
Efficient Distributed Sequence Parallelism for Transformer-
based Image Segmentation
Isaac Lyngaas1†, Murali Gopalakrishnan Meena1, Evan Calabrese3, Mohamed Wahib4, Peng Chen5, Jun Igarashi4, Yuankai Huo6,
and Xiao Wang2;
1National Center for Computational Sciences, 2Computational Sciences and Engineering Division, Oak Ridge National Laboratory,
Oak Ridge, TN, USA
3Department of Radiology, Duke University, Durham, NC, USA
4Riken Center for Computational Science, Tokyo, Japan
5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
6Department of Computer Science, Vanderbilt University, Nashville, TN, USA
†Email address for correspondence: lyngaasir@ornl.gov

Abstract
We introduce an efficient distributed sequence parallel ap-

proach for training transformer-based deep learning image seg-
mentation models. The neural network models are comprised of
a combination of a Vision Transformer encoder with a convo-
lutional decoder to provide image segmentation mappings. The
utility of the distributed sequence parallel approach is especially
useful in cases where the tokenized embedding representation of
image data are too large to fit into standard computing hardware
memory. To demonstrate the performance and characteristics of
our models trained in sequence parallel fashion compared to stan-
dard models, we evaluate our approach using a 3D MRI brain tu-
mor segmentation dataset. We show that training with a sequence
parallel approach can match standard sequential model training
in terms of convergence. Furthermore, we show that our sequence
parallel approach has the capability to support training of models
that would not be possible on standard computing resources.

Introduction
Image segmentation is the process of labeling pixels in an

image in a manner such that pixels with the same label share cer-
tain characteristics, such as belonging to the same structure or
region. Computer vision tasks, such as segmentation, have been
largely dominated in the past decade by convolutional neural net-
works (CNNs) due to their powerful feature extraction capabili-
ties. In the realm of image segmentation, one of the most effective
networks built around convolutional operators is the U-Net [11].
In fact, many of the top performing networks for various medi-
cal image segmentation tasks revolve around adapting the U-Net
architecture along with specialized data processing techniques to
improve model accuracy corresponding to the specific data that is
being trained on. However, the limited kernel size of CNN-based
techniques restricts their capability of learning long-range depen-
dencies that are critical for accurate segmentation of features that
exist at large context sizes.

Recently, transformer models, which are heavily used in the
natural language processing (NLP) realm, have been adapted for
the use in the imaging realm via the Vision Transformer (ViT) ar-
chitecture [4]. There has been a lot of interest to incorporate ViT
architectures with imaging based tasks due to the capability to
overcome the inherent shortfall in CNN based models, i.e. not be-

ing able to capture long range interactions. The major difference
between Transformers and CNNs is the use of attention-based op-
erations for modeling long-range information by pairwise interac-
tion between token embeddings rather than convolutional kernels.

A major issue that exists when considering the use of Trans-
former architectures for imaging data is the inability to efficiently
process the underlying attention mechanism for long sequence
data. For this reason, ViT models typically implement a patch-
ing strategy that creates tokens using neighboring pixels to de-
crease the sequence length of tokens used as input. This patching
strategy is instituted because the memory footprint of transformer
models increase quadratically as sequence length grows. Due to
limitations in hardware memory, ViT models are often restricted
in the size of input and patch size allowed. This limitation pre-
vents the ability to test the performance of models using long se-
quence inputs.

In order to work around these limitations, various schemes
have been devised to approximate these attention operations
either through sparse sampling[1, 2, 7, 12, 14] or low rank
approximation[3, 6]. However, these schemes suffer from infor-
mation loss, and it is difficult to assess the extent to which infor-
mation loss affects model accuracy without proper approaches to
efficiently train ViTs with exact attention.

