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Abstract
Light is abstract. Light is difficult to describe with words.

Unlike other pictorial motifs such as perspective, light depiction
eludes fixed rules and defies straightforward measurement. This
study presents a preliminary step towards measuring light infor-
mation from paintings at scale. We use spherical harmonics to
extract light environment features from depicted faces. Our initial
evaluation assessed the model’s ability to accurately represent
environmental lighting, using natural images with ground truth
lighting information. To evaluate performance on paintings on
a large-scale setting, we compare our light direction estimates
with human annotations over the course of five centuries. Finally,
our methodology undergoes validation through an art historical
case study. We track the use of diffuse light across seventeenth-
century Netherlandish portrait painting to commensurate art his-
torical literature with our quantitative measures.

Introduction
The use of light in painting is deeply embedded within its

cultural and historical context, intricately linked to the painting
techniques and materials of the time. Representational paintings
depict scenes from our observable environment, where objects are
arranged in a space, have colors, and illumination. It is in this
context where light serves not only as an instrument to render the
three-dimensional properties of the natural world, but also as an
aesthetic tool for artistic expression. Among other pictorial mo-
tifs, light is used to suit the visual message by guiding the viewer’s
attention, evoke a particular mood, or arrange objects in space,
while also carrying symbolic weight — as a reminder of the pas-
sage of time, portraying the liveness of emotions and intellectual
faculty, or manifesting divine presence.

Unlike other pictorial features like perspective or human
anatomy, light is challenging to measure. Moshe Barasch noted
that Leonardo da Vinci expressed the impossibility to measure the
correctness of lights and shadows by technical means, and contin-
ues: “the fact that shadows cannot be measured nor their ‘correct-
ness’ ascertained by technical means makes their representation a
definite manifestation of that artistic talent which, unlike ‘rules’,
cannot be learned” [1, p. 48]. The detachment between light and
fixed rules is tied to the complexities of describing light with lan-
guage. As Hills observes [2, p. 4], light leaves room for inter-
pretation, making accident and intention difficult to discern and
describe. Barasch concludes: “We must consider light as a visual
language, but not a textual language” [1].

The advent of computer vision methods to analyze paintings
present a refreshing opportunity to study depicted light, enhanc-
ing existing techniques where human perception and language
might encounter limitations. The quantification of light as a stylis-

tic signature opens up avenues for detecting resonances between
artists or schools who employ lighting in similar ways. This not
only aids in appreciating aesthetic affinities but also entails the
possibility of uncovering workshop practices, where consistent
lighting might reveal an artist’s practice of working directly from
the subject, while contradictory lighting could suggest reliance on
preparatory sketches, or the artist working directly from imagina-
tion [3]. Impett operationalized Lomazzo’s theory of divine light
using light source detection techniques, providing insights about
the pictorial representation of divine sources in concrete paintings
[4]. Researches in [5] quantified the extent to which artists em-
ploy lighting contrast in paintings using a Bayesian metric, ad-
dressing the problem of light quantification as a component of
style. This method facilitates large-scale comparison of lighting
contrast, yet it only takes into account this singular visual aspect
of light. The adoption of spherical harmonics with the proposed
method expands light analysis by capturing subtler nuances of the
light environment, such as ambient and directional properties.

Figure 1. On the left: A Young Roman Woman (detail). Sebastiano del

Piombo (1512). On the right: 3D mesh of the face relighted with the extracted

environment map.

Stork proposed several methods for the analysis of light in
paintings [3]. Spherical harmonics were used to analyze the light-
ing around the contour of an object and estimate the direction
of illumination. This approach facilitates the inference of artist
workshop practices by analyzing the illumination signature of
different objects within the same painting [6]. In contrast, our
methodology proposes a customized pipeline designed for light
analysis at scale, enhanced by the integration of 3D information.
This enables an increased number of spherical harmonic light co-
efficients, capturing more subtleties present in complex light set-
tings. We use faces as light probes to extract the spherical har-
monic coefficients of the light environment on a painting. Once
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the illumination is captured, it is possible to relight the 3D ge-
ometry of the face according that particular light environment, as
showed in Figure 1.

