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Abstract
Laminography is a specialized 3D imaging technique opti-

mized for examining flat, elongated structures. Laminographic
reconstruction is the process of generating 3D volume from a set
of 2D projections that are collected during the laminography ex-
periment. Iterative reconstruction techniques are typically the
preferred computational method for generating high-quality 3D
volumes, however, these methods are computationally demand-
ing and therefore can be infeasible to apply to large datasets.
To counteract these challenges, we require state-of-the-art com-
putational methods that can efficiently utilize high-performance
computing resources such as GPUs. In this work, we investigate
the integration of the Unequally Spaced Fast Fourier Transform
(USFFT) with two optimization methods: the Alternating Direc-
tion Method of Multipliers (ADMM) and the Conjugate Gradient
(CG). The usage of USFFT addresses non-uniform sampling is-
sues typical in laminography, while the combination of ADMM
and CG introduces robust regularization techniques that enhance
image quality by preserving edges and reducing noise. We fur-
ther accelerated the iterative algorithm of USFFT by preprocess-
ing the image into the frequency domain. Compared to the orig-
inal algorithm, the optimized USFFT method achieved a 1.82x
speedup. By harnessing heterogeneous computing and parallel
computing with both CPU and GPU, our approach significantly
accelerates the reconstruction process while keeping the quality
of the generated images. We evaluate the performance of our
methods using real-world datasets collected at 32-ID beamline at
Advanced Photon Source using Argonne Leadership Computing
Resources.

Introduction
Laminography is an imaging technique primarily used for

detecting layered objects such as semiconductor wafers, circuit
boards, and mouse brain [1–4]. In a laminography setup, the sam-
ple under investigation is placed on a stage that is both tilted and
capable of rotation. This arrangement is a key aspect of laminog-
raphy, as it allows for the detailed imaging of layers within the
sample. When the X-ray is applied, the tilting of the stage en-
sures that the X-ray beam intersects with the layers of the object
at an oblique angle. This angle is particularly advantageous for
imaging flat, layered structures, as it enhances the visibility of
features within these layers on 2D projections.

The principle behind laminography is based on the idea that
by tilting and rotating the sample while it is being exposed to X-
rays, different layers within the sample can be selectively focused
upon. This results in clearer and more detailed images of the in-
ternal structures. The technique is, for example, highly effective
for detecting faults and defects in layered objects, such as delami-
nation, cracks, and foreign materials embedded within the layers.

Figure 1: Experimental setups for (a) tomography and (b)
laminograpy.

Although laminography is a powerful imaging technique for
layered structures, it still faces several challenges in terms of
reconstruction operations. For example, the limited-angle data
and overlapping structures can complicate the reconstruction task.
Further, state-of-the-art parallelization methods for image recon-
struction techniques cannot be applied to laminography out-of-
box [5–7]. For instance, while parallel beam geometry enables
the straightforward application of data parallelization on 3D vol-
ume slices (or projection sinograms) during tomography experi-
ments [2, 8], the tilted angle of the sample in laminography re-
sults in X-ray propagation paths that intersect multiple slices in
3D volume as illustrated in Fig. 1. This intersection, compared
to tomographic reconstruction, complicates the parallelization of
computationally intensive forward and back projection operations
during iterative reconstruction process.

The Fast Fourier Transform (FFT) method, particularly when
augmented with regularization techniques, stands out as an ad-
vanced solution for addressing a range of challenges in data-
intensive fields such as medical imaging, signal processing, and
computational physics [9]. Its inherent computational efficiency
makes it suitable for handling large datasets, potentially alleviat-
ing issues related to data size and offering faster reconstructions.
The regularization techniques employed alongside FFT further
enhance its effectiveness. Regularization involves introducing ad-
ditional information or constraints to counteract the ill-posed na-
ture of certain problems, such as those encountered in limited-
angle tomography. By incorporating these constraints, FFT-based
methods can yield more accurate and stable solutions, even in
cases where traditional methods might struggle.

However, the deployment of 3D FFT for reconstruction pur-
poses brings its own set of challenges. One of the primary con-
cerns is the computational load. The process of performing 3D
FFT reconstruction requires executing numerous 2D FFTs on
large data arrays, which can be computationally demanding. This
demand extends not only to processing power but also to memory
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requirements, as large datasets necessitate substantial memory for
both storage and efficient processing.

