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Abstract 

A model of lightness computation by the human visual system 
is described and simulated. The model accounts to within a few 
percent error for the large perceptual dynamic range compression 
observed in lightness matching experiments conducted with 
Staircase Gelb and related stimuli [1]. The model assumes that 
neural lightness computation is based on transient activations of 
ON- and OFF-center neurons in the early visual pathway generated 
during the course of fixational eye movements. The receptive fields 
of the ON and OFF cells are modeled as difference-of-gaussian 
functions operating on a log-transformed image of the stimulus 
produced by the photoreceptor array. The key neural mechanism 
that accounts for the observed degree of dynamic range 
compression is a difference in the neural gains associated with ON 
and OFF cell responses. The ON cell gain is only about ¼ as large 
as that of the OFF cells. ON and OFF cell responses are sorted in 
visual cortex by the direction of the eye movements that generated 
them, then summed across space by large-scale receptive fields to 
produce separate ON and OFF edge induction maps. Lightness is 
computed by subtracting the OFF network response at each spatial 
location from the ON network response and normalizing the spatial 
lightness representation such that the maximum activation within 
the lightness network always equals a fixed value that corresponds 
to the white point. In addition to accounting for the degree of 
dynamic range compression observed in the Staircase Gelb illusion, 
the model also accounts for change in the degree of perceptual 
compression that occurs when the spatial ordering of the papers is 
altered, and the release from compression that occurs when the 
papers are surrounded by a white border. Furthermore, the model 
explains the Chevreul illusion [2] and perceptual fading of 
stabilized images [3,4] as a byproduct of the neural lightness 
computations assumed by the model. 

The Staircase Gelb Stimulus: An HDR Display  
The difference between the ambient light level on a bright 

summer day to that of a just barely detectable stimulus presented to 
the fully dark-adapted eye has been estimated to be at least 9 log 
units [5]. Many different neural mechanisms work in tandem to map 
this enormous range of light levels to the much smaller range of 
physiological response magnitudes. These include shifts between 
rod and cone-mediated vision, luminance- and contrast- based 
adaptation, and lightness anchoring. Here, I describe the results of 
computer simulations of a neural model that accounts with high 
precision for the perceptual dynamic range compression that is 
observed when participants make judgments of the lightness 
(perceived reflectance) of achromatic surfaces illuminated by a 
spotlight in an otherwise dimly lit room. The model accounts for the 
magnitude of this compression by assuming a simple gain control 
mechanism through with the neural gains applied to local luminance 
increments and decrements differ from one another, such that the 
gain applied to increments being only about ¼ as large as the gain 
applied to decrements. Surface lightness is computed by integrating 

these gain-controlled neural responses to incremental and 
decremental luminance across space with large-scale receptive 
fields in visual cortex. 

The proposed mechanism by which the ON and OFF cell 
responses are generated depends on fixational eye movements: the 
small, random, eye movements that occur when the observer’s eyes 
are “fixated” on an image. During the course of these eye 
movements, ON-center and OFF-center cells in the early visual 
pathway are transiently activated when their receptive fields 
translate across luminance edges in the stimulus. The magnitudes of 
these activations are “read out” within a sensory integration window 
of 100 msec or less and sorted in visual cortex to generate separate 
cortical maps of the activations corresponding to each eye 
movement direction. At a subsequent stage of cortical processing, 
the ON and OFF activations are independently integrated across 
space by large-scale receptive fields in a way that takes into account 
the degree to which the eye movement that generated each ON or 
OFF activation pointed in the direction of the large-scale receptive 
field center. This spatial integration results in two maps representing 
ON and OFF spatial induction signals. At the final stage of the 
model, activities these maps are linearly combined to produce a 
single neural map of perceive reflectance. This map is normalized 
so that the highest activation in the map always equals a constant 
value corresponding to the percept of white. 

