
Study on Effect of Display Layout for Web Conferencing Ser-
vices on Subjective Evaluation Stability
Kimiko Kawashima, Yuichiro Urata, Noritsugu Egi, Kazuhisa Yamagishi; Nippon Telegraph and Telephone Corporation (NTT);
Tokyo, Japan

Abstract
The quality of web conferencing services often degrades by

network quality. Parametric video quality-estimation techniques
are essential to detect quality degradation because they can esti-
mate the quality of videos displayed to each user by using infor-
mation about video encoding. To study these techniques, we have
to consider display layouts such as single and grid views, which
are layouts unique to web conferencing videos. Therefore, we in-
vestigated the subjective evaluation stability of both views. Then,
we showed the evaluation of grid views is less stable because of
the smaller size of face images comprising the display and wider
quality distributions.

Introduction
The use of web conferencing services has increased dramat-

ically due to the COVID-19 Pandemic [1, 2]. Since the quality
of web conferencing services is affected by network quality (e.g.,
throughput and packet loss), which varies depending on the time
of day and the line in use, perceived quality is degraded. To de-
tect such problems, parametric quality-estimation techniques are
essential because they can assess video quality by using infor-
mation about video encoding, such as bitrate and resolution, that
can be acquired during service provision. To establish a quality-
estimation technique, subjective quality evaluation data need to
be derived by using a large number of experimental videos. To
derive subjective evaluation data, the quality of web conferencing
videos needs to be stably evaluated.

Several subjective quality evaluation methods exist, such as
the absolute category rating (ACR, [3]), the degradation category
rating (DCR, [3, 4]), the double stimulus continuous quality-scale
[4], and the pair comparison methods [3]. These methods have
different characteristics, and the experimenters select the method
on the basis of the evaluation purpose. A five-point ACR method
(5: Excellent, 4: Good, 3: Fair, 2: Poor, 1: Bad) is often used in
constructing parametric quality-estimation techniques [5, 6, 7, 8].

It is important to assess the effect of display layout on the
quality for web conferencing services because web conferencing
videos (i.e., their face images) can be displayed as not only a sin-
gle view but also a grid view [9, 10, 11]. In the single view, one
person’s face image is displayed; in the grid view, multiple peo-
ple’s face images are reduced in size and integrated into a single
display. Therefore, quality degrades uniformly across the entire
display in a single view. On the other hand, in the grid view,
degradation does not occur uniformly across the entire display
because the quality of each participant’s face image differs de-
pending on each participant’s network environment. This means
that factors such as display patterns (i.e., the face image size, the
number of faces, and the placement of the face images) and qual-

ity distributions (i.e., quality differences in each face image com-
prising the display) affect subjective quality.

Among subjective quality, we focused on stability, which
means the wideness of confidence intervals of subjects’ scores.
Different participants may pay attention to different parts of the
display. In that case, some may notice quality deterioration while
others do not. In addition, some may evaluate the quality of web
conferencing videos on average, including good- and bad-quality
parts of the display, some may evaluate the quality as higher than
average due to good-quality parts, and some may evaluate the
quality as lower than average due to bad-quality parts. Thus, par-
ticipants may perceive the quality differently, even when they see
the same image. This means that the confidence intervals of sub-
jects’ scores may be affected. Therefore, we focused on the sta-
bility of subjective evaluation for grid views.

However, no study has investigated the stability of subjective
evaluation for grid views. Although grid views showing three face
images [12] and four face images [13] have been evaluated, stabil-
ity has not been discussed. Single views have also been evaluated
[14, 15]. Still, there have been no studies on the evaluation of sin-
gle and grid views in the same experiments, and the difference in
stability between the two has not been elucidated.

Therefore, this paper clarifies the stability of subjective eval-
uation for single and grid views. Then, we describe the effect of
display patterns and quality distributions on the evaluation stabil-
ity for grid views.

