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Abstract
The natural ordering of shapes is not historically used in vi-

sualization applications. It could be helpful to show if an order
exists among shapes, as this would provide an additional visual
channel for presenting ordered bivariate data. Objective—we rig-
orously evaluate the use of visual entropy allowing us to construct
an ordered scale of shape glyphs. Method—we evaluate the vi-
sual entropy glyphs in replicated trials online and at two different
global locations. Results—an exact binomial analysis of a pair-
wise comparison of the glyphs showed a majority of participants
(n = 87) ordered the glyphs as predicted by the visual entropy
score with large effect size. In a further signal detection exper-
iment participants (n = 15) were able to find glyphs represent-
ing uncertainty with high sensitivity and low error rates. Conclu-
sion—Visual entropy predicts shape order and provides a visual
channel with the potential to support ordered bivariate data.

Introduction
Glyphs are graphical representations used in visualization

for presenting data that are considered clear and easy to read, as
reviewed by [5]. In early work [1] identified how different visual
channels (retinal variables) can be used to represent information,
providing choices for encoding data in glyph designs, for example
using size, color or lightness. There is however an evidence gap
for the utility of commonly used visual channels, and there are
only few cases where a theoretical prediction of glyph perception
has been empirically validated.

One visual channel where there is currently a lack of theo-
retical prediction and confirmatory empirical evidence is the use
of shape in glyphs. In fact, it is frequently stated that shape is not
an ordered visual channel [1, 5, 32]. In this article we reconsider
the perceptual order of shape and demonstrate how visual entropy
can be used as a theoretical tool for predicting the outcome of
empirical tests evaluating the perception of order between differ-
ent shapes. Our aim is to extend the toolbox of proven methods
for visualization to supplement, rather than replace, existing ap-
proaches.

Our initial motivation for this work was solving a problem
in an applied science project where the representation of urban
sensor data from a network of Internet-Of-Things (IoT) sensors
across Newcastle-upon-Tyne was a key goal, [22]. A small subset
of these data are shown in Fig. 1. The glyphs show the current
hourly mean temperature for each sensor, but a representation for
the uncertainty of the measure was requested. Specifically, we
wanted to show the variance in the data, as this would help demon-
strate which sensors could be most relied upon. This request led
us to consider how to develop bivariate glyphs capable of display-
ing both mean temperature value and its variance together.

We hypothesise that visual entropy should relate to visual
complexity, so that low visual entropy describes smooth visual
signals and high visual entropy describes complex, more disor-

Figure 1. Target style glyphs representing sensor values at locations in

central Newcastle-upon-Tyne, the color represents the mean temperature

from the last hour of readings for one sensor.

dered, visual signals. This allows us to begin to define a scale
of visual entropy, and to implement this, we introduce one way to
quantify visual entropy using existing mathematical tools. Specif-
ically, we address three research questions:

1. Can we use theoretical visual entropy as a measure of shape
complexity that predicts the human ranking order of shapes?

2. Can we demonstrate empirically through experiments that
shape is an ordered visual channel?

3. Can we use visual entropy glyphs in visual search tasks?

Background
Our use case centers on the representation of uncertainty but

the proposed approach has the potential be used for other bivari-
ate data visualizations, for example including value and rate of
change, or, for representing two independent variables such as
temperature and NOX levels from the same sensor.

Information Theory and Visualization
A number of articles have been published on the relation-

ship between information theory and visualization [49, 40, 10].
In Fig. 2 we illustrate how Shannon’s communication pipeline
([43]) could map to the visualization pipeline. Encoding can be
modelled as a process of image generation, communication as the
optical path from display to retina and decoding as the process the
brain uses to comprehend information encoded in the relayed im-
age. We tend to agree with [26] that information theory is a weak
match as a model for the human (neural) part of this pipeline be-
cause the human brain does not act as an ideal decoder of visual
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Figure 2. The visualization pipeline mapped to an information theoretic communications pipeline as if the brain is an information theoretic receiver of visually

coded messages M coded from an alphabet of symbols A, information is transformed physically twice as it flows along the pipeline from digital to optical and

then from optical to neural signals.

codes in an information theoretic sense. Indeed, Shannon was
explicit about this “semantic aspects of communication are irrel-
evant to the engineering problem” [43], and yet knowledge about
perception and cognition is essential to the production of visual-
izations.

Recent work on understanding the link between the per-
ceived and measured complexity of map visualizations suggests
that psycho-physically informed models of visual complexity are
able to predict subjective human rankings of complexity [42].
This emphasizes the importance of perceptual factors as well as
information theoretic factors in visual cognition. While the hu-
man mind might not be an ideal decoder of information this ev-
idence suggests it is sensitive to pure information content in a
signal, in this sense it is a noisy decoder.