The analysis of depicted light at scale presents a research
opportunity yet to be defined by the digital art history commu-
nity. We present here a preliminary work on the topic, proposing
a computational pipeline for the systematic quantification of light
features in a wide array of paintings. The paper begins by intro-
ducing the foundations of spherical harmonics, followed by the
explanation of the proposed pipeline to extract three-dimensional
light features from digital paintings. Subsequently, we introduce
three distinct evaluation methods. First, we test the reliability of
luminance values as a proxy for ground truth lighting by exam-
ining the capacity of the extracted coefficients to differentiate be-
tween light environments. Secondly, we conduct a large scale
experiment to find the direction of illumination in paintings over
five centuries, comparing our findings with light directions as-
sessed by human evaluators. Finally, we propose a case study to
test our method against art historical knowledge.

Methodology
Spherical Harmonics are a mathematical tool to represent

any function on the surface of a sphere, such as the light distri-
bution over a hemisphere. In computer graphics, they provide an
efficient encoding of light used in real-time rendering applications
[7]. Illumination conditions are described as a spherical function,
which can be stored in a texture, or environment map. We use
spherical harmonics to approximate the Bidirectional Reflectance
Distribution Function (BRDF), which describes the reflection be-
haviour according to material properties of objects. The resulting
BRDF describes a diffuse surface, which indicates that light is
scattered uniformly in all directions. In the diffuse reflectance
model, often referred as the Lambertian reflectance model, the
calculation of incident light is only influenced by the angle of in-
cident light relative to the surface normal. Visually, modeling the
illumination of an object as a diffuse surface means that specular
reflections —highlights that depend on the viewpoint— are not
considered.

The intuition for the overall pipeline to extract lighting in-
formation from paintings comes from inverse rendering [8]. Con-
trary to a common computer graphics rendering pipeline, the task
is to extract 3D information from the 2D images. While deep
inverse rendering models rely on spherical harmonics as a latent
representation of light features, we avoid this trend. Deep archi-
tectures require ground truth normal, depth, and shading or albedo
maps. Such data is hardly accessible for natural images and im-
possible for paintings. Some self-supervised methods have been
proposed for natural images [9], but the task remains an ill-posed
problem and hence a more interpretable approach is favored. Our
method sidesteps such issues by reducing the amount of required
data to regress lighting information by assuming luminance val-
ues to be a good approximation for ground truth light intensities.

We chose to analyze lighting in faces for two reasons. First,
it is the visual feature from which we most confidently can regress
3D data. This is an essential part of the pipeline as enables au-
tomatic feature extraction for distant viewing analysis. Secondly,
human figures—and by extension faces—are the most widely rep-
resented visual motif in representational painting. We use an off-
the-shelf 3D Morphable Model (3DMM) to (1) detect faces in

a painting, (2) regress sparse 2D geometry features, specifically
landmark points, and (3) regress dense 3D geometry features, in-
cluding vertices and their corresponding normal vectors. We use
the 3DMM called SynergyNet [10], a model tested on artistic data
with fast inference processing time to extract 3D geometry, align-
ment, and orientation from a single monocular image. Overall,
our lighting model assumes the following:

• Skin reflectance is Lambertian and thus acts as a low pass
filter on the incident illumination.

• Distant illumination (e.g., incident light rays are parallel)
• Uniform albedo and convexity (e.g., no inter-reflections)
• Enough geometrical variance of the 3DMM to capture 3D

face geometries on paintings
• Luminance values in the CIE-LAB color space are a reason-

able good approximation for ground truth light intensities.