Due to these needs for a proper framework for calculating
attention on long sequence data, the authors have been involved
in efforts to efficiently implement a technique called sequence
parallelism [13]. Sequence parallelism is a memory-efficient
parallelism method for transformer models to help break input
sequence length limitation and train with longer sequences on
GPUs[9]. Our efforts have led to do the development of a tech-
niques that allows for the efficient computation of the attention
mechanism for extremely long sequence data. In this work, we ex-
pand on these efforts to incorporate a sequence parallel ViT with a
down stream task of image segmentation. The novelty within this
work is encapsulated in the different approaches used to incorpo-
rate the sequence parallel transformer with a downstream image
segmentation task.

Method
We are interested in training image segmentation neural net-

works that are comprised of a ViT encoder equipped with a de-

https://doi.org/10.2352/EI.2024.36.12.HPCI-199
© 2024, Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2024
High Performance Computing for Imaging 2024 199--1

mailto:lyngaasir@ornl.gov

Figure 1. A generic ViT using a sequence distributed across 2 GPUs

with L attention layers where the Attention Layer is outlined by a gray box.

Residual1,2 represent the input for residual connections, i.e. the input from

before being transformed by the self-attention and feed forward layers re-

spectively.

coder to produce segmentation mapping. In the following sections
we detail a Sequence Parallel ViT Encoder, a convolutional de-
coder implementation for image segmentation, and our strategies
for incorporating the two together. These formulations are specifi-
cally showcased for a three-dimensional (3D) case to demonstrate
the necessary implementation details used in our experimental re-
sults.

Sequence Parallel ViT Encoder
Figure 1 illustrates the basic components of a Sequence Par-

allel ViT encoder. In Figure 1, we show a SeqPar = 2 implemen-
tation; the expansion to more sequence parallel ranks is evident.
The input image x is first distributed in a non-overlapping fashion,
namely x1 and x2, across two GPUs. A token embedding converts
the images into a tokenized image to be used as an input vector1.
The input vector is then enhanced with embedded positional infor-
mation. Next, the input vectors of size lx

2 ×Em. Here lx represents
the sequence length and Em being the embedding size. The input
undergoes layer normalization and random dropouts before being
processed by a self-attention layer and a feed forward layer with a
nonlinear activation function, both equipped with a residual skip
connection. On completion, the output consists of what we call a
partial self-attention output for each input vector.

The essential component of a sequence parallel Transformer
lies within how the self-attention computation is handled. Typ-
ically, to compute self-attention in a sequential manner, the full
input vector x is linearly transformed into query (Q), key (K), and
value (V) vectors, with all three vectors having the same size as
input x. Then self-attention computes the following:

E = softmax
(

QKT /
√

dk

)
V = AwV . (1)

Here, the self-attention score, denoted as Aw, has size lx × lx and
quantifies the correlation between each pair of tokens. This cor-
relation is calculated by taking the dot product between Q and
the transposed K. To stabilize gradients during training, the self-
attention score, Aw is further scaled by a constant

√
dk, and is

1The specific process of distributing and tokenizing 3D image data into
a sequential input vector will be detailed later in the ViT Implementation
Details section.

then normalized by a dropout and a SoftMax activation. The final
self-attention output E is obtained by weighted averaging between
value vector V and Aw.

With sequence parallelism, we parallelize the self-attention
calculation. This is done by distributing the query vector, Q, and
computing the self-attention output as the following concatena-
tion in the sequence dimension,

E =

softmax

(
Q1KT /

√
dk
)

V
softmax

(
Q2KT /

√
dk
)

V
softmax

(
Q3KT /

√
dk
)

V
...

 , (2)

where Qi is an lx
N ×Em distributed query vector segment received

by the ith GPU, with N being the total number of GPUs. V and K
are lx ×Em collected value and key vectors, having the same copy
across all GPUs. softmax(QiKT /

√
dk)V represents the ith GPU’s

self-attention output for its assigned segment, giving the partial
self-attention in the context of the whole sequence. However, in
practice, it was deemed unnecessary to perform this concatena-
tion. Instead, it was found that loss calculations can simply be
performed on the separate partial self-attention outputs and ag-
gregated as long as the model weights are updated by averaging
gradients across the sequence parallel GPUs. For more details on
this process, we refer the readers to [13].

