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Abstract

Conventional image quality metrics (IQMs), such as PSNR and

SSIM, are designed for perceptually uniform gamma-encoded pixel

values and cannot be directly applied to perceptually non-uniform

linear high-dynamic-range (HDR) colors. Similarly, most of the

available datasets consist of standard-dynamic-range (SDR) im-

ages collected in standard and possibly uncontrolled viewing con-

ditions. Popular pre-trained neural networks are likewise intended

for SDR inputs, restricting their direct application to HDR content.

On the other hand, training HDR models from scratch is challeng-

ing due to limited available HDR data. In this work, we explore

more effective approaches for training deep learning-based models

for image quality assessment (IQA) on HDR data. We leverage

networks pre-trained on SDR data (source domain) and re-target

these models to HDR (target domain) with additional fine-tuning

and domain adaptation. We validate our methods on the avail-

able HDR IQA datasets, demonstrating that models trained with

with our combined recipe outperform previous baselines, converge

much quicker, and reliably generalize to HDR inputs.

Introduction

Real-world scenes are brighter and more vivid than their digital

twin reproductions. While 8-bit gamma-encoded color values

drive the common standard-dynamic-range (SDR) displays, high-

dynamic-range (HDR) imaging enhances the viewing experience

by encoding a significantly wider range of luminance with more

precision, allowing to represent a larger portion of the visible color

gamut. Despite its advantages, HDR also brings complexity to the

imaging pipeline. The vast majority of applications and algorithms

operate on SDR content and do not yet extend to HDR.

Image quality is a critical performance metric in all visual appli-

cations, be they SDR or HDR. Classical image quality assessment

(IQA) relies on hand-crafted mechanisms based on mathematical

models of the human visual system (HVS). With deep learning

[1], IQA has evolved toward jointly optimizing feature representa-

tions and inference directly from image data. Training deep image

quality metrics (IQMs) from scratch, however, is a challenging

task, because IQA datasets are limited in size [2], especially for

HDR [3]. Recent methods address overfitting and handle large

images by dividing inputs into smaller patches, computing and

aggregating patch-wise metrics. Initially, IQMs based on convo-

lutional neural networks (CNNs) essentially processed patches

independently [4, 5]; the current state-of-the-art models take ad-

vantage of transformer architecture [6, 7, 8, 9], or combinations

of CNNs and transformers [10], to capture more complex global

interdependencies between patch-wise inputs.

Only a handful of traditional IQMs, and even fewer deep

learning-based IQMs, are natively designed for HDR content.

Most notably, HDR-VDP [11, 12], a metric that models contrast

detection for a wide range of luminance conditions, has achieved

wide recognition. Most SDR algorithms, on the other hand, rely

on the perceptual uniformity of gamma-encoded sRGB images,

making them unsuitable for accurately processing perceptually

non-uniform HDR color values. While perceptually uniform (PU)

encoding [13, 14] and perceptual quantizer (PQ) [15] transform

linear photometric color values into perceptually uniform units,

thereby enabling the application of some SDR metrics, the effec-

tiveness of SDR methods on HDR images is limited. With the

scarcity of HDR data, most deep learning methods similarly op-

erate primarily on SDR content. Previous attempts at HDR IQA

involve training networks from scratch on PU-encoded data [3, 16],

overlooking the clear advantages of transfer learning [17].

In this paper, we investigate more effective strategies for train-

ing deep learning-based IQA models for HDR1. Instead of training

on HDR data from scratch, we leverage networks pre-trained on

SDR content and propose special fine-tuning strategies to re-target

such networks to HDR. First, we explore several modifications to

the training procedure with PU-encoded units to facilitate transfer

learning. Second, we train with domain adaptation (DA) to reduce

the degradation in performance associated with the domain shift

from SDR to HDR. Third, while we focus on IQA for HDR, we

aim to provide adequate performance for SDR and HDR data,

which allows for flexible usage of the trained models in real-world

applications of IQA. We validate our findings by retraining PieAPP

[5] and VTAMIQ [9] to outperform previous baselines in HDR

IQA on the available datasets (SDR and HDR). Our experiments

emphasize the importance of transfer learning, as demonstrated by

stronger generalization on both SDR and HDR data.