As we operate under the assumption of uniform albedo
across the sampled light values, we propose a ground truth re-
finement pipeline. The primary goal is to produce a ground truth
mask that approximates true lighting conditions in the skin of the
face. We assume the ground truth illumination values can be well
approximated from the CIE-LAB luminance pixel values from
the face. Additional pre-processing techniques, such as apply-
ing inverse gamma correction to address the non-linearity of dig-
ital cameras, were explored but ultimately not included, as these
steps did not yield any significant qualitative or quantitative im-
provement. The computation of the ground truth mask involves
several steps, as showed in Figure 2. We create the first mask by
projecting the 3D mesh onto the image plane. This projection is
straight-forward and does not involve any transformation matri-
ces since SynergyNet uses orthographic projection. This mask is
the input to a skin segmentation model [11], which removes un-
desired pixels from the projection by segmenting the skin-related
pixels. Finally, we use the sparse 2D landmark points regressed
from SynergyNet to remove the area inside the eyes and lips.

Figure 2. Steps for the calculation of the ground truth mask of Figure 1.

Using a Lambertian reflectance model, the lighting environ-
ment L(N⃗) of the face can be described in terms of the first three
order spherical harmonics [12]. This is described in equation 1,
where lm

n represents the first nine spherical harmonic coefficients,
from l0

0 to l2
2 . The superscript m indicates the degree, and the

subscript n indicates the order of the spherical harmonic. Finally,
the variable Y m

n (N⃗) represents the evaluation of the spherical har-
monic basis functions over the surface normal vectors N⃗.

L(N⃗) =
2

∑
n=0

n

∑
m=−n

lm
n Y m

n (N⃗) (1)

Hence, our hypothesis proposes the calculated illumination
using spherical harmonics to be equal to the sampled luminance
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values of our ground truth mask. Such hypothesis can be pos-
tulated as a simple linear system of equations, as expressed in
equation 2. In this equation, M is a Nvertices x Ncoe f f icients matrix
containing the sampled spherical harmonic basis functions. In our
analysis, Nvertices represent a subset of vertices from the regressed
3D mesh, selectively including only those mapped to positive val-
ues in the ground truth mask, thus varying with each facial eval-
uation. The vector v⃗ is the nine spherical harmonic coefficient
vector to be found, and b⃗ is the ground truth vector representing
the sampled luminance values.

Mv⃗ = b⃗ (2)

Two main sources of noise need to be considered. First, im-
perfections in the ground truth due to occlusions, such as beards,
or cast shadows from a helmet or a hand. Secondly, a 3D face
mesh that does not align well with the target face can cause large
variations in the calculation of the coefficients. As suggested in
[13], we add a regularization term C to dampen the effects of such
noise sources. Equation 3 shows the error function to be mini-
mized, where C is the diagonal matrix (1, 2, 2, 2, 3, 3, 3, 3, 3).
In practice, the analytical solution showed almost identical results
to gradient optimization methods for small values of λ . In all the
conducted experiments, we set the value of λ to 0.1.

E (⃗v) = min
v⃗

∥Mv⃗− b⃗∥2 +λ∥C⃗v∥2 (3)

Solving for v⃗ we aim to find the set of coefficients that min-
imizes the difference between the predicted lighting values and
the luminance mask of the face. The optimized coefficients repre-
sent the contribution of each basis function to describe the overall
illumination on the surface of the face. We can use such coef-
ficients to generate a light environment map, a spherical visual-
ization that represents the overall light intensity and how light
varies in different directions. Each coefficient contributes to a
certain frequency and pattern of light variation on the sphere, as
shown in figure 3. In spherical harmonics, the first order (n = 0)
is constant, and represents the ambient light. The second order
(n = 1) are linear polynomials which encode the directional infor-
mation of light. Finally, third order (n = 2) spherical harmonics
are quadratic polynomials that capture more nuanced variations in
lighting.

Ultimately, the light value at each vertex of the 3D mesh is
the evaluation of the calculated coefficients on the basis functions,
as expressed in equation 2. This enables us to render the final
3D mesh, illuminated under the derived lighting conditions, as
showed in Figure 1.