Moreover, the efficacy of FFT in parallel computing envi-
ronments hinges on the careful partitioning and distribution of
data. The parallelization of FFT operations, a common approach
to handle large-scale problems, requires careful planning and ex-
ecution. The data must be partitioned and distributed in a manner
that aligns with the nature of FFT operations and their data access
patterns to ensure accurate and efficient reconstruction. This re-
quirement poses a significant challenge in terms of both algorithm
design and implementation.

Related Work
There is extensive literature on 3D image reconstruction al-

gorithms for (m/n)CT datasets [10–12]. The recent studies also
include high-performance computing techniques for reconstruct-
ing large-scale 3D volumes [7, 13, 14]. These techniques not
only enable the scalable and efficient usage of advanced comput-
ing resources [15, 16] but also provide opportunities to deal with
extremely large problem sizes via scientific workflows that can
federate experimentation and supercomputer-scale computational
resources [17–20]. Complementary to these efforts, AI/ML tech-
niques have also been incorporated into the reconstruction oper-
ations to ease the computational requirements of different recon-
struction tasks and enhance the quality of generated images [21–
30]. Laminography can be seen as an extension of the tomography
imaging technique, which introduces a tilted angle to the rotation
stage. This property enables isolation and visualization of specific
planes within an object, bypassing the limitations imposed by tra-
ditional tomography when dealing with objects of considerable
depth or layered compositions [9]. Laminography is also the pre-
ferred method when the rotation angle during the experimentation
is limited [31].

The existing calculation methods of 3D image reconstruction
mainly focus on the spatial domain and frequency domain. Spa-
tial domain methods focus on the manipulation and reconstruction
of images directly, where the value of each point (pixel or voxel)
represents intensity or color. Techniques like Filtered Back Pro-
jection (FBP), Algebraic Reconstruction Technique (ART), and
Iterative Reconstruction (IR) fall under this category [10]. These
methods typically involve operations such as back-projection, it-
erative refinement, and algebraic computations to reconstruct the
image from projections.

In addition to spatial methods, frequency-based methods are
also widely used in 3D image reconstruction. Frequency domain
methods involve working with the Fourier Transform (FFT)[32]
or related transforms of the image data. The Fourier slice theorem,
which states that the 1D Fourier transform of a projection of a 2D
object is equivalent to a slice of the 2D Fourier transform of the
object, is the cornerstone of this method. The integration of FFT
brings a mathematical shortcut that significantly accelerates the
computation of the projections required for reconstruction.

These image reconstruction algorithms are computationally
expensive[33]. The introduction of accelerators, such as GPUs,
has made it possible to parallelize these algorithms and make
them execute efficiently, thereby dramatically reducing compu-
tation time [5, 6, 34].

Objective
In this work, we focus on efficiently solving the 3D lamino-

graphic reconstruction problem with a Fourier-based iterative
method. Considering the time-intensive computational demands
of laminography reconstructions, which can span extended time
periods, our study aims to truncate this processing duration by
integrating state-of-the-art methods with the prowess of modern
hardware and accelerator capabilities.

We focus on every facet of the reconstruction pipeline, which
includes algorithmic improvements, optimizing data I/O interac-
tions with storage drives, enhancing the efficiency of CPU-GPU
data transfers, and improving computational throughput on the
GPU. The overarching objectives are to alleviate computational
bottlenecks during the reconstruction of large-scale laminography
datasets, decrease prolonged multi-day processing times to hours
or minutes, and keep the accuracy of the reconstruction operations
and the quality of the outputs.

Methodology and Experimental Design
In this section, we provide detailed information about our

advanced iterative algorithm tailored for USFFT computations on
GPU, categorized into ”forward” and ”adjoint” phases[9]. At the
same time, we perform the regularization of image reconstruc-
tion and complete its calculation on the CPU. This methodol-
ogy was realized within a heterogeneous, high-performance CPU-
GPU computational environment.

Iterative Reconstruction in Frequency Domain
The forward phase of the reconstruction algorithm is a crit-

ical component in generating a refined image during iterations.
This phase involves a sequence of Fourier transforms, each serv-
ing a specific purpose in the image reconstruction process. Ini-
tially, a one-dimensional inverse unequally spaced Fourier trans-
form (USFFT1D) is executed. This step transforms frequency-
domain data back into a spatial or time domain along one axis,
laying the groundwork for subsequent transformations. Follow-
ing this, a 2-dimensional (2D) unequally spaced inverse Fourier
transform is performed (USFFT2D). This step extends the trans-
formation process to two dimensions, further reconstructing the
image from its frequency-domain representation. The final step
in the forward phase is a direct 2D Fourier transform. This fi-
nal transformation produces the recovered images for comparison
with the original spatial-domain data, and it sets the stage for the
computations in the adjoint phase. After these transformations,
the algorithm calculates the disparity between the newly gener-
ated image and the original image, which identifies areas of diver-
gence and guides the adjustments needed in subsequent iterations
to achieve a more accurate reconstruction.

