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Abstract
Can artists be recognized from the way they render certain

materials, such as fabric, skin, or hair? In this paper, we study
this problem with a focus on recognizing works by Rembrandt,
Van Dyck, and other Dutch and Flemish artists from the same
era. This paper proposes a novel material-based approach based
on Swin Transformer and Cascade Mask R-CNN to address artist
recognition task. We report the performance on a dataset of 644
images. Additionally, the model’s robustness to image variations
is studied.

Introduction
The identification of artists through their artwork, particu-

larly in the context of paintings, has always been a challenging
yet intriguing area of research in the field of art history and com-
puter vision. Convolutional Neural Networks have been the pri-
mary tool for image feature extraction and pattern recognition in
artworks. However, their effectiveness is often limited when dis-
cerning artists with similar styles, as well as in dealing with paint-
ings that vary in condition and age. This limitation highlights the
need for a more robust approach to artist identification.

In this context, Van Zuijlen et al.[8][12] underscore the im-
portance of an artist’s techniques in rendering materials such as
skin and fabric. This approach could potentially be a key factor in
artist recognition. This indicates that the way artists depict differ-
ent materials might serve as a distinctive and robust feature, par-
ticularly valuable for identifying artists with similar styles. This
concept is integral to developing a more effective method for artist
recognition, focusing on the unique material rendering styles of
artists.

Another challenge in this field is the processing of high-
resolution images by deep learning models, coupled with the lim-
ited availability of extensive painting datasets. Our approach
addresses this by segmenting paintings into multiple material-
specific segments, thereby reducing the image size for processing
and increasing the volume of data while maintaining the integrity
of high-resolution details.

Therefore, this paper proposes a new aspect of artist recogni-
tion, focusing on the segmentation of material segments in paint-
ings, specifically targeting the works of Rembrandt, Van Dyck,
and other Dutch and Flemish artists of the same era. This research
not only presents a novel method in artist recognition but also sets
the stage for the development of an accessible artist recognition
system.

Methodology
The artist recognition based on material segments can be

viewed as a combination of two computer vision tasks: material

instance segmentation and painting attribute recognition. Mate-
rial instance segmentation involves learning a segment extractor
Seg(·) that maps input images to k segments. Painting attribute
recognition, on the other hand, focuses on learning a classifier
Cls(·) that maps each segment to a specific attribute or category,
resulting in k classification results. Finally, the results are in-
tegrated through an aggregation process A(·) to achieve a final
artist recognition result p. The two-stage artist recognition prob-
lem based on material segments can be defined as

A(Cls(Seg(I))) → p (1)

For the segment extraction Seg(·), the Swin Transformer[9]
is employed as backbone network. While Convolutional Neu-
ral Networks have traditionally dominated computer vision tasks,
Transformers[transformers citation], known for their success in
Natural Language Processing, have increasingly been adopted in
this field due to their superior modeling capabilities and efficient
parallel computation. Notably, the Swin Transformer has made
significant improvements in aspects such as hierarchical struc-
ture, window mechanism, and training strategy, resulting in no-
table performance enhancements in image processing tasks. It
outperforms traditional CNNs in capturing long-range dependen-
cies in high-resolution images and demonstrates strong transfer
learning abilities. By pretraining on large-scale general datasets
(e.g., ImageNet-1K), the model can achieve impressive perfor-
mance, effectively leveraging its learned features to handle the
unique challenges posed by high-resolution artworks.

Swin Transformer offers a range of models with varying
sizes to accommodate various computational needs and tasks, as
detailed in Table 1, configurations P, C, and H represent the num-
ber of parameters, channels, and hidden layers, respectively. It
adapts well to image segmentation by integrating additional seg-
mentation heads (e.g., R-CNNs), demonstrating versatility and ef-
ficacy. Hence, the Swin Transformer is increasingly recognized as
a key architecture widely used in applications like image segmen-
tation and classification.

After feature extraction from painting images using the back-
bone network, the next step is to identify and extract materials
within these images. Traditional object detection networks like
Faster R-CNN[6] identify candidate bounding boxes of targeted
objects, but they still encompass semantic information from adja-
cent pixels (As depicted in Figure 1 (left)). Instance segmentation,
however, extends object detection to pixel-level segmentation of
objects (As depicted in Figure 1 (right)).