Uncertainty
While it is often seen as valuable to present uncertainty, it is

much less often directly depicted in visualizations [23], possibly
due to its complex nature. Uncertainty by definition captures our
lack of knowledge about a value or outcome, most often expressed
quantitatively, among the most widely used being Pearson’s stan-
dard deviation, [28], and Fisher’s variance, [17]. Uncertainty can
be classified as aleatory or epistemic, depending on whether it is
due to random variation or to unknown factors [33]. Semantically
uncertainty is challenging, because a value that represents a lack
of a property is not intuitively easy for non-experts and, at times
experts to understand. One way to make the concept more acces-
sible to humans is to rethink the language, i.e., when talking about
uncertainty, it may be that a positive phrasing can be more helpful
than negative, such as degree of certainty, level of certainty, con-
fidence level, accuracy and precision [19]. There is some agreed
standardization in relation to levels of uncertainty, and there are
national and international standards for reporting measurement
uncertainty from e.g., metrology laboratories, [46]. In addition,

some weather forecasts provide a degree of (un)certainty data, for
example the UK Met office provides statements on precipitation
in a standard form “There is a 70% chance of rain.”, in a defined
time period, [31].

In this work, we aim to design and evaluate a clear visual
solution to represent at least one type of uncertainty that does not
rely on the viewer having statistical knowledge, but still conveys
information about the uncertainty of a value which can be related
back to the underlying statistical methods when needed. Perhaps
the closest in concept to our aim here is the use of strings of as-
terisks as categorical significance codes in conventional statistical
reporting and software such as R, [38].

Approaches to Uncertainty Visualization
Earlier surveys of uncertainty visualization (e.g., [35]) iden-

tify seven methods which we categorize into one of two basic ap-
proaches: Those modifying the scene directly and those adding
annotations to indicate levels of uncertainty. The approach that is
most effective is clearly application dependent.

Approaches to representing uncertainty visually often relate
to summarizing the spread of values related to a measurement:
dot plots, histograms, box plots [47], confidence intervals and
probability distribution functions, [8] describe ways to do this.
These often presume some basic statistical knowledge on the part
of the users, and an ability to interpret meaning from a spread
of values. An empirical study of glyph-based approaches is pre-
sented by MacEachren et al. (2012) where the authors claim that
the often-used visual channels of lightness and fuzziness perform
well on their own, [27].

There are rigorous studies, e.g., [3], highlighting that it is
far from routine for visualizations to include uncertainty informa-
tion even though it is fundamental to informed decision making.
Contemporary workshops run by government agencies (e.g., [7])
have highlighted that even in critical operational planning situa-

206-3
IS&T International Symposium on Electronic Imaging 2024

Human Vision and Electronic Imaging 2024



tions there is a real difficulty in finding ways to convey uncertainty
to high level decisions makers. It remains an open question how
best to visualize uncertainty, [50, 34], particularly when a single
glyph must represent both a variable’s mean value and its uncer-
tainty.

Visual Entropy
If we imagine the human brain to be an ideal Shannon de-

coder, then it should decode and respond to signals differently
with differing levels of entropy. In practice, though, the brain is
much more than a decoder of signals, it generates its own hypothe-
ses about the world, taking decisions based on partial information
and weighting information in highly non-linear ways [19]. What
also seems clear is that it does not need to produce a realistic de-
coding of the world around it [45], it is instead very efficient in
extracting and using just enough information to complete a task.

A consequence of the mind’s ability to hypothesize novel
ideas and impute additional information is that it does not obey
the data processing inequality [13]. It can and does add infor-
mation at the end of the visual pipeline, this observation leads to
the conclusion that it is far from an ideal information theoretic
processor in the sense of Shannon’s theory.

However, here we propose that even if the brain is a noisy
decoder of signals it still is a decoder of signals and will have a
sensitivity to differing levels of entropy in signals. We hypoth-
esize that we should be able to use levels of entropy as a visual
cue in coding visual information, in the same way we already use
varying color, brightness, size and other visual cues [1].

Following Shanon’s definition of information entropy [43],
we define visual entropy V (X) as the average cost of coding visual
symbols vi from a visual alphabet which have a probability of
appearing in the message of p(vi):

V (X) =
n

∑
i=1

p(vi)log2

(
1

p(vi)

)
(1)

The higher the visual entropy V (X) the more information is
contained in the visual message, the more visual complexity the
message contains. This argument has close similarities to the def-
inition of viewpoint entropy presented in [49], but we keep this
theoretical definition more general, rather than incorporate spe-
cific concepts of cameras and polygons. The visual entropy of a
message could also be viewed as a measure of how incompress-
ible it is, in this sense a more complex visual message will need
more coded information to be sent in the signal, it cannot be coded
as a simple signal.

