs number of input projections.
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Figure 12. Reconstructed ornament results with varying number of input
projections. Fig. 10 shows the nearest ground truth.
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in preprocessing step to homogenize the spectral sampling, like
that of [7] or filtered backprojection, its reconstruction accruacy
at 570 images achieved a high fidelity reconstruction of 44.04dB
PSNR / 0.99 SSIM and also followed the trend of integration-
based filtered backprojection; growing in reconstruction accuracy
until saturation. In Fig. 12, we demonstrate the reconstructed
radiance field results with over the various number of input pro-
jections into 3DGS. With 250 and 570 images provided to 3DGS,
small hairs, fibers, and reflective surfaces were reconstructed with
extremely high fidelity.

Discussion & Future Work

The similar PSNR/SSIM regression and integration trends
observed in Fig. 11 suggest the existence of an optimal com-
promise for various applications, balancing acceptable quality
against the requisite number of sampling points and camera sam-
pling. From the physics-based camera model presented, optical
filtering techniques can be applied to directly homogenize mea-
surement samples at capture time rather than as a post-processing
step, thereby potentially further increasing the PSNR/SSIM re-
construction score than what is reported here.

For future work, we are interested in exploring multiple ar-
eas, including extending analysis on NeRFs. We also plan to uti-
lize heterogeneous array cameras with varying focal lengths and
the physics-based camera model presented, to serve as a direct
analog methodology for managing aliasing artifacts from multi-
scale sampling. Additionally, we are also exploring various al-
ternative bases for the 3DGS algorithm, focusing particularly on
the Laguerre-Gaussian and Hermite-Gaussian bases due to their
unique properties and interconvertibility [14]. Laguerre-Gaussian
functions, LG(p,l), characterized by their concentric ring intensity
profiles, are crucial in laser optics and quantum mechanics, es-
pecially in describing the orbital angular momentum of photons.
Hermite-Gaussian functions, HG(m,n), on the other hand, display
a rectangular symmetry with a pattern resembling a chessboard,
making them vital in applications requiring precise beam shape
control or on-axis sampling, such as in remote sensing, optical
tweezers, and quantum computing. Figure 13 and Fig. 14 illus-
trate examples of the Laguerre-Gaussian and Hermite-Gaussian
bases, respectively. The Gaussian splatting algorithm treats each
point source on the object as a Gaussian function. Since Laguerre
and Hermite-Gaussian functions are also types of Gaussian func-
tions, they may offer a more effective representation and differen-
tiability compared to directly using the first three rows of spherical
harmonics. See Fig. 15. This indicates their potential superiority
in accurately modeling complex structures in 3D reconstruction.
Lastly, we plan to explore a combination of NeRFs and 3DGS
strategies, and implement Generative Al methods for direct trans-
formation on the estimated anisotropic radiance field, to further
expand the limit of resolution.
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