Evaluation
In this section, we tackle the primary challenge of evaluating

the estimated lighting conditions from 2D digital paintings where
no ground truth is available. Our aim is to test the model’s func-
tionality for art historical research. Specifically, the ability of the
coefficients to differentiate between light environments, and the
extent to which the regressed 3D geometry and luminance ground
truth serve as appropriate data to estimate light direction.

Figure 3. Visualization of the overall contribution of each coefficient. First

row (n=0), second row (n=1), thrid row (n=2). The environment map is the

addition of all coefficient contributions, showed in Figure 1.

Lighting environments
To test how well the proposed method distinguishes between

lighting environments, we use a small dataset composed of three
simple, yet different light scenarios. The Yale Face Database 1

contains images of 15 individuals under varying facial expression
and lighting configuration. For each individual we select 3 images
corresponding to each light environment: center light, left light
and right light. We extract the spherical harmonic coefficients
of each face to examine how sensitive each coefficient is to the
direction of light.

Coefficients that vary significantly across light environments
suggest a strong directional influence. From the first order
spherical harmonic coefficients (n = 1), which encode directional
information of light (see Figure 3), it is primarily the fourth coef-
ficient l1

1 , aligned with the x-axis, that exhibits a substantial shift
in value. This particular coefficient distinctly reflects the direc-
tional influence of the light source, exhibiting neutral values un-
der centered lighting, negative values with left-ward lighting, and
positive values when illuminated from the right, indicating its sen-
sitivity to horizontal light positioning. Higher order coefficients
related to the x axis, coefficients fifth l−2

2 and seventh l0
2 , follow

the same behaviour, while the ninth coefficient l2
2 is an excep-

tion. From the mathematical definition of the spherical harmonic
basis functions, we know that positive values for l2

2 means that
there is always greater contribution of the x-axis over the y-axis,
which is in correspondence to the expected behaviour. The pres-
ence of high variance within each coefficient reflects the intrinsic
complexity of lighting environments, where subtle changes in the
position of the light source, as well as the position and face geom-
etry of the person being portrayed, can influence the assessment
of the coefficients.

To further interpret the extent to which the extracted coef-
ficients properly encode the lighting environments, we perform a
classification evaluation using two linear algorithms: Logistic Re-
gression and Support Vector Machine (SVM), and two non-linear
algorithms: Gradient Boosting and Random Forest. This choice
of models, while not exhaustive, provides a balanced overview,

1http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html
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sufficient to assess the robustness of the coefficients. As the
dataset is small, we use 10-fold cross-validation to prevent from
overfitting. The aggregated results across models yield a mean
accuracy of 90%, with precision, recall, and F1-scores averaging
91%, 90%, and 89%, respectively. The performance metrics span
from a minimum accuracy of 89% to a maximum of 96%. The
evaluated performance across all models suggest that the quan-
titative behaviour of the spherical harmonic coefficients matches
the physical response of the actual light source position.

Light direction at scale
To further explore the consistency of the proposed method,

we expand our performance evaluation to a distant viewing set-
ting. In [14], authors proposed a study on light direction compris-
ing around 10k artworks throughout western art history, where
participants were asked to draw a 2D estimation of the light direc-
tion, along with their confidence of estimation. A comparison of
the proposed method with human evaluations gives an idea of the
extent to which the proposed 3D geometry and luminance ground
truth serve as a reasonable approximation to encode light informa-
tion for large scale analysis. This section explores the possibility
of using human perception as another possible validation for our
quantitative light measures.

We follow the strategy proposed in [15] to calculate the di-
rection of illumination for 3D Lambertian surfaces from a distant
light source. The least squares estimation expressed in Equation 4
allows us to calculate the 3D light direction given by coefficients
Lx,Ly,Lz with an ambient light term A. This computation relies
on the surface normal’s components, described by matrix M, and
their corresponding luminance values from the ground truth, cap-
tured in vector b⃗. Solving for v⃗, the calculation of the principal
2D light direction is straight forward using equation 5.