To transform this theoretical construct to a practically mean-
ingful visualization cue, we will consider visual entropy as anal-
ogous to some extent to visual complexity. Visual signals with
higher visual entropy have a higher visual information content,
requiring more bits on average to be coded for lossless transmis-
sion. A smooth sine wave for example can be coded in fewer bits
than a signal consisting of uniform white noise. Our use of the
term complexity here relates to perceived visual complexity and
signal incompressibility, rather than to the generation of complex
phenomena from chance chaotic behavior.

To make practical use of visual entropy, we next discuss the
design of visual glyphs that both represent data and its uncertainty.

We consider how to practically measure visual entropy and pro-
pose an extended glyph design that uses visual entropy to rep-
resent uncertainty values. We then report an experiment testing
our glyph designs to evaluate whether they can represent a scale
of uncertainty. Finally, we test the glyphs in an environmentally
valid application situation where we ask users to search for the
most and least reliable sensors across a 3D map.

Glyphs for Urban IoT Data
In our previous research, we have implemented a number of

glyph designs for representing urban environmental data in 3D
city models [21, 22]. We currently use the glyph design in Fig. 3,
also shown in Fig. 1, that, while located in a relevant position in
3D space, is presented to the viewer as a primarily 2D shape.

20% of diameter

Figure 3. The glyph design we adopted to represent a measurement from

an individual IoT sensor, the two outer rings are designed to have a width

of 20% of the total diameter, the colored central disc represent the sensors

mean value on a predefined color scale.

The design, shown in Fig. 3, took some aspects from that
of a target of concentric rings and some from the design of the
Landolt C optotypes [25]. The rings, a dark outer shape and a light
inner shape, were chosen in order to highlight the glyph against
both light and dark back-grounds. It also provides a level of self-
contrast for the glyph. The total width of both outer rings is set to
be 20% of the diameter of the whole target, matching that aspect
of the Landolt optotype design.

We use the central disc to represent data value, and typically
we use color to do this, following color scale standards set in the
literature. In the examples here, the data value represented in the
central disk is temperature and adopts the colors used by the UK
Met Office [31]. In our visualizations, a color legend is usually
displayed on or near the visualization.

The visualizations presented here use physically-based path
tracing for the graphical rendering stage implemented with
Blender Cycles [2]. Our goal is to use realistic lighting simula-
tion to help engage viewers in the 3D image however we therefore
need to make sure this realistic lighting does not alter the glyphs
information carrying appearance. We do this by using flat shading
of colors and rotating glyphs to face the camera.

Entropy as a Visual Cue
A question that was raised when presenting our urban data

visualizations was how much is it possible to rely on the sensor
data? Expert members of an audience are aware that different
sensors can have very different accuracy and precision related in

IS&T International Symposium on Electronic Imaging 2024
Human Vision and Electronic Imaging 2024 206-3



part to their cost. To help answer this question in a visual form,
we started to consider how we could represent the uncertainty of
measurements at the same time as the value of measurements.

Our goal is to find a visual cue that we can use to represent
variance alongside the color currently used in our glyphs for the
mean value. We considered shape as a possible cue following the
review in [53]. We also reviewed results from an earlier study [14]
on the human perception of fractal shape where it was demon-
strated that certain fractal generation parameters correlated well
with perceptual ordering of perceived shape complexity. More re-
cent work in visual search suggests the cues of size and frequency,
which help form shape differences, are both reported to guide (di-
rect) attention in visual search [52].

The subjective ordering of a set of shape glyphs was investi-
gated in [11] alongside a range of other retinal variables detailed
by [1]. Chung et al. [11] tested an overall impression of order in a
given sequence of shapes and searchability of high and low-value
glyphs. They did not, however, predict the perceived impression
of order, nor confirm this with a pairwise study, nor did they ex-
tend their results to bivariate glyphs.

This previous work led us to hypothesise that varying the
levels of visual entropy, as a measure of shape complexity, might
be used as a visual cue, and ultimately allow shape to be used
as a scale to represent ordinal categorical or interval numerical
values. To implement and evaluate this hypothesis, we develop
two things: a practical measure of visual entropy and a geometric
representation for the glyphs that exhibits varying levels of visual
entropy.

We start by considering how a visual signal S = v(M) can
be generated by a coding function v from an abstract message
M. The message we encode need have no direct meaning, but for
our purposes it does need to be able to represent variable levels of
entropy. The signal is the geometric representation of the message
that we will eventually render in our glyphs. This first step in the
glyph generation is illustrated in Fig. 4.