Related Work
Image Quality Assessment

Conventional full-reference (FR) IQA correlates image quality

with the perceptual difference between a reference and a distorted

image. The comparison can be based on error visibility [18, 19],

structural similarity [20, 21, 22], information content [23, 24],

contrast visibility [25, 11], or various other feature similarities

inspired by the Human Visual System (HVS) [26, 27, 28, 29, 30]

and optionally modulated by visual saliency [31, 32]. More recent

work uses deep learning [1] for data-driven IQA. Instead of hand-

crafted features, deep FR IQMs typically compare deep layer

activations for two images [33, 34, 4, 5]. The training is done

1https://github.com/ch-andrei/HDR-IQA-dom-adapt
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by optimizing mean absolute error (MAE) or mean squared error

(MSE) between the predicted and the expected quality values,

optionally using additional guidance by pairwise preference [5]

or ranking loss [35, 34]. With limited data, the advantages of

transfer learning [17, 36] motivate the use of feature extraction

networks initially trained for other vision tasks (e.g., classification

or segmentation [37]) and subsequently fine-tuned to IQA.

Because CNN-based methods tend to restrict input image reso-

lution, recent work uses patch-wise processing for more flexibility:

an image is split into smaller patches (randomly sampled or tiled),

and patch-wise quality scores are computed and combined with

averaging or weighted pooling [38, 4]. As a notable example,

the PieAPP quality metric [5] predicts individual quality scores

and the corresponding patch weights for patches of 64× 64 pix-

els. The use of patches further allows for data augmentation: a

sequence of randomly sampled patches offers a reasonably novel

“view” of the same data. However, for real-world applications with

HD images, this can quickly become computationally intensive

as the number of patches increases to cover more pixels. Lastly,

transformers instinctively conform to patch-wise IQA, because the

transformer architecture [6, 39] natively uses sequences as inputs.

Among recent work on transformer-based IQMs, MUSIQ [8] and

VTAMIQ [9] employ multi-scale patch processing to adapt to large

resolution inputs common in practical applications of IQA.

Representing Real-World Displays

Although the viewing experience varies widely according to

viewing conditions and across different displays [40, 13], many

computer vision algorithms operate directly on 8-bit gamma-

encoded sRGB color values designed for cathode-ray tube (CRT)

displays with around 100 cd/m2 peak luminance. HDR displays,

on the other hand, depict a significantly wider range of visible

color with luminance levels that reach 5000 cd/m2. To describe

both SDR and HDR content on a unified scale, it is convenient to

represent visual content in physical units of luminance emitted by

a display as modeled by the gain-offset-gamma model [41]:

L = (Lmax −Lblk)F(V )+Lblk, (1)

where L is the emitted luminance in cd/m2, Lmax and Lblk are the

maximum and the black level luminance of the display in cd/m2, V

is the display-encoded luma in the range 0–1, and F is the EOTF,

the inverse of the opto-electronic transfer function (OETF). For

SDR, F(V ) = V γ , where γ is the gamma-correction parameter

(typically, γ = 2.2), or the sRGB non-linearity. For HDR, F can

be Hybrid Log Gamma [42], PQ [15], or F(V ) can directly encode

linear scene luminance.

We can optionally extend Equation 1 to account for ambient

light reflected from the display [43] by adding the ambient reflec-

tion term Lamb, computed as

Lamb =
k

π
Eamb, (2)

given the display’s reflectivity k (for common displays, k < 0.01)

and the ambient illumination level Eamb in units of lux. The final

observed luminance is then equal to L+Lamb. With this extended

model, we include the effect of varying ambient conditions on the

viewing experience [44, 45].
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Figure 1. Perceptually uniform encoding with PU21 [14] (banding + glare

variant) and PQ [15] (scaled by 255) contrasted with the approximate mapping

between luminance and the sRGB non-linearity for typical CRT and LCD

displays (simulated with Equation 1). Left: the full range of encoded luminance.

Right: the mapping between sRGB values and PU units.