E (⃗L,A) =

∥∥∥∥∥∥∥∥∥M


Lx
Ly
Lz
A

−


I(x1,y1)
I(x2,y2)

...
I(xp,yp)


∥∥∥∥∥∥∥∥∥

2

=
∥∥∥Mv⃗− b⃗

∥∥∥2
(4)

θ = tan−1
(

Lx

Ly

)
(5)

We select paintings from 1400 to 1900 to focus the evalua-
tion on representational paintings. To detect instances where there
is a clear disagreement between human evaluations over the same
painting, we adopted a criterion based on the Mean Absolute De-
viation (MAD). We included paintings under two conditions: ei-
ther they had only one evaluation (MAD = 0) and a confidence
score above 4 (in a scale from 0 to 7), or they had multiple eval-
uations with a MAD less than or equal to two standard deviations
above the MAD mean. For paintings with multiple evaluations,
the mean value is used to determine the ground truth light di-
rection. Recognizing the inherent complexity of light, we refine
the analysis by selecting paintings of straightforward composi-
tion, specifically those featuring a single figure in a portrait-like
setting, though not limited to traditional portraits. This approach
makes it easier for human evaluators to discern light interactions,
thereby facilitating a more precise examination of light.

Following this criteria, we use the zero-shot classification ad-
vantages of CLIP model [16] to filter the human evaluated dataset
of the resulting 5887 paintings. Our approach involved assem-
bling a benchmark dataset of 100 images containing a random
sample of 50 portraits and 50 paintings. All images were gath-
ered from the Web Gallery of Art 2. While the Web Gallery of
Art dataset may exhibit biases and does not offer a historically
representative sample of painting schools, this bias does not sig-
nificantly impact the assessment of light direction, making it suf-
ficiently suitable for our analysis. For each image, a score value
is calculated as the cosine distance between each visual CLIP em-
bedding and a fixed prompt. Empirically, we found the following
prompt to be effective in favour of classifying between the two
set of images: “A photo of a figurative portrait painting.” We cal-
culate the optimal threshold using the benchmark dataset as the
score value that maximizes the F1 score. Finally, we compute the
score values for the human evaluated dataset and filter paintings
below the optimal threshold. The resulting dataset after this filter-
ing is a total of 1770 paintings.

We repeat the same procedure to remove paintings with arti-
ficial lighting, such as candles or divine light. Close light sources
scatter light from multiple directions in the scene, so the di-
rection of light is arbitrarily specified depending on a reference
point that might differ among participants. In this case, we se-
lected the prompt: “A photo of a painting depicting artificial light
sources,” and used 20 candlelight paintings from Gerrit van Hon-
thorst (1592-1656) retrieved from the Web Gallery of Art. This
process filtered 17 paintings from the dataset. A visual inspec-
tion over the resulting images after filtering reveals that the CLIP
classification procedure is unstable, and undesired paintings are
still found (e.g., landscapes, still-life, complex compositions). We
tackle this issue by removing images where the model fails to de-
tect any faces, or more than one face was detected.

Additionally, we want to detect instances where the 3DMM
fails. When the 3D mesh is not regressed correctly, the misalign-
ment between the depicted face and the 3D mesh compromises
the light direction calculation. To automatically detect failure in-
stances, we use the head pose information regressed from the 3D
dense mesh. The head pose is defined by three rotational angles:
yaw (rotation around the vertical axis), pitch (rotation around the
horizontal axis), and roll (rotation around the longitudinal axis).
In a portrait-like setting, art historical conventions generally ex-
clude extreme values of these parameters, which allows us to
detect failure instances of the regressed 3D mesh. Portrait-like
paintings rarely show the back of the head, and the 3DMM is
unlikely to detect faces in this orientation, so we limit the yaw
axis to ±90 degrees. Pitch and roll axis are constrained within
the range ±45 degrees. These thresholds are arbitrarily set within
known anatomical limits, yet sufficiently broad to encompass the
range of poses typically depicted in these artworks. Overall, a to-
tal number of 890 figurative portrait-like paintings were analyzed,
from which 145 were detected as failure images and were hence
discarded.