0 1 2 3 4 5 6

0.
65

0.
75

0.
85

0.
95

SampEnt:  0.07

t

ba
se

5

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Type:  12−00−00−0

x

y

Figure 4. The message M on the left is coded as the signal S on the

right, by plotting the message in 360 degrees on a polar plot; we estimate

the visual entropy of the glyph as the sample entropy of the message.

To estimate the visual entropy of the message, we calculate
the Sample Entropy [39] of the message before it is coded as a
geometric shape. Sample Entropy provides an estimate for the
regularity and unpredictability of a data series, it is often used
for comparing time series such as electro-cardiograms. Sample
entropy has low dependence on the series length and is consistent
across series [54], hence we adopt it for our calculations. We use
the sample entropy implementation in the R pracma package [4]

with parameter settings of n=2,r=0.2 based on guidance from [54]
to estimate the visual entropy in our glyphs.

We now have a route to create geometric shapes with measur-
ably varying levels of visual entropy. To add these to our existing
glyphs in Blender we export the signal shape from R and import it
to Blender as an extruded polygon. These polygons are then used
to replace the inner white disc in the glyph, as illustrated in Fig. 5.

Figure 5. Two glyphs created in Blender from signals with different sam-

ple entropy measures, the central temperature color mapping is the same in

each glyph, we hypothesize the visual entropy of the surrounding shape can

represent an orthogonal value such as uncertainty, or variance of the tem-

perature value.

The resulting designs (Fig. 5) provide an ability to create
glyphs representing a value, such as mean temperature using color
in the central disc and a second value, such as uncertainty in the
variation of the surrounding shape. We next empirically evalu-
ate whether viewers can naturally order glyphs of differing visual
entropy.

Evaluating the Visual Entropy Glyphs
Based on pilot testing in our laboratory in Newcastle (UK),

we choose to evaluate the glyphs shown in Fig. 6. This set of
glyphs uses a single sine wave as the generating message, at vary-
ing frequencies. These are similar to radial frequency patterns
which have been shown to be detectable at low amplitudes in the
psychophysics literature [51]. Recent studies support that these
are discriminable shapes based on frequency differences [15], are
identifiable even if only the shape convexities are visible [41] and
can represent numerical order [11]. In addition, in these trials
we added a numerical indication of the temperature value on the
glyphs, the same value of 13.5 degrees Celsius was used in all
trials.

The increase in sine wave frequency from glyph to glyph was
set on a geometric scale, the frequency doubling for each new ad-
ditional glyph. This is similar to the logarithmic increase between
levels on a logMAR visual acuity chart [24], but here the change
increases at a significantly greater rate per level (2x rather than
1.26x) in part so that the full range of visual acuity is used in a
smaller number of glyphs, and in part because this evaluation is
designed to determine whether an ordering of visual entropy ex-
ists rather than to determine the level of just noticeable difference
(JND) between glyphs. This anticipated that, like many aspects of
human perception [16, 48], there would be a logarithmic response
to the visual entropy stimulus.
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Figure 6. The set of glyphs used in the user evaluation, ordered by the calculated visual entropy value of the generating message, as shown below each

glyph, when viewed on the controlled test displays the glyph on the far right is displayed at or above the limit of human spatial acuity (10 cpd), in the results these

images are referred to by the labels A to G from left to right.

Experimental Method and Apparatus
The experiment to test the visual entropy glyphs has two ob-

jectives. First to test the hypothesis that there is a perceived rank
ordering between the glyphs shown in Fig. 6 Second to demon-
strate whether this order is predicted by our numerical measure of
visual entropy.

To evaluate whether there is a rank ordering between the
glyphs a two alternative forced choice (2AFC) method [20] of
glyph image pair comparisons was implemented where all paired
permutations of the set of glyphs are shown to each participant,
except for those where the pairs would be the same shape. The
experiment was replicated in different countries, in three differ-
ent environments, two physical-in-person (Perth, Australia and
Brugg-Windisch, Switzerland), and in addition, online using Me-
chanical Turk.

The stimulus presentation was implemented using the Psy-
choPy toolbox [36] and answers for each pair comparison, a left
or right arrow key-press, were recorded in addition to the time
taken to enter the answer. Each participant saw a different ran-
dom order of pairs, determined by PsychoPy’s random number
generator. The stimuli for the in-person trials were presented at
a viewing distance of approximately 500mm for all participants,
differences between the environments are discussed below.