Extending IQA to HDR

Most existing SDR metrics are calibrated to perceptually uni-

form pixel values. On the other hand, trichromatic color values

stored in HDR images are not perceptually uniform because they

are linearly related to luminance, which humans perceive on a

logarithmic scale. By extension, most SDR metrics cannot reliably

predict image quality for HDR inputs. To improve the accuracy of

SDR metrics on HDR data, perceptually uniform (PU) encoding

[13] first transforms luminance into approximately PU values by

matching contrast detection thresholds across a wide range of lu-

minance conditions. Existing SDR quality metrics, such as PSNR

and SSIM, were shown to produce significantly more accurate

predictions for PU-encoded HDR data. As illustrated in Figure 1,

PU21 encoding [14] transforms luminance inputs of 0.005–10000

cd/m2 to PU units. By design, luminance levels of 0.1–100 cd/m2

(typical SDR display luminance) map to approximately 256 steps

in the PU space, ensuring that SDR metrics produce comparable

results for PU-encoded SDR data.

Lastly, PQ [15] transforms luminance to a relatively PU space

using similar derivations as PU21. While PU21 is concerned with

the application of SDR metrics to HDR content, PQ is optimized

to reduce visible quantization artifacts in HDR image formats,

offering a coding scheme more aligned with human perception.

Domain Adaptation

In machine learning, when labeled data is scarce (as is the

case for HDR IQA), the common solution is to use other available

datasets for closely related tasks. Naturally, as such source data

may differ from the desired target domain, trained models may

have suboptimal performance on the target data due to the problem

of domain shift. To address this limitation, various domain adapta-

tion techniques aim to facilitate the transfer of knowledge from a

source domain to a target domain, mitigating the degradation in

performance caused by domain shift and improving generalization

on the target data [46, 47, 48]. In this work, we focus specifically

on deep feature activation CORrelation ALignment (CORAL) [49],

a DA technique that aligns the statistical properties of source and

target distributions. With CORAL, neural networks are trained

with an additional loss term defined as the distance between the

second-order statistics of the two involved data distributions:

LCORAL =
1

4d2
∥CS −CT ∥

2
F , (3)
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where CS and CT are the covariance matrices of the source and the

target d-dimensional feature activations, respectively, and ∥ · ∥2
F is

the Frobenius norm. Optimizing CORAL loss leads to increased

statistical similarity between the source and target domains, which

in turn allows trained models to learn domain-invariant but task-

specific features, consistently improving generalization on the

target domain.

Methodology

We investigate various modifications to the training procedure

to adapt deep IQMs pre-trained on SDR data to HDR. First, to

ensure out-of-the-box performance on PU-encoded SDR data for

networks pre-trained with sRGB images, we verify a more intuitive

normalization scheme which aligns PU-encoded SDR values to the

range of sRGB inputs. Second, to further improve generalization

on the target HDR domain, we fine-tune networks on a mix of SDR

and HDR data with optional domain adaptation. Lastly, we ensure

that the trained models perform well on both SDR and HDR data,

making them more practical for real-world applications of IQA.

Training with PU-encoded Data

Similar to prior work on IQA for HDR [13, 14, 3, 45], we

represent gamma-encoded SDR and linear HDR color values on

a unified scale in photometric units of luminance by computing

the display response with Equation 1. Following the specifica-

tions of the sRGB color space, SDR displays are modelled with

Lmax = 100 cd/m2 and Lblk = 0.5 cd/m2 (effective contrast ratio

of 200:1). For HDR image formats, the stored trichromatic color

values either directly encode luminance or can be tone-mapped to

a given display characteristic using a similar approach. Physical

luminance values are then encoded with PU21 [14] for perceptual

linearity and used to train neural networks.

To mitigate precision errors and stabilize training, neural net-

works are trained with values rescaled to a consistent floating-point

range (e.g., 0.0–1.0 or similar). PU-encoded values likewise need

to be rescaled to some known range when used as input to a neural

network. However, the choice of normalization scheme for PU-

encoded values is not as intuitive. As illustrated in Figure 1, PU21

(banding + glare variant) maps luminance levels of 0.005–10000

cd/m2 to roughly 0–595 PU units, with SDR luminance levels

of 100 cd/m2 explicitly scaled to 256 PU steps to ensure com-

patibility with conventional SDR metrics that operate on sRGB.

