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Abstract
This paper proposes a novel aggregation method using the

Kumaraswamy distribution to analyze partial metric values, par-
ticularly in the evaluation of video quality. Through a weighted
mean aggregation procedure, we unravel the underlying effects
on the data. The three experiments analyzed in this paper demon-
strates the method’s efficacy regardless of the time aggregation,
ranging from days, minutes, and frames. This approach, grounded
in the Kumaraswamy distribution, offers a robust analytical tool
to understand how individual metric values amalgamate, affect-
ing overall user perceptions and experience.

Introduction
Modeling often requires the aggregation of partial values [1].

A quintessential example of this is found in the domain of Human
Visual Systems, where the endeavor is to propose a metric that
predicts video quality. Here, the scores acquired for each frame
[2, 3, 4] must be aggregated to produce a single value per video or
shot. A parallel challenge arises when aggregating metric values
measured per second to represent a single user experience [5].

The aggregation procedure can be carried out through vari-
ous aggregation operators [1]. Typically, algorithms are chosen to
achieve the best fit, yet the rationale behind why a particular op-
erator furnishes the most apt fit often remains elusive. Unlocking
this mystery is particularly crucial when examining user behav-
ior. For example, several psychological phenomena such as the
primacy effect, the serial-position effect, and the recency effect
have been delineated [6] that could influence the way aggregated
values are perceived or analyzed.

In this paper, we propose employing the Kumaraswamy dis-
tribution [7] as a means to discern the presence and intensity of
these effects in specific data sets. We subjected our proposed anal-
ysis to a subjective tests, in which we endeavored to predict user
scores based on the quality scores assigned for each day, second,
or frame.

Aggregation Procedure
We consider data represented as a vector of metric values mi.

Our objective is to employ an aggregation operator for synthesis.
As exhaustively described in [1], a myriad of methods can be used
for this purpose. One of the solutions in the video metric domain
is presented in [4] where the authors propose the weighted mean
without much explanation. We are also focused on the weighted
mean, expressed by the equation:

Cw(m1, · · · ,mN) =
∑

N
i=1 wimi

∑
N
i=1 wi

(1)

However, in this paper, the main focus is on explaining the
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Figure 1. Examples of different shapes obtained for 100 weights.

result obtained. The explanation is achieved by using the Ku-
maraswamy distribution to delineate the function describing wi.
This distribution is characterized by two parameters, a and b,
which dictate the shape of the distribution. Specific values of a
and b derive a specific function, which can be analyzed to better
understand the underlying process.

Given that the Kumaraswamy distribution is defined over the
interval (0,1), an adaptation is required to extend it to indices
ranging from 1 to N. Moreover, certain parameters of the Ku-
maraswamy distribution can yield arbitrarily high values near 0
or 1, which could potentially render the optimization algorithm
unstable due to exceedingly large values. It is imperative to cir-
cumvent such occurrences while retaining the generalizability af-
forded by the Kumaraswamy distribution. Our analysis demon-
strates that confining the focus to the interval [0.01,0.99] produces
stable results. The mapping is thus expressed as:

wi(a,b) =
Fa,b(0.01+0.98 i

N )−Fa,b(0.01+0.98 i−1
N )

Fa,b(0.99)−Fa,b(0.01)
(2)

where Fa,b(x) denotes the CDF1 of the Kumaraswamy distribution
given by:

Fa,b(x) = 1− (1− xa)b (3)

The weights generated by equation (2) can, depending on the
parameters a and b, model how different the influence of metric
mi depends on i. The generated shapes can be related to the known
psychology effects of recency, primacy, or position-effect [6] (see
Figure 1).