Mask R-CNN[7] extends Faster R-CNN which combines ef-
ficient object detection with a mask branch for high-quality in-
stance segmentation masks. Cascade Mask R-CNN[1][2] builds
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Table 1: Description of Different Sizes of Swin Transformers

Size Configuration Description
Swin-Tiny P = 86M,

C = 96,
H = (2,2,6,2)

Suitable for con-
strained resources.

Swin-Small P = 107M,
C = 96,
H = (2,2,18,2)

Better performance
with fewer re-
sources.

Swin-Base P = 145M,
C = 128,
H = (2,2,18,2)

Best results, larger
version.

upon Mask R-CNN, further improving accuracy with a cascad-
ing structure. This structure includes three stages of progres-
sively stringent filtering thresholds for candidate boxes, refining
earlier predictions and culminating in detailed instance segmenta-
tion. Both Mask R-CNN and Cascade Mask R-CNN, as advanced
instance segmentation methods, can efficiently segment material
in paintings.

Two-stage Artist Recognition System
According to the methodology mentioned above, we propose

a Two-stage Material-based Artist Recognition System. This Sys-
tem combines the functionalities of material segmentation and
artist recognition in paintings, enabling artist recognition inde-
pendent of contextual information while outputting material seg-
ments. The architecture of this system is illustrated in Figure 2.

The Two-stage Artist Recognition System contains four
steps:

In Step 1, high-resolution painting images undergo prepro-
cessing before inputted into the Swin Transformer backbone net-
work, resulting in feature maps of the input images. The fea-
ture map is then fed into Cascade Mask R-CNN(or Mask R-CNN
network) to obtain the binary mask images Mk ∈ RH×W for n
material segments, where k ∈ (1,n). Additionally, the probabil-
ity vector Yk = {y0,y1,y2, . . . ,yc}′ is obtained for each segment,
where c represents the total number of material categories, and
Ck = max(Yk) serves as the category label for the material seg-
ment. The configuration of the segmentation model mostly ad-
hered to the settings in [?].

In Step 2, each binary mask image Mk is overlaid on the
input image to retain only the material regions in the original im-

Figure 1. Object Detection vs. Instance Segmentation

age. A contour detection algorithm is used to detect the minimum
bounding box for each material region, and the regions outside of
these bounding boxes are cropped to obtain the material segments
Sk ∈ RHn×Wn×3. Each material segment is characterized by its re-
spective dimensions Hk,Wk, representing the height and width of
the minimum bounding box, as material segments can have vary-
ing dimensions.

In Step 3, each material segment obtained in Step 2 is in-
putted into another Swin Transformer classification model to ob-
tain the artist recognition probability vector for each segment. The
artist category with the highest probability is selected as the artist
recognition result for each material segment, resulting in n artist
recognition results L = {l1, l2, . . . , ln}.

In Step 4, the n artist recognition results L = {l1, l2, . . . , ln}
are integrated to obtain the final artist recognition result p. In
this study, the model is trained using data from three categories of
artists, allowing the model to recognize three categories of artists.
Therefore, li, p ∈ (0,1,2).

This artist recognition system follows a stage-wise optimiza-
tion approach. The material segmentation stage and artist recog-
nition stage are trained and evaluated separately.

Data Collection
Due to the requirement of materials segments in painting, a

total of 644 portrait paintings are collected from different sources,
including works by artists such as Van Dyck, Rembrandt, Gen-
tileschi, and Hals. The paintings are categorized as Van Dyck,
Rembrandt, and Others. Using VGG Annotator to perform
instance-level annotation for five types of materials in the paint-

Figure 2. The Architecture of Artist Recognition System.

177--2
IS&T International Symposium on Electronic Imaging 2024

Computer Vision and Image Analysis of Art 2024



ings: Hair, Skin, Lace, Fur, and Other Fabric. This dataset is
used to train and validate models in the material segmentation
stage. Table 2 displays the number of paintings and resolution
ranges for each category in the annotated painting dataset.

The extracted material segments from the annotated painting
dataset are used to create a material segment dataset, which in-
cludes material category labels and artist labels, containing over
5000 material segments. This dataset is utilized to train and eval-
uate models in the artist recognition stage. The material labels
consist of Hair, Skin, Lace, and Other Fabric. Table 3 displays
the distribution of material segments. It is evident that utilizing
material segments significantly increases the available data vol-
ume. Examples of some material segments from the dataset are
shown in Figure 3.