To adhere to the original design of PU encoding, instead of nor-

malizing by the full range of PU-encoded values as was done for

training PU-PieAPP [3], we align 255 PU units (100 cd/m2) with

1.0, while PU-encoded values outside this range exceed 1.0 after

normalization. We refer to this normalization scheme as “255”,

because PU values are divided by 255 for normalization instead

of the maximum PU encoded value Pmax. SDR luminance levels

of 0–100 cd/m2 then map to 0–1, while HDR luminance levels of

100-10000 cd/m2) reach roughly 2.3 after normalization.

The choice of normalization scheme (divide by Pmax or 255)

has an effect on initial and final performance levels. The ben-

efit of Pmax normalization is that PU-encoded values (SDR and

HDR) match the range of input values used in pre-training; the

downside—PU-encoded SDR inputs (originally as 0–1 sRGB val-

ues) are arbitrarily compressed to roughly 0–0.4 (255/595 ≈ 0.4).

With 255 normalization, PU-encoded SDR luminance levels are

aligned to sRGB range and networks pre-trained on sRGB data con-

sequently produce similar predictions for PU-encoded SDR inputs.

On the other hand, PU-encoded HDR luminance levels then map

to a range of inputs unseen in training, emphasizing the domain

expansion from SDR to HDR. Although a pre-trained network is

not expected to produce reliable predictions on PU-encoded HDR

data, it has guaranteed performance on SDR. We can then adapt

pre-trained networks to the full range of PU-encoded data with ad-

ditional fine-tuning and domain adaptation, which we hypothesize

to be more effective under 255 normalization.

Domain Adaptation for HDR

We incorporate domain adaptation in the training procedure to

facilitate the transfer of knowledge between the SDR and HDR

domains. To this end, we optimize deep CORAL loss [49] to align

the correlations of deep-layer activations between SDR and HDR

data. Under such a training regime, at each training iteration, we

acquire a batch of SDR data and a batch of HDR data, compute

network predictions and feature representations for the inputs,

calculate conventional loss functions, e.g., mean average error

(MAE), between the expected and predicted values, and finally

the deep CORAL loss LCORAL between the SDR and HDR feature

vectors. The loss terms are then summed as follows:

L= αLSDR +βLHDR +λLCORAL, (4)

where LSDR and LHDR are conventional loss functions for IQA (we

use MAE) on the SDR and the HDR batches, respectively, and α ,

β , λ are customizable weight parameters that allow for different

trade-offs between the three defined losses. Since CORAL loss

specifically adapts feature representations and does not require

quality labels (equivalently, β = 0 or LHDR = 0), we can leverage

generic unlabeled HDR data which is more widely available than

HDR IQA data. The models are then trained with DA to produce

statistically similar features for SDR and HDR, but are not ex-

plicitly trained for IQA on HDR data. Lastly, the magnitude of

LCORAL varies according to the domains and the feature dimension

d, hence λ must be adjusted according to the use case. As in prior

work [49], we roughly match the magnitude of LCORAL with other

loss terms at the end of the training.

Experiments and Results
To evaluate the effect of our proposed training recipe, we re-

train several deep neural network-based IQA models with and

without our modifications. In what follows, we describe our train-

ing procedure and our performance evaluations, demonstrating

the effectiveness of transfer learning and domain adaptation in the

context of IQA on HDR images.

Datasets

We test models on the UPIQ dataset [3], which consolidates

two popular SDR IQA datasets (LIVE [50] and TID2013 [51])

and two smaller HDR IQA datasets (Korshunov [52] and Narwaria

[53]), with quality labels realigned to a common scale (in JOD

units) through additional subjective experiments. We train our

metrics on IQA data from the larger KADID-10k dataset [54]

(SDR). For domain adaptation, we also use HDR images from an

HDR image reconstruction dataset (not IQA), SI-HDR [55]. We

summarize relevant details on the used datasets in Table 1.
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Table 1. Comparison of the used datasets.

