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Abstract

Prognosis for melanoma patients is traditionally determined
with a tumor depth measurement called Breslow thickness. How-
ever, Breslow thickness fails to account for cross-sectional area,
which is more useful for prognosis. We propose to use seg-
mentation methods to estimate cross-sectional area of invasive
melanoma in whole-slide images. First, we design a custom seg-
mentation model from a transformer pretrained on breast can-
cer images, and adapt it for melanoma segmentation. Secondly,
we finetune a segmentation backbone pretrained on natural im-
ages. Our proposed models produce quantitatively superior re-
sults compared to previous approaches and qualitatively better
results as verified through a dermatologist.

Introduction

According to the Center for Disease Control [1], skin can-
cer is the most common type of cancer in the United States. It
is estimated that in 2022, 197,900 people have been diagnosed
with melanoma, representing around 5.2 % of all cancer cases
in the United States. Out of all of the types of skin cancer,
melanoma is by the far the most serious [2]. Melanoma origi-
nates in melanocytes or pigment-producing cells in the epidermis.
Melanoma in the epidermis is called in-situ melanoma, and it is
typically low-risk. Melanoma that invades past the epidermis into
the dermis is known as invasive melanoma, and is a sign of high-
risk cancer. The primary invasive melanoma tumor size at the
time of diagnosis is a crucial prognostic factor for survival pre-
diction and clinical management. Over-staging a melanoma can
subject patients to unnecessary risks from procedures and stud-
ies, resulting in undue financial burden on the health care sys-
tem. The average annual cost of treating melanoma is estimated
at $3.3 billion in the United States [3]. Therefore, accurate assess-
ment of invasive tumor size is an early critical step in appropriate
patient care and utilization of health care resources. Typically,
tumor size is estimated from stained images of patient skin biop-
sies imaged with microscopes. The current clinical practice is
to use a 50 year old prognostic metric called Breslow Thickness
(BT), a one dimensional proxy for the melanoma tumor volume
within the dermis. The BT is the distance from the surface of the
epidermis to the deepest part of the malignant tumor within the
dermis [4]. BT’s main shortcoming is that it is a simple distance
measurement in one dimension and cannot accurately describe a
3-dimensional tumor burden. It fails to account for variation in
epidermal thickness, tumor diameter and density. [5] provides ev-
idence that the cross-sectional area of the tumor is vital for more
accurate forecasting of patient outcomes. Despite the shortcom-
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ings of BT, it is still being relied on due to its reproducibility and
ease of use [6]. To overcome the limitations of BT, [5] proposed
a manual method to estimate the invasive tumor cross-sectional
area, which better predicts mortality than BT. However, this man-
ual method is time-intensive with high inter-observer variability,
thereby limiting its clinical utility and adoption [6]. Given that
tumor-cross section evaluation is a segmentation exercise, we hy-
pothesize that computer vision based approaches can be utilized
to great effect. Segmentation maps contain detailed geometric
information about invasive melanoma. These maps can then be
further measured to provide metrics including BT, cross-sectional
area, density, and shape. The cross-sectional evaluation provides
additional information that would be invaluable for staging and
management planning, and could significantly impact the stan-
dard of care.

Current work on segmenting melanoma such as [7], [8], [9],
and [10] use older, simple convolutional models such as U-Net
[11], like. Even though these approaches might have multi-stage
models [7], different sampling methods [10], or segment differ-
ent structures such as cell nuclei [9], their model designs ad-
here to well-studied and simple architectures, which may limit
performance and model expressivity. A recent work on invasive
melanoma segmentation used a two-stage multi-resolution convo-
lutional model [12], with the first step segmenting the epidermis
and the other segmenting all melanoma, i.e. in-situ and invasive
melanoma. This two-stage method is inspired by the fact that the
in-situ melanoma is visually similar to the invasive melanoma. To
distinguish between the two [12] would segment all melanoma
and then rule out the in-situ melanoma using the epidermis pre-
dictions to obtain invasive melanoma predictions. The models
developed in [12] are HRNet-OCR [13] and HookNet [14], which
are massive convolution-based models selected for their multi-
scale and context modelling properties. There are several prob-
lems with the approach in [12]. Both segmentation models are
both overparameterized for a small dataset, as they contain 80-
100 million parameters for a training set of 43 whole slide images
(WSIs). In addition, having two models doubles the training time
and computational costs. A viable alternative is to train a sin-
gle network to segment both the invasive melanoma and epider-
mis at the same time, thus halving the training time and reducing
overparamerization. This way, we can reduce the problem to one
three-class segmentation task, rather than two binary segmenta-
tion tasks.