The sequence parallel implementation of [13] is able to ef-
ficiently perform self-attention computations for a sequence par-
allel Transformer model with minimal computations and commu-
nications. The key takeaway from this sequence parallel ViT en-
coder implementation is that the output consists of separate partial
self-attention outputs on each sequence parallel rank. In this work
we investigate the proper approach to use these sequence parallel
transformer outputs on a downstream task of image segmentation.

Convolutional Decoder
A common choice of neural network that is especially preva-

lent for tasks such as image segmentation is the encoder-decoder
style architecture. An encoder-decoder architecture will first take
input data and encode features into a latent space. These latent
space features are then passed through a decoding stage to gener-
ate a prediction.

Given the success of encoder-decoder architectures such as
the U-Net[11] for image segmentation tasks, it is an obvious ap-
proach to reuse some of those same principles except replacing
convolutional operators with attention based operators. One such
approach devised in this manner that has shown relative success is
the UNETR network[5]. In practice, the UNETR network utilizes
a ViT encoder to express features that are then used as input to
a sequence of convolutional decoder blocks which are enhanced
with dense skip-connections made up of intermediate ViT encoder
layers.

We are interested in training networks with a similar config-
uration to those of UNETR. However, complications arise from
the inclusion of skip-connections with a sequence parallel imple-
mentation due to the complex manner with which gradients are
backpropogated. Therefore, in this work, we consider architec-
tures similar to UNETR with the skip-connections removed. Us-
ing a network like this, we can determine effective approaches

199--2
IS&T International Symposium on Electronic Imaging 2024

High Performance Computing for Imaging 2024

to use partial self-attention outputs from a sequence parallel ViT
encoder to segment images.

Sequence Parallel Strategies
Due to training being done in a sequence parallel manner,

the output of a ViT encoder is a separate parallel self-attention
output on each of the sequence parallel ranks. We are then inter-
ested in investigating effective approaches to provide input to the
convolutional decoder. We want to investigate two scenarios: 1)
the inputs to the convolutional decoder are partial self-attention
outputs and 2) the partial self-attention outputs are gathered from
across the sequence parallel ranks and concatenated to be used as
input to the convolutional decoder. We name these scenarios the
No-Gather and Gather approaches respectively. These two ap-
proaches have different strengths and weaknesses with respect to
their computational performance, model accuracy, and ability to
reproduce sequentially trained models.

In the No-Gather approach, each sequence parallel rank re-
sults in individual partial self-attention outputs, which are fed into
separate convolutional decoders. This means that inputs to the
convolutional decoder consist of only partial self-attention out-
puts that are derived from a portion of the input image. It is
important to note that this is not equivalent to doing completely
separate processing of data segments because we are still using
the gradients that are averaged from across the sequence parallel
ranks. Thus, the model weights are influenced by all of the dif-
ferent sources of partial self-attention and are kept in sync across
the model. However, the result of the forward pass is a separate
segmentation mapping on each sequence parallel rank for corre-
sponding portions of input data. The drawback of this approach
is that features from the whole data input are not used as input to
the decoder. The strength of this approach is that it is computa-
tionally efficient because there are no additional necessary com-
munications unlike the Gather approach (discussed next). Figure
2 depicts an example of this ViT encoder-convolutional decoder
architecture using the No-Gather approach for a SeqPar=2 case.
Although the architecture shown is compatible only for specific
data sizes, i.e. where patches are of size (16)3 and input data
dimensions are a multiple of 16, the convolutional filters can eas-
ily be manipulated so that the output is transformed to be in the
correct image space for the segmentation output.

The Gather approach, on the other hand, uses an all gather
at the end of the ViT encoder to concatenate the partial self-
attentions from across all sequence parallel ranks to achieve the
full self-attention as shown in Equation 2. This means that when
feeding the convolutional decoder, the full self-attention output
is used so that segmentation output can be produced for the en-
tire input image. The strength of this approach is that we are
using the full self-attention output, so predictions are formed for
the full input data. The weakness is that the all-gather introduces
an extra communication to the forward pass of the neural net-
work, so the computational performance will be worse than the
No-Gather approach. A network like this is similar to the net-
work configured in Figure 2 except there is an added concatena-
tion of partial self-attentions so that the ViT encoder output is of
size lx ×Em and corresponding feature projection dimension is of
size W

16 ×
D
16 ×

H
16 ×Em.