Dataset No. Ref. No. No. Dist. Resolution Dynamic
Name images Dist. images (h×w) range

LIVE [50] 29 5 779 512×768 SDR
TID2013 [51] 25 24 3,000 384×512 SDR

KADID-10k [54] 81 25 10125 384×512 SDR
Narwaria [53] 25 2 140 1080×1920 HDR

Korshunov [52] 25 3 240 1080×944 HDR

SI-HDR [55] 181 N/A N/A 1080×1888 HDR

Experimental Setup

In previous work on IQA for HDR [3], the CNN-based PieAPP

quality metric [5] (model architecture depicted in Figure 2) was

trained from scratch on PU-encoded SDR and HDR data normal-

ized to range 0–1 (Pmax), with the HDR variant termed PU-PieAPP.

We re-train PU-PieAPP using our training recipe consisting of

pre-training on SDR data and fine-tuning on PU-encoded data

with optional domain adaptation, following the optimization crite-

rion defined in Equation 4. Under similar setup, we also re-train

VTAMIQ [9], a transformer-based FR IQA model extended for

multi-scale patch processing via scale embedding [8] (architec-

ture in Figure 3), with the final model analogously termed PU-

VTAMIQ. For both metrics, we use feature extraction networks

pre-trained for classification of sRGB images. For PieAPP, we

initialize the feature extractor with pre-trained weights for VGG16

[56]2. For VTAMIQ, we use a pre-trained vision transformer.

Both PieAPP and VTAMIQ use patch inputs, which we obtain

by tiling input images with randomized perturbations3, resulting

in a relatively uniform yet randomized view of the full image. For

PieAPP, we sample 128 patches of size 64× 64 for each image

during training and 1024 patches for testing. For VTAMIQ, we

use a variant of ViT extended with scale embedding [8]: patches

are sampled at five different scales with initial patch sizes p ∈
{16,32,64,128,256} pixels (downsampled to 16×16 when input

to ViT), and with 512 patches for training and 2048 for testing.

For domain adaptation, we apply deep CORAL to the feature

vectors produced by the tested models for SDR and HDR data.

While PieAPP computes CNN features and the corresponding

quality scores for each patch independently, VTAMIQ produces a

single compact feature representation and quality score by jointly

encoding all patches with the CLS token. For PieAPP, we compute

CORAL loss on the features from the last Conv512 layer (yi in

Figure 2) with flattened feature dimension d = 2048. We concate-

nate the feature vectors for all patches for the reference and the

distorted images (latter, if available). As an example, for a batch

size of 8 image pairs with 64 patches per image, we will compute

the CORAL loss between two feature matrices of size 1024×2048

(8× 64× 2 = 1024 and d = 2048). Similarly for VTAMIQ, we

concatenate the CLS tokens with d = 768 for all reference and

distorted images in a batch; for batch size and patch count above,

CORAL loss is computed between 16×768 feature matrices.

Our implementation is in Pytorch [57], with all training per-

formed on a single NVIDIA GeForce RTX 3090 GPU with 24GB

of video memory. We use the AdamW optimizer [58] with the

recommended parameters and an initial learning rate of 10−4, ex-

ponentially decayed at the end of each epoch with a final goal

of 10−6. Practical training times depend on the used dataset, but

we generally train for 50 epochs for each run. Since we leverage

2PieAPP’s CNN feature extractor architecture is similar to VGG16
3Sampling details in https://github.com/ch-andrei/VTAMIQ
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Figure 2. Diagram of PieAPP quality metric [5]. For each 64×64 patch, deep

feature activations from 5 convolutional layers are computed and concate-

nated; a fully-connected layer predicts the quality score given the difference

between the reference and the distorted patch features. Features from the last

layer are used to predict patch weights. The final image quality is computed

as a weighted sum of patch-wise scores. Adapted from [5].
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pre-training, our models converge faster than PU-PieAPP from

[3] (trained for 500 epochs). Note that while the original PU-

PieAPP [3] was trained on data encoded with PU08 [13], we use

the updated PU21 [14], specifically its banding + glare variant.

Performance Evaluations

We evaluate the tested models on the UPIQ dataset with 5-fold

cross-validation, splitting the available data into train, validation,

and testing sets with a splitting ratio of 60-20-20 across the ref-

erence image dimension. When training on UPIQ, we take extra

care to correctly isolate reference images from LIVE and TID2013

subsets of UPIQ (overlapping images are assigned to TID2013)

and split the SDR and HDR portions in roughly the same ratio.