In this paper, we propose two transformer models, each for
solving the above three class segmentation task. Each model has
its own unique internal representation and is pretrained on a dif-



ferent data set. Our models achieve state-of-the-art results in
melanoma segmentation without using established, simple con-
volutional models most commonly used in medical computer vi-
sion. We also show that multi-scale modelling and representations
result in superior segmentation performance over generic single-
scale transformer designs.

Dataset

Our dataset is identical to [12] and contains 55 total slide
images. We partition 43 images as the training set and 12 im-
ages as the testing set. The images contain 6 labels: background
cells, epidermis, invasive melanoma, inflamed tumor, fibrotic tu-
mor, and uncertain tumor. We note that the in-situ melanoma is
considered part of the epidermis in our labels, and that the only
type of melanoma that is labeled is invasive melanoma. Some of
the classes are not finely labelled, especially the fibrotic tumor
and inflamed tumor regions. From a pathologist’s perspective, the
boundaries of these regions are inherently more ambiguous than
other well-defined areas such as invasive melanoma and epider-
mis. To avoid segmenting those regions, we transform the data
from the original 6 classes into 3 semantic classes. (1) other,
which contains the background cells, fibrotic tumor, inflamed tu-
mor, and uncertain tumor; (2) invasive melanoma; and (3) epider-
mis.

Proposed Method

In the next two subsections, we will describe our single scale
and multi-scale transformer models. Figure 1 shows a high-level
schematic of both models.

Single-Scale Transformer

[16] released Hierarchical Pyramid Transformer (HIPT) pre-
trained on WSIs of breast tissue via student-teacher distillation.
These models are used as an encoder backbone component of
the network. To our knowledge, these are the only transformer
networks pretrained with WSIs of biological tissues. Due to the
commonality in biological features between breast tissue and skin
tissue and cancer in general, a model pretrained on breast cancer
WSIs will likely bolster the performance of invasive melanoma
segmentation. However, there are several challenges that need to
be overcome with using the HIPT models. First, HIPT uses the
original vision transformer backbone [15] , which only contains
single-scale low resolution representations. Multi-scale represen-
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Figure 1. Proposed pure transformer model
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tations have proven to perform best for segmentation tasks since
objects can exist at multiple scales. Therefore, we propose a de-
coder mechanism that constructs multi-scale hierarchical features
to use with these pretrained HIPT models based on [17]. Spec-
ficially, we investigate three different decoder designs for HIPT
models, denoted by baseline, adapter, and all-MLP. A high-level
schematic of the three decoder mechanisms can be found in Fig-
ure 2. The baseline decoder simply uses resampled feature maps
plus the Uperhead [18] feature aggregation mechanism. The all-
MLP decoder uses resampled feature maps with an all-MLP seg-
mentation head. The adapter decoder uses cross-attention be-
tween the HIPT backbone and convolutional feature maps to con-
struct multi-scale features with an Uperhead segmentation head.