The versatility of the Kumaraswamy distribution paves the
way for diverse models. For example, F0.8,1.5(x) epitomizes the
primacy effect, where the first values are given greater signifi-
cance. On the contrary, F2.0,0.8(x) encapsulates the recency ef-
fect, but with a slightly stronger effect than the primacy effect

1Cumulative Density Function
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described by F0.8,1.5(x) (see Figure 1). As presented in Figure 1
different shapes can be obtained. The exact interpretation of the
importance of specific parts of the video or experience can be eas-
ily deduced based on the shape of the function. Moreover, it is
easy to compare the shapes and strength of the effect obtained for
different groups.

To find the optimal aggregation, we must find parameters a
and b. We can do it by optimization of the equation:

min
a,b

AIC(U = αCa,b(m)+β ) (4)

where AIC is an Akaike Information Criterion [8] of the U =
αCa,b(m)+ β model, α and β are model parameters estimated
for each a and b, Ca,b(m) is an aggregation operator give by equa-
tion (1) where wi is given by equation (2).

The essence of equation (4) lies in deriving a model, lin-
ear or ordinal, that depicts an answer as a linear combination of
aggregated metric values. It is important to note that we main-
tain the original metric and opt for a straightforward model. This
approach ensures that our optimization process selects the most
effective temporal pulling of the metric, within the constraints
imposed by weight flexibility. Essentially, this yields the opti-
mal model for aggregating the metric. We operate under the as-
sumption that the metric behaves consistently irrespective of its
position within the sequence, allowing us to interpret weights as
indicators of the significance of specific positions within the se-
quence.

In addition, we can estimate the confidence interval related
to the weights by bootstrapping analysis. By selecting a boot-
strap sample of user samples, we can estimate numerous weights
functions. Next, we calculate the mean weights for any sample.
Knowing the mean weights, we can calculate the distance from
the mean to any other estimated weights. The final step is to re-
move all the weights with the largest distance, until we are left
with not more than 95% of all estimated weights. The remaining
weights generat 95% confidence interval.

Example of Analysis
We present three different cases of the analysis for three dif-

ferent time frames. It shows the flexibility of the method, which
by nature is not time-dependent. The first study is long-term
(LTS); we aggregated the values obtained each day to predict the
value at the end of the week. The second study aggregates around
2.5 minutes of video. The last experiment is a typical laboratory
experiment with sequences around 10 seconds.

LTS
At AGH, we conducted an experiment in which participants

watched one video per day for six days of the week (from Monday
to Saturday). On Sunday they did not watch any video, they were
asked to summarize the whole week experience with a single ACR
(Absolute Category Rating) 5-point discrete scale {1,2,3,4,5}
answer. The videos the testers watched were pre-downloaded and
prepared to target specific and constant for the entire 40 seconds
movie quality mi.

In addition, we have run a laboratory experiment (lab) in
which the testers watched the six videos from the whole week
one by one and scored all movies with just a single ACR value.
One of the research questions we have is: if the data collected in
a lab study are different from those obtained in LTS.
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Figure 2. Weights showing how strongly quality presented at this day influ-

ences the overall quality for both lab and long-term study. Blue line described

equal influence, each day has the same importance.

A detailed description of the LTS including more analysis
is described in a separate publication, which is currently under
review. Here, we present only results that utilize the described
aggregation method.

To answer the above-mentioned research question, we com-
pared the weights obtained for the lab and LTS study. If the
weights are similar, we can say that the lab study described the
behavior of LTS well enough. In Figure 2 we present the weights
for each day of the week obtained in the lab2 and LTS.

The results in Figure 2 show two interesting differences be-
tween lab and LTS. The first is natural; in the lab study people
watched videos one by one; the first video has a stronger impact
on the quality than the first video in the LTS. There is simply less
time between watching the video and scoring. The second obser-
vation is not as obvious. For the lab study, the influence of the
last four days is very similar. For LTS, Saturday has a signifi-
cantly weaker influence than Friday. Analysis of such significant,
but small, differences would not be possible with simple linear
regression.