Following common practice, we assess the performance of the

tested models with Spearman rank order correlation coefficient

(SROCC) and Pearson linear correlation coefficient (PLCC) be-

tween the expected and the predicted quality scores. As in prior

work, a logistic fit is applied before computing PLCC [59].

Pre-training and fine-tuning. We test metrics pre-trained

on sRGB data from KADID-10k directly on PU-encoded data

from UPIQ. As presented in Table 2, without fine-tuning on PU-

encoded data, PieAPP and VTAMIQ produce accurate predictions

for PU-encoded SDR data (0.87–0.91 SROCC) but are only as

reliable on HDR data as the PU variants of conventional IQMs

(0.60–0.76 SROCC). Conversely, HDR-VDP [11] and HDR-VQM

[60], offer very strong performance on the HDR subsets, but are
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Table 2. Performance (SROCC and PLCC) on subsets of UPIQ.

For Full set, we report 5-fold cross-validation performance; for

SDR and HDR subsets, we test on the entire subset. We train

PieAPP and VTAMIQ on sRGB data, with PU-PieAPP and PU-

VTAMIQ further fine-tuned on PU-encoded SDR data. Other met-

rics are as reported in [3], where PU-PieAPP* is trained on UPIQ

(with test set held out). Column Input describes input type and nor-

malization scheme. Best scores bolded, second best underlined.

Method Input
Tested subset of UPIQ

Full SDR HDR

FSIM Luminance 0.82 0.89 0.54 0.51 0.45 0.34

PU-FSIM PU08 0.84 0.90 0.77 0.77 0.71 0.66

HDR-VDP Luminance 0.82 0.84 0.82 0.78 0.81 0.72

HDR-VQM Luminance 0.78 0.82 0.60 0.62 0.87 0.86

Trained on KADID-10k (sRGB)

PieAPP
PU21 (Pmax) 0.85 0.84 0.87 0.87 0.63 0.65

PU21 (255) 0.86 0.85 0.88 0.89 0.60 0.63

VTAMIQ
PU21 (Pmax) 0.87 0.87 0.90 0.91 0.76 0.76

PU21 (255) 0.88 0.89 0.91 0.92 0.71 0.72

Fine-tuned on KADID-10k (PU-encoded)

PU-PieAPP
PU21 (Pmax) 0.87 0.87 0.89 0.89 0.75 0.75

PU21 (255) 0.87 0.86 0.90 0.90 0.63 0.66

PU-VTAMIQ
PU21 (Pmax) 0.89 0.90 0.91 0.92 0.81 0.81

PU21 (255) 0.90 0.91 0.93 0.94 0.72 0.73

Trained on UPIQ (PU-encoded)

PU-PieAPP* PU08 (Pmax) 0.94 0.96 0.65 0.67 0.74 0.73

suboptimal for SDR. We then fine-tune VTAMIQ and PieAPP on

PU-encoded data from KADID-10k to produce their respective

PU variants, PU-VTAMIQ and PU-PieAPP. We note the resulting

improvement on both SDR and HDR content. Even only training

on PU-encoded SDR data improves performance on the HDR

subset. VTAMIQ-based models consistently outperform PieAPP,

nearly matching HDR-VDP on the HDR subset (0.81 SROCC).

We contrast the performance of our models with PU-PieAPP*

trained in [3] from scratch on data from UPIQ encoded with PU08

[13] and under Pmax normalization. PU-PieAPP* has stronger

cross-validation performance on the Full set of UPIQ, which is

expected, because the model is directly trained on subsets of UPIQ,

while our models are trained on KADID-10k. On the other hand,

when PU-PieAPP* is trained on the HDR subset of UPIQ and

evaluated on its SDR subset, it performs poorly, though its perfor-

mance on the HDR subset, when trained on SDR, is only slightly

lower than ours. Our models thus provide a more optimal balance

of performance on both subsets, demonstrating the benefit of trans-

fer learning, where adequate pre-training improves generalization

on unseen data for both SDR and HDR inputs. We achieve fur-

ther performance improvements on HDR inputs with additional

fine-tuning and domain adaptation.