Related Works
To enable the acquisition of stable subjective evaluation data,

evaluation characteristics called subject’s bias [16, 17] and incon-
sistency [3, 18] have been widely investigated. A subject’s bias
means the overall shift between a subject’s scores and the actual
value. Previous studies [16, 17] have shown that increasing the
number of participants minimizes the influence of the subject’s
bias and makes it possible to obtain highly stable evaluation data.
An inconsistency means a subject cannot consistently evaluate
videos on the basis of this evaluation standard. ITU-T Recom-
mendation P.910 [3] provides a technique to reject these two fac-
tors. This technique can minimize the influence of outliers by
changing the weight of inattentive subjects’ scores [3, 18].

However, there has been no study on the subjective eval-
uation stability for single and grid views of web conferencing
videos, as described in Section I, because the previous stud-
ies [12, 13, 14, 15] focused on constructing parametric quality-
estimation techniques. Therefore, some issues need to be ad-
dressed to acquire stable subjective evaluation data of grid views,
because different participants may pay attention to different parts
of the display on the grid view.
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Figure 1. Display patterns of the number of face images.

First, to show the effect that multiple people’s face images
are reduced in size and integrated into a single display, the sta-
bility of subjective evaluation needs to be clarified for single and
grid views. Second, to identify factors related to the display lay-
outs unique to web conferencing videos, the effect of display pat-
terns and quality distributions on the evaluation stability for grid
views needs to be described. Finally, to acquire stable subjec-
tive evaluation data, the number of participants required for stable
evaluation needs to be estimated while considering the effect of
display patterns and quality distributions.

Subjective Evaluation Experiment
As described above, to clarify the stability of subjective eval-

uation for single and grid views, we conducted a subjective eval-
uation experiment. To solve the issues described above, we pre-
pared evaluation videos with different display patterns and quality
distributions for grid views. Display patterns mean various sizes,
numbers, placement patterns, and combination patterns of face
images. We set various sizes, numbers, and placement patterns
to clarify the effect on evaluation stability when multiple people’s
face images are reduced in size and integrated into a single dis-
play. We also set combination patterns of face images to account
for variations in the difficulty of encoding. Quality distributions
mean quality differences in each face image comprising the dis-
play. We set quality distributions to clarify the effect on evaluation
stability when the quality does not degrade uniformly across the
entire display

Source videos and test conditions
For both views, we prepared source videos, also called

source reference circuits (SRCs). We used face images of web
conferencing (1 minute, 1920×1080, 30 fps, I420 yuv format, 8-
bit depth). To consider the effect of encoding difficulty, we used
various variations in clothing and background (white (“W”) and
gray or brown wood-grained (“GB”)).

In addition, we prepared test conditions, also called hypo-
thetical reference circuits (HRCs). We used four quality states
(a stable-quality state ((A)stable) and three fluctuating-quality
states) to reflect events that occur in web conferencing services
due to variable bitrate encoding and network conditions. We pre-
pared quality fluctuations such as variations when encoding be-
gins ((B)start), when the bitrate increases ((C)up) and when the
bitrate decreases ((D)down). For (A) and (B), ten bitrate pat-
terns were prepared: (HRC (AB)), i.e., 64k, 128k, 256k, 384k,
512k, 640k, 768k, 896k, 1024k, and 2048kbps. For (C) and
(D), we set the different bitrates to 0 and 20 seconds. For
(C), we prepared three patterns (HRC (C)), i.e., 384k→896kbps,
256k→768kbps, and 128k→512kbps. For (D), we prepared three
patterns (HRC (D)), i.e., 1024k→128kbps, 768k→128kbps, and
512k→128kbps.

Table 1: PVSs of grid views

Display patterns Quality distributions
Size Num Place Combination QD1 QD2 QD3
1/4 2 1 4 (W,GB: 2) 1 2 0

4 1 1 (W: 1) 10 6 6
1 1 (GB: 1) 18∗s 32 8
4∗p 1 (W: 1) 0 0 2∗q

4∗p 1 (GB: 1) 0 2∗r 0
1/9 6 1 1 (GB: 1) 4 8 0

9 1 1 (GB: 1) 10 18 8
1/16 12 1 1 (GB: 1) 10 18 8
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Figure 2. Example of placement patterns.