A factor of important consideration when using the Gather
approach is that we need to correctly gather the partial self-

Figure 2. A ViT Encoder-Convolutional Decoder network for the case of

SeqPar = 2 where an Image is tokenized into patches such that lx = W
16 ×

D
16 × H

16 . Output of the ViT is projected back into image space and then fed

into multiple 3D Convolution Layers (3×3×3 filters with Upsample Scaling

of 2). The initial convolution layer maps from embedding length Em to an

arbitrary feature space chosen to be 128 for this example. This output is fed

into a linear projection which transforms back into the original space based

on the number of segmentation classes.

attention output so that gradients are properly propagated in the
backward pass during optimization. By design, communication
operations do not inherently backpropagate gradients through an
auto-differentiation framework. The reason for this is that the pro-
cess is ambiguous and highly dependent on the specific operations
and inputs. Therefore, we need to implement our own routines
for handling the gradients. In our testing, we have found that it
is necessary to perform specific operations during this all-gather
to properly pass gradients to update model weights. In particular,
we found that when all-gathering partial self-attention, scattering
the gradients across the sequence parallel ranks is an effective ap-
proach to match the convergence results of non-sequence parallel
training.

Ultimately, the property that we are most interested in is the
convergence of our sequence parallel training to networks trained
without sequence parallelism. An approach that has this property
provides validation that we can have similar training performance
for all cases. This is particularly important for cases such as those
with very long sequence input that can not be modeled except
when using a sequence parallel approach.

Data
The current study uses the BraTS 2023 challenge dataset [8].

The BraTS 2023 dataset is a popular 3D brain tumor dataset that
is often used as a benchmark for developing AI methods for tasks
such as segmentation. The dataset consists of a collection of 1250
brain scans at 1mm3 resolution, or a total of (240× 240× 155)
voxels, for four different MRI modalities, including: T1-weighted
images with and without contrast enhancement (T1 and T1-ce),
T2-weighted (T2-w) images, and Fluid-attenuated Inversion Re-
covery (FLAIR) images. In the dataset, expert neuroradiologists
meticulously reviewed and approved ground truth annotations for

IS&T International Symposium on Electronic Imaging 2024
High Performance Computing for Imaging 2024 199--3

Figure 3. A (W,D,H) image being tokenized into 27 (P,P,P) patches where

P = W
3 = D

3 = H
3 . Tokenized patches are ordered such that it first indexes

through Height, then Depth, and then Width dimensions.

each tumor subregion. The annotated tumor subregions are based
on observed features visible to trained radiologists and include
the Gd-enhancing tumor, peritumoral edematous/infiltrated tissue,
and necrotic tumor core. The purpose of choosing this dataset is
that it is a widely used 3D dataset that provide a large corpus of
data for testing the performance of our methods. Particularly, we
are interested in 3D data because it provides the most value with
regard to training models with long sequence.

ViT Implementation Details
In order to more clearly show how 3D imaging data is pro-

cessed by our sequence parallel ViT encoder, we present some
specific implementation details. In this section, we first detail how
3D imaging data is arranged into patches and tokenized into se-
quence data that can be used as input data for ViT. Second, we will
detail how 3D imaging data is split up between sequence parallel
ranks.

Imaging data often contains too many pixels in order to be
used as input directly to a ViT. For this reason, a patching strategy
such as that introduced in [4] is typically used to provide a reduced
form of representation of the data to be input into a ViT. We utilize
a similarily devised strategy for our 3D data. For 3D images, we
reshape the Image x ∈RW×D×H×C into a sequence of 3D patches
xp ∈ RN×(P3· C) where (W,D,H) is the resolution of the original
image, C is the number of channels, (P,P,P) is the resolution of
each image patch, and N = WDH

P3 . Figure 3 depicts a scenario
where an image is split into 3D patches such that P = W

3 = D
3 =

H
3 . An important implementation detail for these input patches
lies within the reshaping of the image into flattened sequence of
patches, specifically the ordering of those patches. For instance,
in Figure 3 the sequence of patches are typically ordered by first
cycling through the patches in the height dimension, then depth
dimension, and then width dimension. While there exists schemes
for incorporating a multiple dimension-aware position embedding
to add more precise positional information to the embedding, for
simplicity we use a one-dimensional position embedding.