Table 2: Distribution of Annotated Painting Dataset

Category Number of
Paintings

Resolution Range

Van Dyck 177 Min: 361× 453
Max: 5898×7324

Rembrandt 302 Min: 2612×3267
Max: 11148×14348

Others 165 Min: 1421×1801
Max: 8688×8219

Others: Abraham de Vries, Frans Hals, van der Helst,
Petronella Elias, Cornelis Jonson, Jan de Baen, Carel
Fabritius, etc.

Table 3: Distribution of Material Segment Dataset

Category Hair Skin Lace Other
Fab-
ric

Total

Rembrandt 865 836 335 1052 3088
Van Dyck 244 382 151 568 1345
Others 308 464 180 435 1387
Total 1417 1682 511 1800 5410

Material Segmentation
The material segmentation stage utilizes the Swin Trans-

former backbone in combination with the Cascade Mask R-CNN
instance segmentation model. To achieve the optimal balance be-
tween performance and computational cost, three different sizes
of the Swin Transformer are tested as the backbone network. All
experiments are conducted using MMDetection[3], and the ex-
perimental setup largely follows the default settings, with small
adjustments made solely based on computational resource limita-
tions. This stage is trained and evaluated on the annotated painting
dataset.

Additionally, to determine the best material categories, at-
tempts are made to segment Hair, Skin, and Fabric in the Van
Dyck category. The results are presented in Table 4. and fur-
ther divide Fabric into Fur, Lace, and Other Fabric in Rembrandt
and Others categories. The results is presented in Table 5. Us-
ing Mask AP (Mask Average Precision) as the evaluation metric.

Mask AP is computed based on the Intersection over Union (IoU)
between predicted masks and ground truth masks.

Table 4: Segmentation Results on Van Dyck(%)

Backbone Skin Hair Fabric
Swin-T 59.0 38.4 42.5
Swin-S 56.1 36.4 40.3
Swin-B 58.5 37.3 45.6

Table 5: Segmentation Results on Rembrandts and Others(%)

Backbone Skin Hair Lace Fur Other
Fabric

Swin-T 48.4 34.5 58.3 9.3 45.9
Swin-S 49.2 33.0 64.2 0.8 46.6
Swin-B 48.3 35.9 57.5 1.7 42.1

Based on the segmentation results, it is evident that the vast
majority of materials achieved a level of performance compara-
ble to the state-of-the-art in the instance segmentation task. The
higher accuracy in the Van Dyck category can be attributed to
its relatively smaller quantity compared to the combined quantity
of Rembrandt and Others categories. Notably, the segmentation
accuracy for lace is the highest, and the accuracy for fabric seg-
mentation also shows significant improvement, affirming the ap-
propriateness of subdividing fabric.

However, the segmentation accuracy for Fur and Hair are
relatively low. This can be explained by visualizing the segmen-
tation results in Figure 4. It appears that the model has difficulty
distinguishing Hair (Purple Region) and Fur (Blue Region), lead-
ing to the observed decrease in their accuracy. Therefore, fur will
no longer be classified as a separate material category.

Additionally, Figure 5 shows the segmentation results of
Swin-T, Swin-S, and Swin-B on the same painting. Swin-T ex-
hibits rugged edge detection and fails to accurately identify Hair
regions. and its Skin segmentation fails to avoid overlapping

Figure 3. Examples of images in Material Segment Dataset.
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with the regions of the eyes and mouth. Similarly, in Swin-B
results, the hair is also not accurately detected. Meanwhile, Swin-
S demonstrated notably superior segmentation results compared
to the other two backbones, establishing itself as the most ap-
propriate choice for the material segmentation stage in the artist
recognition system.

Figure 4. Confusion between Fur and Hair.

Figure 5. Segmentation Results of Swin-T vs. Swin-S vs. Swin-B.

Artist Recognition
Based on the material segmentation results, the artist recog-

nition stage utilizes the Swin-S backbone. To achieve class
balance, the material segment dataset undergoes downsampling,
where 245 material segments are extracted from each category to
form the test set. Additionally, 1100 material segments are ran-
domly selected from the remaining data in each category to per-
form 5-fold cross-validation. The average results from the 5-fold
cross-validation and the results on the test set are reported in Ta-
ble 6. Note that during this stage, the model learns to recognize
artists based on individual material segments.