Multi-Scale Transformer

In this section, we propose to directly utilize a hierarchical
transformer backbone rather than adapting other non-hierarchical
models such as HIPT to perform segmentation [19]. SegFormer
is an appropriate model for our task because unlike many other
transformers, it has built-in hierarchical structures with multi-
scale feature maps. Another advantageous property of SegFormer
is the lack of positional embeddings. Typically, vision transform-
ers need to interpolate positional embeddings if the resolution of
the images for a finetuning task is different from the resolution the
model was pretrained with. This interpolation allows the trans-
former to handle multiple resolutions, but also introduces artifacts
that lower performance. SegFormer skips positional encodings al-
together by using zero-padded convolutions to produce positional
representations. Lastly, SegFormer is trained on ImageNet [20],
which has repeatedly proven to confer powerful visual represen-
tations generalizable to many tasks.

Experimental Results

We train our models on a machine with 3 NVIDIA Quadro
RTX 8000 GPUs with PyTorch. We use the Adam optimizer [21]
with a learning rate of 0.00006 and with a weight decay of 0.01.
We use the linear decay scheduler with linear warmup for the
learning rate scheduler. We apply dropout on the final segmen-
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Model mloU | melanoma loU F1
Multi-Scale FCN [8] 0.538 0.130 0.140
Best 2-stage [12] 0.640 0.291 0.440
Best HIPT Model 0.696 0.401 0.573
Best SegFormer Model | 0.719 0.447 0.618

Table 1.
approaches.

Quantitative comparison of our proposed method and previous

tation head layer and also the positional embeddings for the HIPT
models. We use pixel-wise cross entropy loss. Both models take
approximately 1 day to train 100 epochs with a batch size of 16
per GPU.

Table 1 shows the best results for each type of transformer
model and also the best results of the existing methods in [12]
and [8]. The best SegFormer and HIPT models outperform the
best model from [12] in mIoU by 12% and 9% respectively. There
are two reasons behind this; first, convolutional networks do not
model global long-range contexts well because of their narrow
receptive field. By contrast, the receptive field of the transformer
is the entire size of the image after only the first self-attention
layer. Small and scattered melanoma is the most difficult to seg-
ment because it is sparse, and can be present across long ranges
in an image sample. As seen in Figures 3, 4 and 5, transformer-
based architectures fare better in this long-range modelling task
for scattered melanoma. The second reason is that transformers
exhibit superior generalization ability because they lack the in-
ductive biases in convolutional networks. The best model from
[12] contains 80M parameters, which is significantly more than
the 58.1M and 27.5M in the best HIPT and SegFormer models
respectively. More examples of HIPT vs. SegFormer vs. [12] are
included in [22].

As shown in Table 1, SegFormer mloU is 0.02 higher than
HIPT. Unlike HIPT, SegFormer is a custom-designed architec-
ture for segmentation with multi-scale, hierarchical feature maps.
In contrast, for HIPT, we had to introduce a multi-scale feature
adapter system to produce hierarchical feature maps necessary for
segmentation. In particular, we notice that the segmentation maps
by HIPT underperform in detecting sparse and small melanoma,
which may indicate that the internal representations have too low
of a resolution.

Model Resolution | mloU | melanoma loU F1
Adapter 512 0.696 0.401 0.573
Adapter 768 0.652 0.311 0.475
Adapter 1024 0.644 0.3298 0.460
Baseline 512 0.678 0.363 0.533
Baseline 1024 0.670 0.348 0.517

Table 2. Results on different patch sizes for HIPT.

Model Resolution | mloU | melanoma loU F1
Seg. BO 512 0.694 0.397 0.568
Seg. BO 1024 0.695 0.398 0.569
Seg. B1 512 0.689 0.386 0.557
Seg. B1 1024 0.717 0.441 0.613
Seg. B2 512 0.719 0.447 0.618
Seg. B2 1024 0.708 0.424 0.595

Table 3. Results on different patch sizes for SegFormer.
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Figure 3. The method from [12] fails to detect scattered melanoma, even
though the tumors exist at approximately the same scale. Meanwhile, the
transformer-based models are able to detect most of the melanoma nodules,
with Segformer achieving the best performance

A possible reason for SegFormer to have outperformed the
custom-designed HIPT models is positional encoding. HIPT was
pretrained on 256 x 256 images at 20x magnification. There-
fore, to accommodate our dataset of 40x images at higher reso-
lutions, there is a mismatch in positional encodings which results
in performance decrease. As seen in Table 2, larger patch sizes
for HIPT tend to worsen performance, hinting that positional en-
coding interpolation negatively impacts performance. SegFormer
on the other hand lacks positional encodings, so resolution is not
as important of a factor for segmentation performance. For the
SegFormer models, Table 3 shows no clear trends with patch size
and performance even though larger contexts contain more infor-
mation for segmentation.