The process by which the ON and OFF induction maps are 
combined depends on the output of a high-level pointwise leaky 
temporal integration of the maps computed within each sensory 
integration period. One implication of this leaky integration is that 
the neural image of perceived reflectance that is generated at the 
output stage of the model will fade perceptually if the eye 
movements are artificially halted, as has been demonstrated to occur 
in several psychophysical studies [3,4]. The time that it takes for this 
to perceptual fading to occur corresponds, in the model, to the 
characteristic time of the leaky integrator that temporally integrates 
the neural activities within the ON and OFF induction maps across 
multiple sensory integration periods. This characteristic time is 
estimated from psychophysical data to be a few seconds in duration. 

In what follows, I first describe the high dynamic range 
displays and lightness matching procedures that were used to test 
the neural model against perceptual data, then I describe the neural 
lightness computation model in more detail. Finally, I present the 
result of computer simulations of the model’s response to the HDR 
displays, and I demonstrate that the model also generates the 
Chevreul illusion, in which a series of bands of homogeneous 
luminance, ordered from lowest to highest luminance, takes on a 
scalloped appearance in brightness. 

Simulated Lightness Experiments 
 In the Staircase Gelb lightness paradigm,  a series of 
achromatic surfaces (e.g. papers) are arranged in order from darkest 
to lightest in a spotlight, and an observer judges the lightness of each 
paper with a matching technique. Two noteworthy perceptual 
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phenomena are observed in this experiment. First, the paper with the 
high reflectance (luminance) always appears white, regardless of the 
paper’s actual physical reflectance [6]. When a Munsell matching 
technique is used, the highest luminance surface is typically 
matched to a Munsell 5.0 standard. Second, the range of the 
perceived surface reflectances across the series is highly compressed 
relative to the range of physical reflectances. For example, the range 
of judged reflectances of the papers in the original Staircase Gelb 
experiment of Cataliotti and Gilchrist [7] was only about 1/3 as 
large, in log units, as the range of the actual reflectances [8]. A 
replication of Gilchrist and Cataliotti’s by Zavagno, Annan, and 
Caputo (Fig. 1) produced a nearly identical degree of dynamic range 
compression [1]. 

 
Figure 1. Dynamic range compression observed in the lightness matching 
experiment of Zavagno, Annan, and Caputo. (See text for explanation). 

Cataliotti and Gilchrist proposed an explanation of their results 
based on lightness anchoring theory, which proposes that the 
lightness of each surface in the series is determined by the ratio of 
that paper’s luminance relative to that of the highest luminance 
paper. Zavagno et al. tested this theory by replicating the Staircase 
Gelb experiment (their Series A in Fig. 1), then repeated the 
experiment with some of the papers spatially reordered. In Series B, 
the highest luminance paper was position in between the lowest 
luminance paper and the second to the lowest luminance paper. In 
Series C, the highest luminance paper was repositioned on the 
opposite end of the series, next to the lowest luminance paper. The 
purpose of these reorderings was to investigate whether appearance 
of the papers would be influenced by contrast with respect to the 
neighboring papers, in addition to by the paper’s relationship to the 
highest luminance paper. 
 The papers in the Zavagno et al. study were each 2.38 deg x 
2.38 deg. They were illuminated by a theatrical spot lamp positioned 
behind the observer in an otherwise dimly lit room. The observer 
judged the lightness of each paper by choosing the Munsell chip that 
best matched the paper’s apparent reflectance. 
 Fig. 1 shows that the spatial arrangement of the papers did 
influence their lightness. The first goal of the simulations present  
here was to demonstrate that the lightness computation model 
described above can account quantitatively for these results. 
 In their original experiments with the Staircase Gelb display, 
Gilchrist and Cataliotti [9] further examined the effects of 

surrounding the entire series of papers with a white border. This was 
found to substantially relieve the perceptual compression that 
occurred when the papers were presented in isolation against a dark 
background, resulting in a more veridical perceptual scaling (i.e., 
more in line with the dashed “ground truth” line in Fig. 1). This 
effect was also simulated in the present study. 