The results from the 5-fold cross-validation and the test set
demonstrate that the performance gaps across various evaluation
metrics are within 2.5%, indicating the model’s robust general-
ization capability. On the validation set, the model achieve Top-
1 Accuracy, Precision, Recall, and F1-score all surpassing 93%,
while on the test set, all metrics exceeded 91%. This verifies the
feasibility of artist recognition based solely on material segments.
The confusion matrix results on the test set, as depicted in Fig-
ure 6, show that the model’s confusion is not concentrated solely
between specific pairs of categories but rather evenly distributed
among different categories. This finding verifies the feasibility of
artist recognition based solely on material segments.

Additionally, the performance of three other backbone net-
works, Swin-B, ViT-Base[4], and RestNet101[5], are also evalu-
ated and compared to Swin-S in the artist recognition stage. The
results of the test set for different networks are reported in Table
6.

Swin Transformer-based models exhibit faster convergence
and higher recognition accuracy compared to ViT-Base and Rest-

Net101. The results in Table 6 further confirm the superior per-
formance of Swin-S on the test set, achieving comparable or even
better artist recognition accuracy than Swin-B, while having a
smaller parameter size.

Two-staged artist recognition system, utilizing Swin-S +
Cascade Mask R-CNN for the segmentation stage and Swin-S for
the classification stage, achieves remarkable results in the task
of painter recognition solely based on material segments. Figure
7 showcases the impressive outcomes of this model on artworks
from three artist categories: Others, Rembrandt, and Van Dyck

Figure 6. Confusion Matrix of Swin-S.

Table 6: Artist Recognition Results(%)

Backbone Top-1
Acc

Precision Recall F1-
score

Swin-S(Val) 93.52 93.60 93.52 93.54
Swin-S(Test) 91.97 92.16 91.97 92.00
ResNet101 88.02 88.02 88.02 88.00
ViT-Base 90.20 90.33 90.20 90.20
Swin-B 91.29 91.52 91.29 91.35

Figure 7. Example of the Segmentation and Recognition Results.
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Validation Experiment
The high accuracy of the classification results does not en-

tirely serve as an endorsement for the artist recognition efficacy
of the system based on material segments. Given that deep learn-
ing classification models operate as black-box models, there re-
mains a possibility that the model could learn non-robust features
(such as shape, color, etc.) from material segments for classifi-
cation purposes. Moreover, a robust painter recognition model
should demonstrate its ability to handle variations in image qual-
ity, such as differences in brightness and image degradation due to
scanning techniques or aging. The Two-staged artist recognition
system, with its material-based recognition approach, is designed
to be resilient to such interference. Therefore, a series of experi-
ments are conducted to validate the interpretability and robustness
of the artist recognition system.

Interpretability
GradCAM[10] (Gradient-weighted Class Activation Map-

ping) is a visualization technique for image processing, primarily
used to understand how areas of an image contribute to the final
decision-making by calculating their gradients. This technique is
immensely helpful in interpreting the decision-making process of
deep learning models, particularly in image recognition and clas-
sification tasks. Figure 8 presents the GradCAM visualizations of
the artist recognition model on a material segment. It is evident
that the model attends to regions containing features related to the
artist’s depiction (e.g., brushstrokes) of the material, demonstrat-
ing that the recognition model relies on these robust features to
identify the artists.

t-SNE[11] (t-Distributed Stochastic Neighbor Embedding)
is a data dimensionality reduction and visualization method that
maps high-dimensional data into a lower-dimensional space while
preserving the similarity structure of the data. Utilizing t-SNE vi-
sualization enables observation of the feature vectors output by
the recognition model’s backbone into a two-dimensional space,
determining whether the model can effectively differentiate paint-
ing materials of different categories within this two-dimensional
feature space. Figure 9 shows the t-SNE visualization results of 3
different scenarios.

Figure 9 (left) shows the t-SNE visualization results of the 3
painter recognition, indicating that the model accurately separates
samples of the three painter categories in the feature space. Fig-
ure 9 (middle) displays the t-SNE visualization results for the 12
materials (3 Artists × 4 Materials). Combining the 3 artists and 4
materials to form a 12-class dataset to train and test the same artist
recognition model. The resulting visualization showcases the fea-
ture vectors from the test set, with different colors and shapes
representing distinct material categories and artists, respectively.
It is evident that materials of the same material (same color) are
closer in the feature space.