2.5 minutes
At AGH, we conducted an experiment in which participants

watched a full episode of their choice on the Netflix service. Ap-
proximately every 2.5 minutes, they were asked to rate the quality
of the video on the ACR scale, as specified by ITU-T Recommen-
dation P.913 [9]. We developed a model to predict user ratings
based on the aggregated VMAF (Video Multimethod Assessment
Fusion) score, using the weighted aggregation function described
in Section . The analysis helped us to understand which segments
of the video significantly impacted perceived quality. Interest-
ingly, we observed varying optimal aggregation functions for two
distinct age groups, as depicted in Figure 3.

A detailed examination of the results falls beyond the scope
of this paper; here, the experiment serves as a demonstrative ap-
plication of the analytical tool, elucidating how quality percep-
tions are influenced in different demographics.

Classical Lab Experiment
As a classical subjective experiment, we used the LIVE Mo-

bile Video Quality Database [10]. The videos are 15 seconds long.

2Of course, in lab study day of the week means the order a video was
presented, not actual day of the week.
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Figure 3. Results obtained using the described method, showcasing that

users older than 50 years consider a longer span of the watched sequence

when rating quality.
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Figure 4. Weights function obtained for 15 second long video. Even for a

short video the function shows important recency effect.

We obtained from Lukas Krasula from Netflix the VMAF scores
calculated for each frame. Similarly to the previous analysis, we
were able to see how important each frame (or second) is in a
video. With a short video, our intuition suggests that time should
not be an important factor, although previous research shows that
it is not the case [4].

The optimal aggregation function is presented in Figure 4.
The function obtained shows a nearly linear forgetting factor. It
should be noted that with the presented model, a perfect linear
function is possible with parameters a = 1,b = 1. This means that
the curvatures at the end are more optimal than a straight line. We
have found two possible explanations. The first is subject-based.
Subjects could be distracted more at the start of the sequence and
better recalling the last frame. The second possible explanation
is based on compression. Perhaps the metric predicts the start
of the sequence less precisely, since the compression algorithm,
targeting a specific bitrate, is not yet stable. We think the second
explanation is less probable, but we cannot exclude it.

The aggregation taking into account time influence yields
better results. The AIC change from 140 for the mean to 102 in
the case of Kumaraswamy aggregation. The change is statistically
significant and easy to implement.

Summary
This paper addresses a fundamental challenge in modeling,

the aggregation of partial values to yield a singular, comprehen-
sive metric. This is a recurrent issue, especially in fields like video
quality assessment where metrics from individual frames or sec-

onds need to be amalgamated into a single score representing the
overall quality or user experience. The paper sheds light on the
existing aggregation operators, highlighting that often, the best fit
algorithm is chosen without a thorough understanding of why it
provides an optimal fit.

Our proposed solution to this challenge hinges on taking ad-
vantage of the Kumaraswamy distribution to discern the under-
lying effects and their intensities present in the data. We have
outlined a weighted mean aggregation procedure utilizing the Ku-
maraswamy distribution, which is meticulously adapted to cater
to the specific data range. The Kumaraswamy distribution pa-
rameters a and b are instrumental in determining the shape of the
distribution, thus influencing the result of the aggregation.

A real-world application of this method is demonstrated
through an analysis of three different experiments ranging from
aggregating days, minutes, and frames. The analysis, supported
by a predictive model that relates VMAF scores to user ratings,
elucidated how different segments of the video were crucial in in-
fluencing perceived quality. A notable discovery was the variation
in optimal aggregation functions across different age demograph-
ics, affirming the method’s potential in uncovering user behavior
patterns.

The innovative use of Kumaraswamy distribution for aggre-
gation presents a robust tool for an in-depth understanding of how
individual metric values coalesce to form an overall perception,
especially in user experience-centric domains. Although the de-
tailed results of the experiments are beyond the scope of this pa-
per, the analysis serves as a testament to the utility and versatility
of the proposed method in obtaining actionable insights from ag-
gregated metric data. Future work is needed to better determine
differences in the aggregation made by uses for different time in-
tervals.
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