We propose the Mean Absolute Angular Error (MAAE) as
the metric for performance evaluation. This metric provides a
measure of the average magnitude of angular deviation from the
ground truth light direction. It is calculated by averaging the ab-

2https://www.wga.hu/index search.html
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solute values of the differences between the ground truth and es-
timated angles, as expressed in equation 6.

MAAE =
1
N

N

∑
i=1

∣∣θgt,i −θest,i
∣∣ (6)

Early Renaissance paintings present a significant challenge,
both in terms of successful processing by the off-the-shelf 3DMM
model and in achieving precise light direction estimations with the
proposed method, as illustrated in Figure 4. Stylistic conventions
found in early Renaissance artworks minimize light contrast, and
favored little use of self-shadowing compared to further art move-
ments. This makes the task of identifying specific light directions
more challenging for both, human evaluators and computational
analysis.

Figure 4. On the left, the MAAE score per half-century. The red dashed line

represents the overall average score. On the right, a count plot of paintings

per half-century. The shaded areas represent the number of failed images.

Moreover, our method calculates light direction in 3D. To
compare our predictions to human evaluations, the 3D light direc-
tion estimations are mapped to the 2D plane of the image, which
introduces distortions due to the loss of information along the z-
axis. The type of lighting found in early Renaissance paintings,
lacking clear clues of directional lights, tends to yield estimations
where light appears to emanate directly towards the face. In this
scenario, there is a significant contribution of the z-axis, which
amplifies the distortion and the final error. As noted in [15], it is
possible to calculate the 2D light direction using only the geom-
etry information along the occluding boundary of the face, where
the z-component of the surface normal is zero. This is only appli-
cable for our method when the alignment between the 3D mesh
and the face is perfect. That is the only scenario in which the 3D
normal vectors, with a z-component of zero, actually correspond
to the occluding boundary of the face. This strategy, hence, is
not performative and thus not considered for our distant viewing
analysis.

Numerous studies have underscored the challenges faced by
human perception in precisely identifying and characterizing light
environments [15] [17]. Naturally, the task becomes even harder
for paintings [18] [19], where the room for interpretation in-
creases. The standard deviation for human evaluations across the
analyzed paintings shows that humans deviate 15.34 degrees on
average, taking into account that 46% of the analyzed paintings

had a single evaluation, and hence don’t contribute to the devi-
ation measure. The observed higher deviation in our method,
averaging 24.4 degrees, shows that finding the light direction in
paintings at scale remains a challenging task. While humans can
use any other visual cues (e.g., cast shadows), our approach is lim-
ited to the information of the face. In particular scenarios where
the face is not lit according to the overall scene, or objects cast
shadows on the face (e.g., a hat), the light direction estimation can
be compromised. The complexity of the task is further amplified
by the inherent difficulty of working with paintings, where the
diversity of stylistic variations, techniques, and visual features,
introduce significant challenges to conduct a systematic analysis
over centuries. We attempted to minimize this issue in our evalu-
ation by not only selecting paintings that simplify the complexity
of the lighting environments, but also paintings that bear a closer
resemblance to the training dataset of the 3DMM model.

Case study: diffuse light in Netherlandish golden
age painting

In Light and shadow in Netherlandish art, 1600-1750: The-
ory and Practice, Ulrike Kern studies light and shadow in the
golden age by discussing the Netherlandish theories of art in rela-
tion to the pictorial practice of the time [20]. Over the seventeenth
century, the handling of light and shadow changed considerably,
as Kern describes it: “Shadows became more predominant in the
paintings of Rubens and Rembrandt than in the art that was pop-
ular around 1600, while by contrast in the second half of the sev-
enteenth century the demand for a more diffused light increased”
[20, p. 20].