Processed video sequences
Participants evaluated 208 processed video sequences

(PVSs). The 208 PVSs were composed of 16 PVSs of single
views and 192 PVSs of grid views in Table 1.

For single views, we used eight SRCs (four people (two
males; two females) in two states (speaking and listening)) of
“W” and “GB”, respectively. For each SRC, we set one HRC
in HRC (AB).

For grid views, each PVS (PVSi) consists of small PVSs
(PVSi(r, c)) where i means the index of PVS, r means the row
number, and c means the column number of the face images in
Fig. 1. PVSi(r, c) is created by encoding SRCi(r, c) with HRCi(r,
c). The sizes of PVSi(r, c) are 960×540 (size 1/4), 640×360
(1/9), and 480×270 (1/16) in Table 1. There were five face dis-
play patterns, as shown in Fig. 1. In each display pattern, one
PVSi(r, c) is speaking, and the others are listening. To clarify the
effect of placements, we prepared four placement patterns pl1-pl4
in Fig.2 (*p in Table 1) and set four conditions (*q and *r in Ta-
ble 1) for each placement pattern. These four placement patterns
consist of the same four small PVSs, as shown in Fig. 2, and this
means each small PVS appears once in all four regions. In addi-
tion, to avoid the influence of the combination of face images, we
prepared different combination patterns of SRCs for two and four
face images.

For quality distributions, we set three ways: QD1, QD2, and
QD3. QD1 means that the quality differs slightly among all parts
of the display. QD2 means that the quality differs only in one part
of the display. QD3 means that the quality differs depending on
each part of the display. In addition, we set the quality state for
each quality distribution. For QD1, we mainly set QD1 (A) (the
quality distribution is QD1, and the quality state is (A)), although
the column *s in Table 1 consisted of 10 patterns of QD1 (A)
and 8 patterns of QD1 (B). For QD2, the detailed conditions are
shown in Table 2. In Table 2, QD2 (A) bad and QD2 (B) bad
mean that the quality of only one PVSi(r, c) is bad. In addition,
QD2 (A) good and QD2 (B) good mean that the quality of only
one PVSi(r, c) is good. We used QD2 (C) only where there were 4
face images, because the quality change in a short period (i.e., 10
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Table 2: Detailed conditions of QD2
Display patterns Quality States

Num Place Combination QD2 (A) bad QD2 (A) good QD2 (B) bad QD2 (B) good QD2 (C) QD2 (D)
2 1 4 (W,GB: 2) 2 0 0 0
4 1 1 (W: 1) 3 3 0 0 0 0

1 1 (GB: 1) 2 2 2 2 12 12
4 1 (W: 1) 0 0 0 0 0 0
4 1 (GB: 1) 1 1 0 0 0 0

6 1 1 (GB: 1) 4 4 0 0 0 0
9 1 1 (GB: 1) 3 3 0 0 0 12
12 1 1 (GB: 1) 3 3 0 0 0 12

Video

Bit rate
Evaluation video

acquisition tool
FFmpeg

yuv (I420)

frame rate: 30 fps

resolution: 1920x1080

webm

frame rate: variable

resolution: variable

Figure 3. Flow of acquiring web conferencing video.

seconds) is difficult to perceive as the speed of increase in qual-
ity according to the increase in bitrate is slower than that of the
decrease in quality according to the decrease in bitrate. For QD3,
we only set QD3 (A), because multiple quality states and quality
differences are too difficult to perceive simultaneously.

To represent the quality distributions, HRC was set as
follows. For QD1 (A) and QD1 (B), all HRCi(r, c) are the
same and were selected from HRC (AB). For QD2 (A) bad,
QD2 (A) good, QD2 (B) bad, and QD2 (B) good, only one of
HRCi(r, c) is different from others. All HRCi(r, c) were se-
lected from HRC (AB). For HRCi(r, c) of QD2 (C), the HRC
for one SRC (i.e., SRC (C)) was selected from HRC (C), and
the other HRCs were selected from HRC (AB). Similarly, for
HRCi(r, c) of QD2 (D), the HRC for one SRC (i.e., SRC (D))
was selected from HRC (D), and the other HRCs were selected
from HRC (AB). Finally, for QD3 (A), three patterns are selected
from HRC (AB).