When it comes to splitting up the image data to distributed
data segments for the sequence parallel ViT encoder, there are a
multitude of different possible configurations that we could derive
for doing this for a given number of sequence parallel ranks. The
simplest strategy we could use is to break them up by how they

Figure 4. The distribution of an image across different number of sequence

parallel ranks using spatial splitting. After splitting, these sequence dis-

tributed images are each tokenized into patches similar to the process shown

in Figure 3.

are ordered such as in Figure 3, which we call ordered splitting.
However, we can also split them into regions such that patches are
more spatially close together. Therefore, we also use an approach
of splitting the patches evenly across ranks in the width, depth,
and height dimension as the number of sequence parallel ranks in-
creases. Figure 4 depicts three different setups we use for spatially
distributing input images, which we call spatial splitting. These
schemes are chosen in an attempt to keep input patches that are
close in the image space closer together. It should be noted that
the SeqPar = 2 case is the same in both ordered and spatial split-
ting. The orientation of the dimensional splitting can affect the
accuracy of the model, particularly if there are certain important
directional effects in the data. However, this should only affect the
No-Gather approach, since the Gather approach retrieves the ex-
act self-attention by concatenating partial attentions from across
sequence parallel ranks.

Training Details
There are a myriad of different choices that can be made with

regards to overall setup of the training that can affect the accuracy
of the methods. In this work, we choose to keep most of these
choices fixed to be able to compare between different model se-
tups.

To prepare data for training, we use basic pre-processing rou-
tines to normalize data and crop background data from images.
For the BraTS dataset, we consider background to be any zero
valued voxel in the image. Particularly, these mostly come from
edge of the MRI scans. This background data has very little la-
belling information and will only slow down model training with
data that can easily be labelled with a minimum amount of inclu-
sion.

Since the pre-processed training images are often too large
to be used as input, most 3D image segmentation networks are
not trained on a full image but rather on a subset of data which
we call tiles. We use the terminology tiling in order to differenti-
ate from the more commonly used terminology for this process -
patching, which we use to describe the tokenization of input data
to our ViT. In most of our experiments, we use tiles of size (96)3

or (128)3 as these are values that can be easily divided evenly
into patch size of P = 16,8,4 that we are interested in studying
to show the effects of patch size. These tile and patch sizes also

199--4
IS&T International Symposium on Electronic Imaging 2024

High Performance Computing for Imaging 2024

allow us to easily split up patches among sequence parallel ranks
evenly. Ultimately, the goal is to provide a full segmentation map-
ping. Therefore, in order to provide a full segmentation mapping,
a sliding window inference approach is used during validation to
produce a full segmentation mapping from several tiles to fully
assess the accuracy of a model.

The segmentation models we are interested in can become
prohibitively expensive to train as the sequence length and model
size grows. Therefore, an important aspect of our development
process is to produce code that efficiently scales on multi-node,
multi-GPU platforms. The platform we use to train our models is
the Frontier supercomputer hosted by the Oak Ridge Leadership
Computing Facility. Frontier has 9408 nodes, each consisting of
4 AMD MI250X, each with 2 Graphics Compute Dies (GCDs)
and a total 64 GB of high-bandwidth memory per GCD, and a
single 64-core AMD “Optimized 3rd Gen EPYC” CPU. Each of
these GCDs can be defined logically as a single GPU, giving 8
logical GPUs per node. The main workhorse for our training are
the AMD MI250X GPUs which we will use at minimum 8 logical
GPUs per training run, i.e. to maximize the use of compute on a
single node of Frontier.