Normalization scheme for PU-encoded values. We find that

the performance of the trained metrics increases on SDR and

decreases on HDR data when 255 normalization is used instead

of Pmax. This is expected because PU-encoded SDR luminance

levels appear more similar to sRGB values when normalizing by

255, while HDR signals exceed the range of data used in pre-

training. However, we confirm that Pmax normalization results

in significantly better final performance, discouraging the use of

255 normalization, despite our original motivation of leveraging

the similarity between PU-encoded SDR and sRGB. Since our

main objective is HDR performance, where 255 normalization is

suboptimal, we emphasize our results under Pmax normalization.

Table 3. Performance (SROCC) on the HDR subset of UPIQ for

different training and domain adaptation configurations. All

runs use PU21 encoding and Pmax normalization. Training with

CORAL loss indicated in column λ . For S −→ HU , training with no

CORAL loss is equivalent to results in Table 2, because only the

SDR labels are used. Unlike other DA configurations, for S −→ HL,

we apply 5-fold cross-validation on the HDR subset of UPIQ.

Method λ
DA Configuration and Target

S −→ HU S −→ HS S −→ HL

SIHDR KADID UPIQS KADID UPIQH

PU-PieAPP
0.75 0.75 0.75 0.78 0.85

✓ 0.76 0.78 0.76 0.79 0.86

PU-VTAMIQ
0.81 0.81 0.81 0.88 0.89

✓ 0.82 0.85 0.84 0.89 0.91

Training with domain adaptation. We consider three domain

adaptation configurations with different training procedures and

source-target domains. While we use labeled SDR IQA data from

KADID-10k (PU-encoded) as the source domain, the HDR-like tar-

get domain can be: (i) unlabeled authentic HDR images (S −→ HU ),

(ii) labeled synthetic HDR-like images simulated from sRGB im-

ages in SDR IQA datasets (S −→ HS), and (iii) labeled authentic

HDR images from HDR IQA datasets (S −→ HL). Option S −→ HU

follows the common setting for DA with unlabeled target data, pro-

duces subtle improvements in generalization on the target domain,

but typically does not outperform training on labeled data. With

option S −→ HS, we provide additional optimization guidance with

labeled HDR-like data simulated from the more abundant SDR

IQA data, granted the distribution of luminance values does not

truly come from an HDR source and the reused SDR quality labels

are perhaps not as reliable for HDR. Lastly, with S −→ HL, although

authentic HDR IQA data is used, its severely limited availability

poses practical challenges due to overfitting and noisy evaluations.

For S −→ HU , we experiment with (i) HDR images from the

SI-HDR dataset, (ii) SDR images from KADID-10k simulated

as HDR, and (iii) SDR images from UPIQ simulated as HDR

(UPIQS). For S −→ HS, we train on labeled data from KADID-10k

simulated as HDR. To generate synthetic HDR-like IQA data,

we reuse the labels and images from SDR IQA datasets (e.g.,

KADID-10k or the SDR subset of UPIQ), but simulate HDR-like

display response by controlling the Lmax parameter in Equation 1.

We sample Lmax from a normal distribution N (100,10) for SDR

and N (5000,500) for HDR display response for additional data

augmentation, instead of using a constant value as was done in [3].

We apply a similar method to tone-map the linear HDR color values

from SI-HDR. Lastly, for S −→ HL, we train with cross-validation

on labeled HDR data from UPIQ (UPIQH) and test on a held

out set, which makes comparison with other DA configurations

problematic, but nevertheless showcases the benefit of CORAL.