To summarize the above, each PVS (PVSi) consists of small
PVSs (PVSi(r, c)). The combination of small PVSs determined
the condition of each PVS, that is, numbers, placement patterns,
combination patterns of face images, and quality distributions.
Therefore, we express the condition of each PVS as con(i, pl j,
k, QDl (m) n o). Here, the index i means the number of face im-
ages (i=2, 4, 6, 9, 12). The index j means the placement patterns
( j=1, 2, 3, 4) as shown in Fig. 2. The index k means combina-
tion patterns of face images (k=W, GB). The index l means the
quality distributions (l=1, 2, 3). The index m means the quality
states (m=A, B, C, D). The index n (n=bad, good) indicates the
condition in which only one part of the display quality is different
from others. The index o indicates the number of conditions of
quality distributions under the condition that i, j, k, l, m, and n are
identical. For example, as shown in Table 2, when i=4, j=1, k=W,
l=2, m=A, and n=bad, we express con(4, pl1, W, QD2 (A) bad o)
(o=1,2,3).

Method to create PVSs
To reproduce web conferencing videos, we developed an

evaluation video acquisition tool using the web conferencing sys-
tem called Janus WebRTC Server [19] and the Google Chrome
browser. Janus WebRTC Server controlled codecs and selected
vp8 or vp9. Since the video files saved by Janus WebRTC Server
have variable frame rates and resolutions, the frame rate was fixed
at 30 fps and the resolution at 1920 × 1080 when decoding as
shown in Fig. 3. Pixels from the previous frame were copied
using FFmpeg (v4.3.1) for missing frames due to quality fluctu-
ations. When the resolution was reduced due to quality fluctua-
tions, considering that the monitor size is automatically enlarged
to 1920 × 1080 when the web conferencing service is actually
used, we used FFmpeg to upsample the videos using the bicubic
method.

First, we created a PVSi(r, c). We input SRCi(r, c) and
HRCi(r, c) into the tool and acquired the single view (PVSi(r,
c) s). Then, we cropped a 10-second segment. For QD1,2,3 (A),
we selected the segment that did not contain quality fluctuations
in the speaker’s PVSi(r, c) s. For QD1,2 (B), we set the first 10
seconds. For QD2 (C)/(D), we determined the segment when the
bitrate increased/decreased in PVSi(r, c) s of SRC (C)/(D). Then,
we cropped all PVSi(r, c) s in the same 10-second segment. After
that, PVSi(r, c) s was resized using FFmpeg to match the size of
PVSi(r, c), and all of PVSi(r, c) was integrated into PVSi.

Experimental details
PVSs were presented on a 23.8-inch PC monitor. One par-

ticipant evaluated each monitor at a viewing distance of 3H (H:
display height). The room luminance was 200 lux.

The experiment was conducted by ITU-T Recommendation
P.910 [3]. First, color vision and visual acuity tests were con-
ducted to confirm that all participants had the appropriate color
vision and visual acuity for the evaluation. Next, we explained
the contents of the evaluation experiment (object to be evalu-
ated, viewpoint of evaluation, input scale of evaluation, and pos-
ture during video viewing) to the participants. In the evaluation
process, participants were asked to watch a 10-second video and
then to rate the video within 5 seconds by using the 5-point ACR
method. During the practice session, the participants watched 16
10-second videos and input their ratings to familiarize themselves
with the evaluation procedure. In the main test, 4 sessions of 48
PVSs (approximately 20 minutes) were conducted, and 1 session
of 16 PVSs (around 5 minutes) was conducted at the end, for a
total of 208 PVS. A five-minute break was taken between ses-
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sions, and the total time from the time the participants entered
the laboratory to the end of the session was approximately two
hours. To eliminate the influence of the order of PVS presenta-
tion on the evaluation results, we created eight different random-
ized patterns of the PVS presentation order, and four participants
evaluated each randomized pattern.