Additionally, within the same material category, the model
achieves accurate differentiation between different artists (distinct
shapes). From the perspective of artists, Other Fabric and Lace
belong to a similar category. A 6-class model is trained and tested
for the 3 Artists × 2 Materials scenario. The resulting t-SNE vi-
sualization is presented in Figure 9 (right), where colors represent
the same artist and shapes represent materials. It can be observed
that instances of Other Fabric and Lace from the same artist are
closer in the feature space compared to instances of the same ma-

terial type from different artists. This observation indicates that
the model can recognize common features between different ma-
terials from the same artist. This demonstrates the model’s ca-
pability to accurately extract artist-specific features from material
segments.

Figure 8. Original Segment vs. GradCAM Visualization vs. Salient Area.

Figure 9. t-SNE Visualization Results.

Robustness on Brightness
To verify the system’s robustness on brightness, a set of 150

high-resolution painting images (50 per category) is randomly
sampled from the annotated painting dataset. Majority Voting
is employed to aggregate material segment classification results,
and the recognition accuracy is reported on image-level. In con-
sideration of universality and computational resource limitation,
the robustness test utilizes the Swin-T Backbone in combination
with the Mask R-CNN to perform material segmentation. Sub-
sequently, robustness tests are conducted on aspects related to
brightness and resolution.

Firstly, the image set is brightened (or darkened) by 10%,
30%, and 50% respectively, and then fed into the artist recogni-
tion system. The visual effects of the brightness-adjusted images
are shown in Figure 10. The outcomes of the recognition accuracy
under various conditions are presented in Table 7. Upon further
analysis, it is observed that the majority of Others category images
become too dark to effectively detect material fragments, result-
ing in lower accuracy. Concerning the Van Dyck category, certain
images exhibit distortion after a 50% brightening, contributing to
a slight decrease in accuracy. However, for the vast majority of
scenarios, notably high recognition accuracy is achieved, indicat-
ing the robustness of the artist recognition system in the face of
brightness alterations in painting images.

Robustness on Resolution
To assess the robustness of the artist recognition system

across various resolution ranges, the same set of sampled images
undergoes adjustments in resolution. The image resolution reduc-
tions of 10%, 30%, 50%, 70%, and 90% are shown in Figure 11.
The results are presented in Table 8. Notice that during the in-
ference stage pre-processing, the input dimensions of the painting
images are uniformly scaled to H ′ = 480, W ′ = 1333.
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It is evident that even when image resolution is reduced by
70%, the outcomes of the artist recognition system maintain a
high recognition accuracy, signifying the considerable robustness
of the artist recognition system across a broad spectrum of res-
olutions. This is a vital trait, particularly for the processing of
high-resolution painting images, as it suggests the potential for
alleviating computational burden by downsampling image resolu-
tion.

Figure 10. Examples of Brightness-adjusted Image.

Figure 11. Example of Image Scale of Resolution-adjusted Images.

Table 7: Robustness Test Results on Brightness

Original -10% -30% -50%
Others 50 50 42 23
Rembrandt 49 49 49 47
Van Dyck 48 45 43 40
Accuracy (%) 98.00 96.00 89.33 73.33

+10% +30% +50%
Others 48 48 48
Rembrandt 47 46 44
Van Dyck 45 45 38
Accuracy (%) 93.33 92.67 86.67

The results demonstrate the artist recognition system’s abil-
ity to maintain performance even under these challenging condi-
tions.

Conclusion
In this study, we developed a novel Two-stage Material-

based Artist Recognition System, utilizing the Swin Transformer
and Cascade Mask R-CNN to identify artists from material seg-
ments within high-resolution paintings. Our approach effectively

Table 8: Robustness Test Results on Resolution

Original -10% -30%
Others 50 50 50
Rembrandt 49 48 48
Van Dyck 48 47 47
Accuracy(%) 98.00 96.67 96.67

-50% -70% -90%
Others 50 48 43
Rembrandt 47 47 42
Van Dyck 46 48 50
Accuracy(%) 96.00 96.00 81.33

addresses the challenges of traditional CNN-based methods, par-
ticularly in distinguishing artists with similar styles. The sys-
tem’s robustness was thoroughly evaluated against variations in
image conditions such as brightness and resolution, demonstrat-
ing consistent performance. Through extensive experiments and
interpretability analyses using techniques like GradCAM and t-
SNE visualizations, we were able to understand the model’s fo-
cus on specific material attributes for artist recognition. This re-
search contributes to the field by providing a new methodolog-
ical perspective for artist identification, combining art historical
knowledge with advanced computer vision techniques. It offers
a promising direction for future studies in digital art analysis and
has potential applications for art historians and digital archivists
in understanding and categorizing artistic works.
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