The codebase2 we use is extended from our previous se-
quence parallelism work in [13]. In this previous work, not only
is an efficient sequence parallel approach for transformer models
implemented, but it is also coupled with a scheme to incorporate
data parallelism. Essentially, this scheme allows for two orthog-
onal levels of parallelism, sequence and data parallelism, to work
together in a fashion to fully utilize the available hardware to scale
up training. For example, if we were to train on a node of Frontier,
which has 8 logical GPUs, with Sequence Parallelism of two, the
added data orthogonal parallelism allows us to train 4 data batches
simultaneously where each of the data parallel processes use two
GPUs to perform the sequence parallel computations. For more
details, we again refer the reader to [13]

In order to handle data loading and augmentation, we use the
BatchGenerators library3. The BatchGenerators library provides
a threaded CPU implementation for preparing data for training on
GPUs. This implementation is particularly useful as it creates a
pipeline of augmented data batches, which utilizes unused CPU
resources, to be used by the GPUs since this process can often be
a bottleneck for training. Specifically, the data augmentation we
utilize includes rotations, elastic deformation, and random scal-
ing. In this process, tiles are generated randomly from the cropped
pre-processed training data. Therefore, there is no true notion of
training on a full epoch of training data, i.e where every part of
the training data is used in a deterministic fashion. Rather we
choose to arbitrarily set an epoch to be defined as 50 iterations.
This means that the number of tiles processed in an epoch in the
results that follow can be calculated by the product of the number
of iterations per epoch (50 in all our cases), the number of Data
Parallel ranks, and the number of data batches per Data Parallel
Rank.

The setting we choose for our optimizer and loss function
are standard implementations often used for training segmenta-
tion networks. Particularly, we adopt many of the choices from

2https://github.com/XiaoWang-Github/
long-short-sequence-transformer/tree/seqpar_clean

3https://github.com/MIC-DKFZ/batchgenerators

Figure 5. Train loss, validation loss, and dice accuracy scores when training

models using the Gather approach for handling the ViT encoder output.

Figure 6. Train loss, validation loss, and dice accuracy scores when using

the No-Gather approach for handling ViT encoder output.

model training done in [5]. For the loss function, we use a combi-
nation of soft dice[10] and cross-entropy loss. We train the model
using an Adam Optimizer with initial learning rate of .0001 and
a Cosine Annealing learning rate scheduler. For the experimental
runs, we use floating precision throughout to avoid any compli-
cations that might arise when using lower precision operations
provided through mixed precision training.

Results
There are four main components to choose from when train-

ing these segmentation models: the size of ViT model (the num-
ber of layers L, the embedding Size Em, and the number of At-
tention Heads A), the tile size T to be used, the patch size P with
which to tokenize the data, and the number of sequence parallel
ranks SeqPar. We use the following default settings: a ViT with
(L,Em,A) = (12,768,12), T = (96)3, and P = (16)3. These set-
tings will be used unless explicitly noted otherwise. The results to
follow all use the same dataset with a 90:10 train/validation split
where the model weights are all initialized with the same values.
It should be noted that in all cases, the amount of data parallelism
per run is the same, except when noted. This means that more
GPUs are used when sequence parallelism increases in order to
have the same amount of data throughput. Additionally, we max-
imize batch size per GPU in order to fully utilize the available
GPU memory; this is set to 32 for the base case.

Experimental Results: Sequence Parallelism
The first result we look at is the performance of segmen-

tation models with sequence parallelism compared to when the

IS&T International Symposium on Electronic Imaging 2024
High Performance Computing for Imaging 2024 199--5

https://github.com/XiaoWang-Github/long-short-sequence-transformer/tree/seqpar_clean
https://github.com/XiaoWang-Github/long-short-sequence-transformer/tree/seqpar_clean
https://github.com/MIC-DKFZ/batchgenerators

Figure 7. Train loss, validation loss, and dice accuracy scores when using

various splitting methods for the No-Gather approach for handling ViT en-

coder output.

models are trained without sequence parallelism (SeqPar = 1).
The importance of these results are to show that we see the cor-
rect training behavior as the number of sequence parallel ranks
increases. Figure 5 shows results from training models using the
Gather approach for handling ViT encoder output. As expected,
the train and validation loss curves converge no matter the amount
of sequence parallelism. Also, as expected, the order with which
patches are sent to the sequence parallel ranks (Spatial vs Ordered
splitting) does not change the performance of the networks.