The participants were 16 males and 16 females aged 18-24,
none of whom had professional experience in video quality eval-
uation. To reduce the impact of the difference in age of the par-
ticipants on the stability of the evaluation, the participants were
recruited within a narrow age range.

Results

In this section, we show the results of the stability of subjec-
tive evaluation for single and grid views, the effect of display pat-
terns and quality distributions on the evaluation stability for grid
views, and the number of participants required for stable evalua-
tion considering the effect of display patterns and quality distri-
butions, as described in Sect. II.

Stability of subjective evaluation for single and
grid views

First, the correlation between the Mean Opinion Score
(MOS) and each participant’s score was calculated to screen the
participants. When we set the screening threshold to 0.75, 3 par-
ticipants were excluded. To use the participants’ scores as they
are to clarify the stability (i.e., 95% confidence intervals (CIs) of
the participants’ scores), we determined the screening threshold
on the basis of ITU-T Recommendation P.913 Annex A.1 (Screen
by PVS) [20]. To clarify the stability, Fig. 4 shows 95% CIs of
the 29 participants’ scores. The maximum and mean 95% CIs
were 0.40 and 0.26, respectively, indicating that the stability is
similar to that in previous video quality evaluation experiments
for streaming [21].

Next, to compare the stability of the single view and grid
view, the relationship between MOS and 95% CIs is shown for
each number of face images on a display (Fig. 4). Differences
in the plot symbols and approximate curves indicate differences
in the number of face images on a display. Fig. 4 shows that
the grid views have larger 95% CIs than the single views when
the MOS is almost the same, indicating that the evaluation is less
stable. To confirm these results, we conducted statistical analysis.
We conducted a t-test between the 95% CIs for the single view
and the 95% CIs for the grid view with MOS ranging from 2 to 4
because the 95% CIs bear a non-linear relationship with the MOS.
As a result, at the significance level of 5%, there was a significant
difference between the single view and the grid view with 4 face
images, between the single view and the grid view with 9 face
images, and between the single view and the grid view with 12
faces images, respectively. These results statistically confirm our
result that the grid view is less stable than the single view shown in
Fig. 4. Therefore, to clarify the factors that affect the stability of
grid views, we analyzed the effects of display patterns and quality
distributions.
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Figure 4. Comparison of quality distributions of the number of face images

on display.

Effect of display patterns
Effect of the face image size and the number of faces

First, we analyzed the effect of the face image size and the
number of faces. Fig. 4 shows that the approximate curves for
two and four face images on a display almost overlap. This result
is thought to be caused by the fact that the face images’ size is the
same regardless of the number of face images. On the other hand,
the stability is lower for 6, 9, and 12 face images on a display than
for 2 and 4 face images. This is thought to be because distortion
is more difficult to recognize when there are smaller face images
and the difference increases between those who notice distortion
and those who do not. However, since we used only 12 PVSs for
2 and 6 face images on a display, the effect when the number of
face images on the display differs even when the face images’ size
is the same needs further examination.

Effect of placements
Second, we analyzed the effect of placements. We analyzed

MOS obtained for four conditions (*q and *r in Table 1) consist-
ing of the same four small PVSs but with four different place-
ments, as shown in Fig. 2. *q is consisted of con(4, pli, W,
QD3 (A) 1) and con(4, pli, W, QD3 (A) 2) (i=1,2,3,4). *r is con-
sisted of con(4, pli, GB, QD2 (A) good 1) and con(4, pli, GB,
QD2 (A) bad 1) (i=1,2,3,4). Fig. 5 shows the results of four
placement patterns for these four conditions. In a variance analy-
sis, the results showed no significant difference between the four
different placements in all four conditions at the significance level
of 5%, as shown in Fig. 5. This indicates that differences in place-
ment do not affect subjective evaluation in this experiment.