In this case study we propose to use our method to evaluate
the diffuseness in lighting environments throughout seventeenth-
century Netherlandish painting. As Kern’s description refers to
paintings in general, we assume that by extension, it also ap-
plies to portraits, a domain where our method exhibits lower
susceptibility to inaccuracies. To this aim, we use data from
the Web Gallery of Art, which offers an extensive collection
of seventeenth-century paintings from the Dutch, Flemish, and
Netherlandish schools. We consider this selection of data illus-
trative rather than evidential as the purpose of this study case is
not to be historically representative but rather serve as an alterna-
tive evaluation method. Hence, our aim here is not to produce art
historical knowledge, but to commensurate art historical writings
with quantitative measures.

Figure 5. Diffuseness metric D over time for Rembrandt and Netherlandish

portraits. The left axis indicates the value of the D metric. The bar plots show

the number of images per decade, indicated in the right axis.
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The extraction of spherical harmonics allows us to evaluate
the magnitude of diffuseness in lighting environments. In a dif-
fusely lit environment, faces are evenly illuminated, indicated by
a high l0 term for ambient light that lightens shadows, and low
l2 coefficients for subtle lighting variations. We propose to quan-
tify diffuseness as the contribution of the low-order coefficients
(l0,1) with respect to the overall energy (l0,1,2). The diffuseness
metric, denoted as D, is confined to the range D ∈ [0,1], where
0 represents no diffuseness and 1 signifies complete diffuseness.
The calculation of D is straight forward, as expressed in equation
7, we calculate the ratio between Euclidean norms.

D =
∥l0,1∥2

∥l0,1,2∥2 (7)

Following Kern’s observation, we track the use of diffuse
light in the Netherlandish school and compare it to the portraits
of Rembrandt (1606-1669). Rubens (1577-1640) has been ex-
cluded from the analysis due to the limited availability of por-
traits with date information—only 33, while 173 Rembrandt por-
traits are available. Rembrandt’s use of shadows are expected to
produce a reduction in ambient light, manifested by pronounced
self-shadows and darker tones on facial features. This reduction in
ambient illumination inherently decreases diffuseness, so a lower
value of D with respect to the Netherlandish school is expected.

We include the number of paintings analyzed by century in
Figure 5 to acknowledge the interaction between the amount of
data and the obtained metrics. It is noticeable that decades with
a sparse amount of data correlate with significant fluctuations in
the diffuseness metric. To derive towards preliminary conclusions
we take into account only decades with enough portraits, rang-
ing from 1610 to 1670. Figure 5 illustrates a trend that supports
Kern’s observations, revealing a gradual increase in the D metric
over time for the Netherlandish school. The consistency of this
upward trajectory reinforces the idea of an evolving artistic con-
vention that increasingly favors diffuseness in light environments.
Lower values of D in Rembrandt’s portrait oeuvre reflects a stylis-
tic preference for bold shadows and sharp contrasts, which in turn
leads to decreased diffuseness.

Conclusions
Using faces as light probes, we extract spherical harmonic

coefficients to analyze the light environment of paintings at scale.
We conducted three evaluations to validate our approach for digi-
tal art history research. The evaluation on natural images for three
different light environments showed that the extracted spherical
harmonic coefficients match the physical response of the light en-
vironments. Large-scale analysis for light direction estimation
remains a challenge, due to the inherent complexity of light, but
primarily influenced by the stylistic variations and visual diver-
sity present in paintings. These factors introduce significant chal-
lenges to conduct a systematic analysis over centuries. While the
reported performance is close to human evaluation, the overall ef-
fectiveness of the model relies on the nature of the painting. We
minimized this issue by analyzing light direction over portrait-
like paintings, a type of image that bear a closer resemblance to
the training set of the 3DMM model, and simplifies the complex-
ity of the light environment. Our method faces challenges due to
occlusion (e.g., cast-shadows, beards, or hats), that compromise

the evaluation of lighting environments. Future work includes re-
laxing the constant albedo assumption by introducing a rigorous
color segmentation method to remove noise from the ground truth
mask. We finally observe that the proposed metric to evaluate the
amount of diffuseness in paintings aligns with a trend supported
by art historical context.
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