The adjoint phase streamlines image reconstruction by iter-
atively optimizing it. It first converts spatial discrepancies found
in the forward phase into the frequency domain, aligning them
with the original data for easier adjustment. Then, it applies a
2D unequally spaced Fourier transform, followed by a 1D trans-
form, to generat a 3-dimensional tensor. This tensor is indicative
of the gradient required for the updates in the upcoming iterations.
The gradient provides directional guidance for the algorithm, in-
dicating how the image reconstruction should be adjusted to more
closely align with the original image.

To enhance the robustness and efficiency of our algorithm,
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Figure 2: ”Chunking” strategy for USFFT1D and USFFT2D computations in our 2-step reconstruction method.

Algorithm 1 3-step FFT update.

1: Input: 3D reconstruction matrix M, X-ray data D
2: Output: Gradient g
3: for i = 0 to titer do
4: forward:
5: Dhat = FFT 2d(USFFT 2D(USFFT 1D(M)))
6: adjoint:
7: g = USFFT 1D(USFFT 2D(FFT 2D(Dhat −D)))
8: al pha,d = CG(g,gprev)
9: M = update(al pha,d,g,M)

10: end for

we have integrated a differential regularization framework that ex-
ploits the inherent differences between neighboring image frames.
This innovative approach is underpinned by a robust computa-
tional strategy that utilizes the parallelism of multi-threaded CPU
architectures, thus ensuring both high accuracy and computational
speed. We have conducted an overlap between the differential
computations performed on the CPU and the frequency-domain
computations carried out on the GPU. This strategy facilitates a
seamless heterogeneous parallel computing environment via over-
lapping the computations and provides overall computational ef-
ficiency (and throughput) during reconstruction.

To find the best hyper-parameter for gradients and differ-
ences computation, we employ the conjugate gradient (CG) de-
scent method. The CG is predicated on its proven efficacy in
navigating the complex landscape of optimization problems with
precision and speed. Upon identifying the optimal step size, we
integrate the differential updates with the gradient updates on the
reconstructed images. This integration ensures each update con-
tributes effectively to the enhancement of the image reconstruc-
tion quality.

GPU Memory Limitation
The conventional methods have significant limitations while

processing large volumes of raw image datasets due to the con-
strained memory capacities especially with accelerators such as
GPUs. To address this problem, we adopted a ”chunking” strat-
egy, allowing for segmented and efficient 1D and 2D Fourier
transformations as shown in Figure 2. Specifically, our method-
ology exploited the 3D row-based partitions for the execution of
1D Fourier Transform Fast (FFT) operations. Simultaneously, for
2D FFT operations, we employ column-based partitions. This ap-
proach is designed to ensure that 1D and 2D FFT operations on
the GPU are executed without encountering prohibitive memory

Algorithm 2 2-step FFT update.

1: Input: 3D reconstruction matrix M, X-ray data D′ in fre-
quency domain

2: Output: Gradient g
3: for i = 0 to titer do
4: forward:
5: D′

hat = USFFT 2D(USFFT 1D(M))
6: adjoint:
7: g = USFFT 1D(USFFT 2D(D′

hat −D′))
8: al pha,d = CG(g,gprev)
9: M = update(al pha,d,g,M)

10: end for

limitations. Furthermore, our partitioning strategy is instrumental
in achieving a seamless integration and synchronization between
data transfer and computation on GPUs.

Scaling Up Computational Resources
The chunking strategy we employed significantly enhances

the scalability of our USFFT computation operators across multi-
ple GPUs within a single node. This approach involves dividing
the data along the direction of chunk segmentation, proportion-
ately distributing it according to the number of GPUs, as shown
in Figure 3. Through this method, every GPU leverages the
combined efficiency of chunking and pipeline computation.This
strategic division and distribution of data also ensure that each
GPU can operate independently and concurrently, optimizing the
use of available computational resources. By aligning the data
partitioning with the physical architecture of the GPUs, we miti-
gate potential bottlenecks in data transfer, thereby maximizing the
throughput of the entire system.