Next, we look at the case where we use the No-Gather ap-
proach for the partial self-attention encoder features. This is an
interesting case as it allows us to compare with the results from
using the Gather approach to see whether the computational ben-
efits of the fewer communications is worthwhile compared to the
accuracy loss that is expected. Figure 6 shows results using the
No-Gather approach for handling ViT encoder output. From the
train loss curve, we can see that we clearly do not converge to
the same values with the Gather approach (SeqPar = 1). How-
ever, the validation loss curves and dice accuracy scores follow
similar patterns to those seen using the Gather approach. These
results confirm that the No-Gather approach is viable, however
more thorough studies need to be done to assess if this is true for
all cases.

Lastly, we look at a case using the No-Gather approach com-
paring the two different splitting methods. In this case, we slightly
modify the base problem to use T = (128)3 and likewise reduce
the batch size per GPU to 16 in order to accommodate the larger
tile size. The results for this case can be seen in Figure 7. Again,
in these results, we see that the training loss curves do not con-
verge to the case without sequence parallelism. We also see that
there is little difference between the two different splitting meth-
ods. It is not unreasonable to see the difference being small, how-
ever, we would not expect this behavior to continue as the amount
of sequence parallelism is increased further.

Experimental Results: Long Sequence
To reinforce the main benefit of our work, which is the ca-

pability to train ViT based segmentation models with long se-
quences, we show some results where we train models that would
not be able to be trained without sequence parallelism. Specif-
ically, we train a model with P = (4)3, which significantly in-
creases the amount of tokenized patches used by the ViT. In this
case, we needed to train with SeqPar=4 and a batch size per GPU

Figure 8. Train loss, validation loss, and dice accuracy scores for training

long-sequence ViT models.

of 1 in order to train a model without running out of GPU memory.
Figure 8 shows these results compared to training with P = 16.
This results show that, while decreasing the patch size does show
faster convergence to higher dice accuracy scores, the maximum
accuracy achieved after convergence are similar.

Unfortunately, through the process of training models with
various combinations of model parameters, including increasing
ViT model parameters, reducing patch size, and increasing tile
size, we found that accuracy scores were always found to be in
the range of 0.5− 0.6 in terms of dice accuracy. This issue most
likely can be attributed to lack of training data available to create
a generalizable model for segmentation.

Concluding Remarks
In this work, we introduced an efficient distributed sequence

parallel approach for training transformer-based deep learning
image segmentation models. We introduced two different ap-
proaches for using output form a sequence parallel ViT with a
convolutional decoder. We show that through proper handling of
the sequence parallel ViT encoder outputs with the Gather ap-
proach, we can train models with the same behavior as a model
trained without sequence parallel model. We also showed that
with the No-Gather approach we can provide similar quality of
results, however the training of these models shows different con-
vergence behaviors. Both of these approaches provide the ca-
pability of training of ViT based segmentation models using se-
quence lengths longer than typically possible.

Testing of these ViT segmentation models on longer se-
quence data did not provide higher accuracy for our given brain
tumor segmentation dataset. Future efforts will involve the incor-
poration of several techniques to enhance performance and further
investigate the utility of our sequence parallel approach. Tech-
niques that will be considered include the involvement of pre-
trained models to incorporate learned features from other datasets
that can possibly transfer their knowledge to the segmentation
task. Other future work include the development of other fea-
tures into our sequence parallel framework that have shown to be
helpful for segmentation accuracy for other transformer-based im-
plementations. These include the addition of patch merging layers
to have multiple context levels within the model and the incorpo-
ration of skip-connections to the convolutional decoder to better
inform these different context levels.