Our performance evaluations on the HDR subset of UPIQ for

models trained with DA are presented in Table 3, which we con-

trast with Table 2, where the training is done without DA. We

determine that training with CORAL yields subtle but noticeable

performance improvements on the target HDR data for all tested

DA configurations with both unlabeled and labeled target data. For

S −→ HU , training without CORAL loss is equivalent to training on

KADID-10k (see Table 2). Our best performance is achieved with

option S −→ HS with for KADID-10k as target, where we simulate

synthetic HDR-like data. PU-VTAMIQ trained with S −→ HS has

0.89 SROCC on the HDR subset of UPIQ, outperforming HDR-
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VQM which has 0.87 SROCC; PU-PieAPP, generally, reacts less

favorably to DA with CORAL. To isolate the effect of optimizing

deep CORAL loss, we also train without the CORAL loss term,

i.e., only using the labeled SDR and HDR data but without DA

between them. While the main improvement comes from having

labeled HDR-like training data, CORAL loss leads to additional al-

beit subtle gains. Finally, while we experiment with DA using Pmax

and 255 normalization schemes, we find that Pmax offers stronger

performance for all setups, unless we train directly on HDR data

from UPIQ (S −→ HL), where the final performance is comparable.

For brevity, we omit our DA results for 255 normalization.

Discussion
With transfer learning, a model is trained on one task and re-

purposed for a different but related task. Domain adaptation com-

plements pre-training by facilitating transfer of knowledge from

source to target domain. We train networks on sRGB data and

adapt them to PU-encoded HDR data with additional fine-tuning

and domain adaptation between SDR and HDR. Fine-tuning on

PU-encoded data produces a considerable improvement to gen-

eralization on HDR content. DA contributes to an additional in-

cremental gain in IQA performance on the target HDR domain.

We explored DA with unlabeled and labeled target data, achieving

higher performance in both scenarios. For unlabeled DA for IQA

(S −→ HU ), we note the importance of distorted images in the target

dataset. Although SI-HDR contains authentic HDR images, it

produce meager improvement when used as DA target, which we

hypothesize is due to its relatively limited size and lack of distorted

images. Conversely, SDR images from KADID-10k contain image

quality distortions and more variation, resulting in improved per-

formance when used as DA target. Granted, SI-HDR only contains

181 images, which may be insufficient for our application—we

leave DA on a larger unlabeled HDR dataset to future work. While

we focus on IQA, we expect our findings to also apply to other

HDR tasks, where limited labeled task-specific data is available.

We note, however, that DA adds complexity to the training pro-

cedure and presents certain challenges. First, with deep CORAL,

the weight of the CORAL loss must be tuned to a given use-case:

despite recommendations in the original work, this potentially re-

quires extensive empirical experimentation. Secondly, CORAL

loss assumes that the second-order statistics of two data distribu-

tions can be aligned without limiting domain-specific representa-

tion, instead leading to task-specific but domain-invariant learning,

but there is no guarantee that this holds for all tasks and data distri-

butions. Moreover, while CORAL of deep feature representations

is originally intended for other vision tasks, in IQA, the distor-

tions arguably matter as much as natural image statistics. Using

unlabeled and undistorted images for DA is perhaps not enough to

transfer knowledge of relevant features for IQA. In that regard, it is

then difficult to apply DA in its original form, hence why we find

that CORAL is useful as an additional optimization criterion along

regular IQA losses on both the source and target domains. Lastly,

training with DA requires certain implementation details and data

schedules to be changed in order to accommodate DA. This makes

comparison against previous work problematic, as potential per-

formance difference may be due to different training procedures.

While we addressed this by training specifically with and without

CORAL loss for similar data splits and other loss functions, there

may be other details that affected the final performance.

Conclusion
We investigate more effective training strategies to adapt net-

works pre-trained on SDR data to HDR applications. First, we

verify the effect of normalization schemes when training on data en-

coded with perceptually uniform transforms such as PU21. When

using networks pre-trained on sRGB data, we find that the benefit

of aligning the full range of PU values to the range of values used

in pre-training outweighs the benefit of similarity between PU-

encoded SDR values and sRGB. Moreover, networks pre-trained

on sRGB data produce excellent baselines for fine-tuning on PU-

encoded data. With additional training and optional domain adap-

tation, we further consolidate IQA for SDR and HDR, leveraging

the more widely available SDR data to transfer task-specific but

domain-invariant knowledge from SDR (source domain) to HDR

(target domain). Our results demonstrate that our combined train-

ing recipe offers much quicker convergence and stronger general-

ization on both SDR and HDR data. Lastly, although we focus on

IQA, our strategies likely extend to other tasks in HDR imaging.
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