The adaptability of our chunking strategy to scale up across
multiple GPUs within a single node also highlights its flexibility
in a variety of computational environments and it effectively in-
creases the utilization of computing resources. Whether dealing
with a small cluster of GPUs or a large-scale high-performance
computing (HPC) environment, our approach can be tailored to
meet the specific needs and constraints of the available hardware.

Optimization on Reversible Algorithm
Another key contribution to our work is that we have refac-

tored and improved the state-of-the-art reconstruction algorithm.
Specifically, we changed the original three-step FFT reconstruc-
tion method, as shown in Algorithm 1, to an enhanced two-step
method, as shown in Algorithm 2. A necessary preparatory step
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Figure 3: Single node multi-GPU scale up for USFFT2d

Figure 4: Computation process profiled by the NVIDIA Nsight. Note the overlap between computation and data transfers.

is the overall mapping of all images onto the frequency domain
to ensure the integrity of the optimized algorithm compared to
the original version. This change eliminates the additional FFT
operation overheads that exist in the original version. Our empir-
ical evaluations revealed a significant increase in computational
throughput – 1.82x speedup per iteration – which shows the over-
head introduced due to the redundant FFT computations in both
the forward and adjoint phases.

Results and Discussion
We evaluated our method with a real-world laminography

dataset of a mouse brain sample. This sample was collected at
the 32-ID beamline at APS. The dataset size is 13.2 GB, which
comprises 750 total projections, each with a resolution of 1536
x 4608 pixels. To expedite the evaluation of our methods, we’ve
employed a 4x4 binning technique on these original 2D projec-
tions. This preprocessing step allows for a more rapid analysis
while maintaining the necessary level of detail for accurate re-
construction. The corresponding reconstructed 3D volume has
384x1152x1152 dimensions, which results in a dataset size of 3.8
GB.

The reconstructions are performed on a high-end compute
node at Polaris supercomputer at Argonne Leadership Computing
Facility. The compute node consists of one AMD EPYC 7543P
CPU and four NVIDIA A100 GPUs. The CPU has 32 cores
and 512GB DDR memory, while each GPU has 40 GB memory.

Figure 5: Strong scalability for USFFT2d operator.

GPUs are connected with NVLink interconnect.

Our evaluation presents an insightful comparison between
two distinct reconstruction methods applied to the mouse brain
dataset, with a focus on computational efficiency and optimiza-
tion techniques. It shows that the reconstruction of the sampled
mouse brain dataset can be converged in 14 and 25 mins using
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our (enhanced) two-step and (original) three-step reconstruction
methods, respectively, on a single GPU. We also overlap the data
transfer and GPU computation via our data partitioning/chunking
scheme, as previously shown in Figures 2 and 3, which provides
1.96X speedup compared to without such optimization.

Since our performance profiling revealed that USFFT2d
takes the most time among the FFT operators – reaching 70%
of all FFT calculations – we also evaluated the (strong) scalability
of this operator on 1, 2, and 4 GPUs (within a single computing
node). As illustrated in Figure 5, the USFFT2d demonstrates ex-
ceptional scalability with our chunking strategy, achieving a close
to linear speed-up of 1.8x with 2 GPUs and 3.5x with 4 GPUs,
when compared to a single GPU setup. Through the implementa-
tion of the chunking strategy, we have realized efficient scalability
and parallel computing capabilities. We are currently working on
extending our parallelization method to multi-node multi-GPUs
settings so that we can reconstruct even larger 3D volumes.

Conclusion
In this work, we developed a parallel, GPU-optimized re-

construction algorithm for laminography. We have developed
an innovative two-step reconstruction technique specifically de-
signed to streamline processing by eliminating unnecessary Fast
Fourier Transform (FFT) calculations, thereby enhancing com-
putational speed and efficiency. We propose a data partitioning
and chunking scheme that strategically enables the simultaneous
execution of host-device communication and GPU-based compu-
tations. Lastly, we present a cutting-edge GPU-accelerated dif-
ferential regularization method. Our method improves the image
quality while preserving edges that are critical for accurate inter-
pretation of image content. Our method also helped noise reduc-
tion which eliminate unwanted signals within the reconstructed
images. Our single-GPU optimizations provide 1.82x speedup
compared to the unoptimized version.
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