Details of the Simulation Model 
Input Array 

The input array was 3610 x 5210 pixels (rows by columns). 
Centered within this array was a representation of the five-paper 
Staircase Gelb series (Series A). Each “paper” in the series was 477 
x 477 pixels, which corresponded to a scaling factor of 200 
pixels/deg with one extra pixel added per side of each paper so that 
a readout at numerical readout at the output layer of the model could 
be based on a single pixel located in the paper’s center. The paper 
luminances were 3.12, 12.0, 30.0, 59.1, and 90.0 cd/m2, and the 
luminance of the background field was 2.82 cd/m2.  

Random Walk Model of Fixational Eye Movements 
 A standard model of fixational eye movements is Brownian 
motion in two dimensions [11]-[13], which was approximated here 
by a discrete 2D random walk. Since eye movements function in the 
lightness model to detect edges as they traverse edges within the 
input image, and the papers in the display were squares, it sufficed 
to model only four types of eye movements: left, right, up, and 
down. The direction of each eye movement was chosen randomly 
and independently of the direction on any other time step. Eye 
movements occurred once every 30 time steps, except when the eye 
movements were halted in the simulation to model the perceptual 
fading of stabilized images. 

Photoreceptor Array 
A photoreceptor array encoded the luminance of each pixel 

within the input array once per time step. The temporal response of 
the photoreceptors was assumed to be instantaneous. The magnitude 
of the photoreceptor response to each pixel was computed as the 
logarithm of the input luminance at that pixel’s location. Thus, the 
magnitudes of the photoreceptor output within the five squares were 
0.4942, 1.0792, 1.4778, 1.7716, and 1.9543; and within the 
background it was 0.49.  

 
Figure 2. Example of the photoreceptor array output on one time step of the 
simulation. 

As a consequence of the eye movements, the locations of the 
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five squares within the photoreceptor array underwent a random 
walk, with a displacement of 12 pixels occurring in a random 
direction (up, down, left, or right) once every 30 time steps. An 
example of one temporal frame of the photoreceptor array output is 
shown in Fig. 2. The darkest paper is somewhat difficult to see here 
because its luminance in log units is close to that of the background. 

Transient ON and OFF Cell Responses 
At the next stage of the model, the random translations of the 

photoreceptor array produce transient ON and OFF cell activations 
at the spatial locations of luminance edges in the photoreceptor 
array. ON and OFF cell receptive fields were modeled as 2D 
difference-of-gaussians (DOG) kernels operating on the 
photoreceptor array output within each time step. This filtering 
occurred at four spatial scales. The receptive field sizes were the 
same for ON and OFF cells. For the smallest scale, the standard 
deviation of the center gaussian was 𝜎! = 1.5	pixel; for the other 
three scales it was 2.25, 3.3375 and 5.06 pixels. The standard 
deviation of the surround mechanism was always eight times that of 
the center mechanism.  

ON and OFF cell responses were halfwave rectified to mimic 
the responses of spiking neurons, which can only be positive. ON 
and OFF cells respond with different neural gains. The ON cell gain 
was 0.27 and the OFF cell gain was 1.0. These gain values were 
based in part on data from achromatic color opponent neurons in the 
macaque LGN [14, 15], as described in Reference [10]. 

 
Figure 3. Temporal response of the ON and OFF cells. See text for details. 

The temporal responses of the ON and OFF cells were 
identical, except for the difference in overall neural gain, They were 
modeled as a difference of two scaled beta distributions. The beta 
distribution is a probability distribution defined on the interval [0,1], 
whose shape depends on the values of two parameters p and q [16]. 
“Scaled” versions of these distributions were defined on the interval 
[0,n] such that the value of the scaled beta distribution at time step 
t/n is equal to the value of the beta distribution at time t. Since a beta 
distribution is a probability distribution, it is guaranteed to go to zero 
at t = 1. Thus the temporal impulse response of the ON and OFF 
cells were guaranteed to go to zero by the end of time step n. In 
principle, n could be any number, but it was 30 in the simulations 
reported here. The first scaled beta distribution was characterized by 
the parameters, p = 2 and q = 8, and second by the parameters p = 5 

and q = 5 [16]. The relationship between the number of simulation 
time steps and time in msec was arbitrarily, but a conversion factor 
of 5 msec/time step is roughly consistent with neural data from 
cortical responses in cat V1 (see Ref. [17], Fig. 1).. 