Model Params | mloU | melanoma loU F1
Adapter | 58.1M | 0.696 0.401 0.573
Baseline | 33.0M | 0.678 0.363 0.533
All-MLP 25.0M 0.652 0.314 0.478

Table 4. Best results on using different decoders for HIPT. The resolution
used for this experiment was 512 x 512.

As seen in Table 4, the best performing HIPT model is the
adapter decoder design. We speculate this to be due to the dif-
ferences in constructing hierarchical feature maps. Specifically,
the baseline and all-MLP decoders resample feature maps of a
fixed resolution to a desired resolution from }1, %, 11—6, and é
The adapter model on the other hand uses cross-attention with
convolutional features to construct the multi-scale feature maps

from the HIPT backbone. The baseline architecture outperforms
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Figure 4. The method from [12] segments the epidermis poorly and con-
tains a large number of false positives and negatives. SegFormer is closest
to the ground truth.

the all-MLP architecture, which may be due to MLP architectures
needing more data to generalize.

Table 5 shows a general performance boost with ascending
SegFormer model sizes, with the best being the SegFormer B2.
This is most likely because larger models exhibit superior ca-
pacity for large-scale pretraining which is consistent with other
observations in [15]. That being said, we have also found that
SegFormers B3 and B4, which are even larger models than B2,
have poor segmentation performance due to non-convergence in
the training. ImageNet pretraining is also a reason for SegFormer
models outperforming the HIPT models. The HIPT pretraining
dataset of breast cancer WSIs only has about % the size of Ima-
geNet in terms of total samples. This affects the generalization of
visual representations, considering that ImageNet contains more
diverse scenes than just breast cancer WSIs as well as more total
samples.

Model Params | mloU | melanoma loU F1
Seg. BO 3.7M 0.695 0.398 0.569
Seg. B1 13.7M 0.717 0.441 0.613
Seg. B2 | 27.5M | 0.719 0.447 0.618

Table 5. Results on different SegFormer sizes

Conclusions and Future Work

We proposed two transformer-based methods which outper-
form the state-of-the-art method in [12] with convolutional back-
bones by up to 12% in mloU with less training time and mem-
ory. Our SegFormer models slightly outperform HIPT models
due to the inherent multi-scale architectural design of SegFormer.
Our HIPT adapter model uses learnable network modules rather
than simple resampling to construct multi-scale features, result-
ing in superior segmentation performance. Future work could fo-
cus on addressing class imbalances with other types of losses or
sampling strategies, as healthy tissues and cells vastly outnum-

2-Stage [12] Ground Truth

Figure 5. The method from [12] fails to segment the scattered melanoma
and also contains artifacts at the edges of the epidermis. SegFormer is clos-
est to the ground truth.

ber diseased tissues in living patients. Due to the high resolution
nature of whole-slide images, limitations of segmentation annota-
tion tools for physicians, and also the inherent variance in annota-
tions between different physicians, noisy annotations are inherent
to WSI segmentation. Another avenue of future work would be
to incorporate methods to better handle noisy annotations. Lastly,
HIPT is one of the first publicly available foundation models for
histopathological data, and much further room for exploration ex-
ists for such building on top of such foundation models. In par-
ticular, vision-language models such as [23] are interesting due
to the development of language-guided segmentation [24], which
could offer more interpretability for physicians and fine-grained
control over segmentation..
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