Effect of quality distributions
We compared the approximate curves of various quality dis-

tributions as shown in Fig. 6, although the number of PVSs of
each quality distribution was limited, and the plots have vari-
ance. In Fig. 6, differences in the plot symbols and ap-
proximate curves indicate differences in the quality distribu-
tions. For four face images on a display (Fig. 6(a)), compar-
ing QD2 (A) bad in which one PVSi(r, c) is bad quality and
QD2 (A) good where one PVSi(r, c) is good quality, the ap-
proximate curves of QD2 (A) bad tend to be larger than those
of QD2 (A) good. Comparing QD2 (D) in which one HRCi(r,
c) has a decrease in bitrate and QD2 (C) in which one HRCi(r,
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Figure 5. Effect of the difference in placement patterns of face images on

display.

c) has an increase in bitrate, the approximate curves of QD2 (D)
tend to be larger than those of QD2 (C). In addition, the approxi-
mate curves of QD2 (A) bad and QD2 (D) tend to be larger than
those of QD1 (A), in which all HRCi(r, c) are the same. To con-
firm our results, we conducted a t-test between the 95% CIs for
QD2 (A) bad and the 95% CIs for QD2 (A) good at the signif-
icance level of 5%. There was a significant difference between
the two at the significance level of 5%. In addition, there was
a significant difference between QD2 (C) and QD2 (D) at the
significance level of 5%. This suggests that the stability of the
evaluation tends to decrease when quality degrades in one part
of the display. Then, for nine face images on a display (Fig.
6(b)), 95% CIs of QD2 (A) bad tend to be wider than those of
QD2 (A) good around MOS 3.0, although the number of PVSs is
limited. The approximate curves of QD2 (D) are larger than those
of QD1 (A). These are the same as the results of the four face im-
ages. Finally, for 12 face images on a display (Fig. 6(c)), 95% CIs
of QD2 (A) bad tend to be wider than those of QD2 (A) good
around MOS 3.5, although the number of PVSs is limited. How-
ever, we cannot compare the approximate curves of QD2 (D)
and QD1 (A) because there are no plots from MOS 2.5 to 4.5
in QD1 (A). As described above, we clarified that the stability of
the evaluation tends to decrease when quality degrades in one part
of the display. However, verification with more PVSs is needed
when the number of faces in an image is large; that is, the face
images are small.

Estimation of the number of participants
Finally, we estimated the number of participants required for

stable evaluation, which will lead to the acquisition of stable eval-
uation data in the future. For conventional video quality evalua-
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Figure 6. Comparison of quality distributions.

tion [22], Kłoda and Ostaszewska investigated the influence of a
number of participants on the stability of subjective quality evalu-
ation. They compared the stability of subjective evaluation using
the DCR method between 52 participants and 10 participants and
then showed that there is a difference around the middle–quality
range. Here, we estimated the number of participants who will
achieve the same stability in evaluating the grid view as the 15
participants for the single view. The minimum number of par-
ticipants was defined as 15 in ITU-T Recommendation P.910 [3].
We derived this value by formulating the relationship between the
number of participants (from 15 to 28) and the mean 95% CI of
MOS ranging from 2 to 4. As shown in [23], we developed this
relationship by reducing the number of participants by N (N = 1,
2, ..., 14) from 29. For each N, we randomly selected them in
15 ways. From the results, we estimated that 23 participants are
needed to evaluate the grid view as stably as the single view with
15 participants, as shown in Fig. 7.

Conclusion
In this paper, we conducted experiments to clarify the sta-

bility of subjective evaluations for single and grid views, which
are layouts unique to web conferencing videos, to acquire stable
evaluation data. For grid views, we prepared evaluation videos
with different display patterns (the face image size, the number of
faces, and the placement of the face images) and quality distribu-
tions in the display. As a result, we showed the 95% CIs of the
grid view are wider than those of the single view. This means that
the grid view is less stable than the single view. In particular, for
display patterns, the evaluation stability tends to decrease when
the face images are small. In addition, differences in placement
do not affect the evaluation. For quality distributions, the eval-
uation stability tends to decrease when quality degrades in one
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Figure 7. Estimation of number of participants.

part of the display. Finally, we estimated the minimum number of
participants required to stably evaluate the grid views.

Future work will further investigate how the number of face
images on a display affects quality even when the face images
are the same size. In addition, the impact of quality distributions
when face images are small needs further examination.
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