The neural response was halfwave rectified, and the rectified 
ON and OFF responses went to zero after about 10 time steps of the 
simulation (see Fig. 3). The maximum value of the rectified 
response during each 30 time step sensory integration period was 
“read out” at the next processing stage as the activation level of the 
ON or OFF cell. The 30 time step integration period thus defined a 
second important time scale in the model. Except when eye 
movements were halted to simulated perceptual fading, fixation eye 
movements occurred at the end of every sensory integration period. 
Thus, the ON and OFF activations that were read out during each 
sensory integration period also corresponded to the effective ON and 
OFF response magnitudes during each fixation period, as seen by 
the next processing stage. The entire simulation comprised 30 
sensory integration periods. 
 As discussed below, the zero-crossing time of the neuron’s 
temporal response (see Fig. 3) sets an upper limit on the frequency 
of the eye movements that can contribute to lightness computation 
according to the model. This time is estimated from cortical data 
from anesthesized cat (see [17], Fig. 1) to be about 50 msec. Thus, 
the maximum frequency of the relevant eye movements is about 20 
Hz, which corresponds to the type of fixational eye movement 
known as tremor [18]. 

ON and OFF Cell Responses Sorted by Eye 
Movement Direction 
 In the model, ON and OFF responses are sorted in visual cortex 
on the basis of the eye movement direction that generated the 
response, which is assumed to be encoded as corollary discharge 
signal. This sorting results in a spatial map of the locations and 
magnitudes of any ON or OFF activations occurring during each 
sensory integration period for each eye movement direction.  
 Since only four eye movement directions were simulated, eight 
maps were generated, one for each contrast polarity (ON or 
OFF)/eye movement direction combination. This enumeration 
assumes that the outputs of the ON and OFF activations at all four 
spatial scales are combined to produce a single map. If the scales are 
not combined, there would be 32 neural maps.  

The activation maps were computed in object-center 
coordinates, which is required to generate a cortical representation 
of perceived surface reflectance, which is the goal of the model. The 
activation maps were first generated in retinal coordinates, then 
converted to object-centered coordinates by keeping track of the 
directions and magnitudes of previous eye movements. 

An additional, and important, assumption of the model is that 
transient ON and OFF activations are triggered only if the temporal 
response of the ON or OFF cell response was equal to zero at the 
end of the previous integration period. This ensures that ON and 
OFF transients will only be generated in response to luminance 
increments and decrements, respectively, when their receptive fields 
traverse a luminance edge during an eye movement. As a result of 
the assumed relationship between the duration of the ON or OFF 
cell temporal response, and the duration of each fixation (same as a 
sensory integration period), (see Fig. 3) this condition always held 
in the simulation. Thus, neural activations were generated after each 
eye movement at the locations of the luminance edges in the 
Staircase Gelb display only in the appropriate activation maps. 

Fig. 4 illustrates the activations generated in each of the eight 
maps by the luminance edges in the Staircase Gelb display as the 
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eye movements traversed the display. Following each eye 
movement, either the pair of activation patterns corresponding to 
panels (a) and (e) (leftward eye movement), (b) and (f) (rightward 
eye movement), (c) and (g) (upward eye movement), or (d) and (h) 
(downward eye movement) were generated, each with equal 
probability. 

   
Figure 4. (a)-(d) Locations within the ON activation maps of neural responses 
to the Staircase Gelb stimulus produced by leftward, rightward, upward, and 
downward eye movements. (e)-(h) Activations within OFF network maps 
corresponding to the same eye movement directions as in (a)-(d). Activations 
have been summed across all four spatial scales of halfwave rectified DOG filter 
outputs. 