199--6
IS&T International Symposium on Electronic Imaging 2024

High Performance Computing for Imaging 2024

Acknowledgments
This research used resources of the Oak Ridge Leadership

Computing Facility at the Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-00OR22725. This
manuscript has been authored by UT-Battelle, LLC, under con-
tract DE-AC05-00OR22725 with the US Department of Energy
(DOE). The US government retains and the publisher, by ac-
cepting the article for publication, acknowledges that the US
government retains a nonexclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for US government pur-
poses. DOE will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan). The
author Yuankai Huo would also like to acknowledge the support
from the National Institute of Health under Grant R01DK135597.

References
[1] I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-

document transformer. arXiv preprint arXiv:2004.05150, 2020.
[2] R. Child, S. Gray, A. Radford, and I. Sutskever. Generating long se-

quences with sparse transformers. arXiv preprint arXiv:1904.10509,
2019.

[3] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane,
T. Sarlos, P. Hawkins, J. Davis, A. Mohiuddin, L. Kaiser,
et al. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794, 2020.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
et al. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[5] A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko,
B. Landman, H. R. Roth, and D. Xu. Unetr: Transformers for 3d
medical image segmentation. In Proceedings of the IEEE/CVF win-
ter conference on applications of computer vision, pages 574–584,
2022.

[6] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In
International conference on machine learning, pages 5156–5165.
PMLR, 2020.

[7] N. Kitaev, Ł. Kaiser, and A. Levskaya. Reformer: The efficient
transformer. arXiv preprint arXiv:2001.04451, 2020.

[8] H. B. Li, G. M. Conte, S. M. Anwar, F. Kofler, I. Ezhov, K. van
Leemput, M. Piraud, M. Diaz, B. Cole, E. Calabrese, et al. The
brain tumor segmentation (brats) challenge 2023: Brain mr image
synthesis for tumor segmentation (brasyn). ArXiv, 2023.

[9] S. Li, F. Xue, C. Baranwal, Y. Li, and Y. You. Sequence parallelism:
Long sequence training from system perspective. arXiv preprint
arXiv:2105.13120, 2021.

[10] F. Milletari, N. Navab, and S.-A. Ahmadi. V-net: Fully convolu-
tional neural networks for volumetric medical image segmentation.
In 2016 fourth international conference on 3D vision (3DV), pages
565–571. Ieee, 2016.

[11] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional net-
works for biomedical image segmentation. In Medical Image Com-
puting and Computer-Assisted Intervention–MICCAI 2015: 18th In-
ternational Conference, Munich, Germany, October 5-9, 2015, Pro-
ceedings, Part III 18, pages 234–241. Springer, 2015.

[12] A. Roy, M. Saffar, A. Vaswani, and D. Grangier. Efficient content-
based sparse attention with routing transformers. Transactions of
the Association for Computational Linguistics, 9:53–68, 2021.

[13] X. Wang, I. Lyngaas, A. Tsaris, P. Chen, S. Dash, M. C. Shekar,
T. Luo, H.-J. Yoon, M. Wahib, and J. Gounley. Ultra-long sequence
distributed transformer. arXiv preprint arXiv:2311.02382, 2023.

[14] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti,
S. Ontanon, P. Pham, A. Ravula, Q. Wang, L. Yang, et al. Big bird:
Transformers for longer sequences. Advances in neural information
processing systems, 33:17283–17297, 2020.

Author Biography
Isaac Lyngaas received his BS in mathematics from South Dakota

State University (2014) and his PhD in computational science from
Florida State University (2018). Since then he has worked as a post-
doctoral researcher and now a staff computational scientist at Oak Ridge
National Laboratory. His work focuses on the development of AI methods
with High Performance Computing.

IS&T International Symposium on Electronic Imaging 2024
High Performance Computing for Imaging 2024 199--7

	Abstract
	Introduction
	Method
	Sequence Parallel ViT Encoder
	Convolutional Decoder
	Sequence Parallel Strategies
	Data
	ViT Implementation Details
	Training Details
	Results
	Experimental Results: Sequence Parallelism
	Experimental Results: Long Sequence
	Concluding Remarks
	Acknowledgments
	Author Biography