Spatial Spreading Within Cortical ON and OFF 
Networks 
 At the next stage of the model, the neural responses within the 
ON activation maps are spatially integrated in a feedforward manner 
by ON integrator cells possessing large-scale receptive fields; and 
the neural responses within the OFF activation maps are similarly 
integrated by OFF integrator cells with receptive fields having the 
same shape as those of the ON integrator cells. The equation 
describing the weighting of the responses within the activation maps 
by the ON and OFF integrator cells is 

𝑤(𝑥 − 𝑥", 𝑦 − 𝑦", 𝜃)																																																																																 

				= 𝑒𝑥𝑝1−𝜆𝑙𝑜𝑔61 +
8(𝑥 − 𝑥")# + (𝑦 − 𝑦")#

𝜖 :; [𝑐𝑜𝑠$𝜃]%	(1)	 

where the [ ]+ denotes halfwave rectification.  
Eq. (1) is the product of two separable functions. The first 

function depends on the distance 8(𝑥 − 𝑥")# + (𝑦 − 𝑦")# between 
the receptive field center (𝑥", 𝑦") of the ON or OFF integrator cell 
and the location (𝑥, 𝑦) within the activation map of the neural 
activation being integrated. (see Fig. 6). The second depends on the 
degree of angular alignment cos 𝜃	between the direction of the eye 
movement that produced the activation and a vector directed from 
(𝑥, 𝑦)	to (𝑥", 𝑦"). 

The receptive field shape of the integrator cells is assumed to 
be a decaying exponential function with respect to the neuronal layer 
immediately feeding the call. When expressed in retinal coordinates  
as in Eq. (1) and Fig. 6, this exponential profile is modified by 
cortical magnification. The parameters 𝜆 and 𝜖 in Eq. (1) 
characterize the cortical magnification factor [19]-[22], which is 

approximated here as an isotropic function of distance from the 
fovea. The parameter values used in the simulations were 𝜆 = 86, 𝜖 
= 61.4, and 𝜌 = 1. 

 
Figure 5. Receptive field profile of the ON and OFF integrator cells as a function 
of distance between the receptive field center and the retinal location of the 
edge producing the neural activation that is integrated.  

 
Figure 6. (a)-(d) Spatial activation patterns across the network of ON integrator 
cells generated by neural responses within the ON activation maps to the 
luminance edges in the Staircases Gelb display in response to leftward, 
rightward, upward, and downward eye movements. (e)-(h) Spatial activation 
patterns across the network of OFF integrator cells generated by neural 
responses within the OFF activation maps to the luminance edges in the 
Staircases Gelb display by eye movements in these same directions. 

These feedforward computations result in spatial patterns of 
activation across two networks of ON and OFF integrator cells. Fig. 
7 illustrates the patterns of activity generated within the ON and 
OFF networks in response to the luminance edges in the Staircase 
Gelb stimulus corresponding to the four eye movement directions.               

Neural Lightness Computation 
 At the final (output) stage of the model, the neural activations 
across the networks of ON and OFF integrator cells are summed to 
produce a neural lightness representation. This process involves two 
processes in addition to the summation. The first is a network 
normalization that causes the highest activation level across the 
lightness network to always equal a constant value that corresponds 
to the percept of white. This was achieved in the simulation by 
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shifting all of the pointwise summed activation of the ON and OFF 
networks by the same amount so that the maximum activation across 
the lightness network would equal this fixed value. 

The second additional process consists of a leaky temporal 
integration of the normalized activations within the lightness 
network. This leaky integration causes the lightness percept to 
gradually develop over time following stimulus onset and to 
gradually fade when eye movements are halted. If the leaky 
integration did not exist, the percept of the stimulus would be that 
of a rapid series of ON and OFF edge induction patterns seen to 
radiate from the edges in the Staircase Gelb stimulus. There would 
be no coherent percept of surface reflectance. Hence, the leaky 
integration serves to bind the ON and OFF inductions generated by 
different eye movements across across multiple sensory integration 
periods. 

The leaky integration also explains the psychophysical finding 
that images that are stabilized on the retina fade perceptually over a 
course of a few seconds [3][4]. To account for the known time 
course of this perceptual fading, the characteristic time of the leaky 
integration was assumed to be a few seconds in duration. It should 
be noted that, in actuality, the characteristic time probably depends 
in a nonlinear way on stimulus intensity because the rise time of 
vision is on the order of 100 msec, while fading takes considerably 
longer. The model could be modified to account for this difference 
in perceptual rise and fade times, but this was not done here because 
the assumption of leaky integration as an explanation for perceptual 
binding is probably an oversimplification, as evidenced by the fact 
that the perceptual fading of objects that occurs when eye 
movements are occurs in parts. For example, a corner of square may 
take longer to fade than other edges of the square [23], suggesting 
that the underlying cortical computations are based in part on 
principles of figural organization, and that perhaps the fading time 
actually depends on the decoherence time of a cooperative neural 
network that produces this organization. Importantly, however, 
these complexities do not rule out the basic assumption of the model 
that the perceptual binding of stimulus features in the process of 
computing surface reflectance is due in part to a temporal integration 
of independent ON and OFF network activations generated by 
luminance edges across separate sensory integration periods. 

 
Figure 7. Time-course of the simulated lightness of the Staircase Gelb display. 
Eye movements were halted after Frame 15. The output corresponding to 
Frame 8 illustrates the Cheveul illusion. See text for further details. 

The gradual perceptual onset and fading of the Staircase Gelb 
image produced by the model is illustrated by Fig. 7, which shows 

the pattern of activation across the lightness representation after 
Frames 2, 8, and 30 produced by a simulation in which the eye 
movements were halted following Frame 15. The simulated 
appearance of the stimulus after Frame 8, when the percept is 
peaking, also illustrates the fact that the model reproduces the well-
known Chevreul illusion, according to which and ordered series of 
bands consisting of regions of homogeneous luminance appear 
scalloped, with the regions within each band that are closer to a 
neighboring region of higher luminance appearing relatively darker 
than other regions with the same luminance band [2]. 

Predicted lightness matches 
 The model’s ability to account for quantitative lightness 
matching data was evaluated by simulating the results of the 
experiment of Zavagno, Annan, and Caputo, in which observers 
matched the appearance of standard Munsell chips to that of the 
papers in their Series A, B, and C. To test the model, the neural 
activation computed at the center of each paper in the output 
(lightness) layer of the model was compared to the average 
perceptual match made to each paper in the psychophysical study. 

The fact that eye movement direction is chosen randomly for 
each eye movement in the model causes the lightness output to also 
vary randomly. This complicates the process of choosing unique 
values of the model output to compare to perceptual data. Another 
complication is the leaky integration that causes the lightness values 
to vary over time. To avoid these complications, I simplified the 
model for the purpose of this simulation by simulating the responses 
of the model to each of the four eye movement directions, then 
summing this response to generate the model output. Simulated 
matches were based on the values in the output array evaluated at 
the square centers. The lightness values computed from this 
procedure are shown in Fig. 9 along with the actual lightness 
matches made in the original experiment. As can be seen from the 
figure, the correspondence between the predictions of the model and 
the actual matches was quite good. The error was quantified by 
expressing the least-squares error in the simulated matches as a 
percentage of the total variances in the psychophysical matches for 
Series A, B, and C combined. By this measure, the percent error was 
2.47%. 

 
Figure 8. Simulated lightness matches in response to Series A, B, and C of 
Zavagno et al. plotted along with the average lightness matches made by 
human observers (red, green, and yellow symbols). Blue symbols indicate the 
simulated matches produced by the model when the Staircase Gelb stimulus 
was presented against a white background. 
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Extension to Color Vision 
 In principle, the neural lightness model described above could 
be extended to color vision by including a complete set of “double-
opponent” neurons (Fig. 8) as edge detectors in the neural edge 
integration model. The resulting edge integration model would 
differ from the classic Retinex color vision model of Land and 
McCann [25] in that the additional chromatic dimensions of color 
space would be introduced as a property of the neurons performing 
edge detection, rather than at the level of the photoreceptors. 
However, to do this in a manner that accurately accounts for 
quantitative psychophysical color matching data remains an 
unsolved problem and is the subject of my current research. 

 

Figure 8. Double-opponent receptive fields. In addition to chromatic ON and 
OFF cells, two other four other cells classes of cortical neurons combine the 
output of the S, M, and L photoreceptors in two additional ways. 
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