The Perth trials were presented on a 11.8” FHD LCD moni-
tor built into a Lenovo laptop, the Swiss trials were presented on a
15.6” FHD LCD monitor built into a HP laptop, and the Mechani-
cal Turk (MTurk) trials were presented remotely on unconstrained
display devices. As a result of the unconstrained environment, we
anticipated some variability in the outcomes of the MTurk trials
and designed a set of data cleaning methods to detect outliers de-
scribed below alongside the results.

The instructions for each participant read in the trial were:

You will see a series of image pairs.

Each image represents a value and also

represents a level of uncertainty.

More complex shapes represent more uncertainty.

Choose which image represents the most uncertain

value to you.

Left arrow for left. Right arrow for right.

Note, we considered the use of the word complex with some
care, as it was clear that visual entropy would not be a widely
understood description of shape differences in the images. Par-
ticipants then began the trial where they were presented with all
42 pairwise permutations of the images in Fig. 6, this included
reversed order image pairs.

Participants
Participants in the global trials gave consent for the data from

the trials to be used and communicated worldwide by the investi-
gators for the purposes of the study. We requested very limited
personal data, whether participants had normal or corrected to
normal visual acuity and whether they were aware of any color
deficiency in their visual ability. While color deficiency was un-
likely to affect the results in a shape complexity comparison ex-
periment, we recorded this in case it had a bearing on the saliency
of the central colored disc.

We used two physical locations, Perth, Western Australia
(n= 17) and Brugg-Windisch, Switzerland (n= 20) and one set of
online experiments with Mechanical Turk (n = 50). Our aim was
to establish whether the three distinct locations produce broadly
comparable results.

Omnibus Testing
Before evaluating the experimental hypothesis we apply a

series of omnibus G-tests to check whether there are variations
from our expected outcomes at the different locations. These om-
nibus tests allow us to understand; 1) if there is any variation from
the expected proportions of correct answers within the glyph re-
sults at each location, 2) whether there is any significant variation
across the replications at the three locations, 3) whether there is
any unexpected variation in the data pooled across all three sam-
ples (AU, CH, MTurk) and finally 4) to use the additive property
of the G-Test to check that overall the data fits our predictions.
The G-test (compared to chi-squared and exact tests) is recom-
mended for situations with larger numbers of observations [44]
and when replicating studies using multiple location testing [30].

G-Test of Goodness of Fit by Location
Our first omnibus null hypothesis is that at each individual

location the proportion of correct answers for each of the glyphs
is the same, i.e. 1/7 of the total number of trials. This is a rea-
sonable null hypothesis since we designed the glyphs to be above
the acuity threshold and to be clearly distinguishable on an expo-
nential scale of increasing complexity. The alternative hypothesis
is that there is a statistically significant difference in the propor-
tions of correct answers for some of the glyphs at one or more
locations, and if so this will need further analysis.

Using a G-Test for Goodness of Fit at each location we find
the following; for Perth (G = 1.5197, p = 0.9582,d f = 6), for
Swiss (G = 0.6137, p = 0.9962,d f = 6) and for MTurk (G =
1.5289, p= 0.9576,d f = 6). In each location there is no evidence
(since all p >> α = 0.05 ) for rejecting the null hypothesis and
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therefore no evidence that there is any unexpected variation in the
outcomes at each of three locations.

G-Test of Independence
The second omnibus null hypothesis tested is that the rela-

tive proportions of correct answers are the same across the three
different locations. If the relative proportions are not the same
we will need to analyse locations separately and will be unable to
pool them.

This hypothesis is evaluated using a G-Test of Independence
with a 3x7 contingency table (3 locations, 7 glyphs). The result is
(G = 1.1246, p = 0.99997,d f = 12). There is no evidence (since
p >> α = 0.05) for rejecting the null hypothesis and we can con-
clude we can now consider the pooled results.

G-Test for Goodness of Fit for Pooled Results
The third omnibus null hypothesis is again the equal prob-

ability hypothesis for each glyph but now we apply this for the
pooled results combined across all three locations (n=87).

Using a G-Test for Goodness of Fit for the pooled results
we find the result (G = 2.5378, p = 0.8642,d f = 6) and again
we cannot reject the null hypothesis (since p >> α = 0.05) and
conclude that there is no evidence for any unexplained variation
between the proportions of correct answers for the glyphs in the
pooled results.

Outcome by total G-value
The final omnibus test checks the overall outcome is not

inconsistent with our null hypothesis of equal probability. We
use the additive property of the individual location G-Tests from
step 1), sum these to give the total G-value (G = 3.6623,d f =
18), looking this up in a chi-square table gives a p-value (p =
0.99988). Again we cannot reject the null hypothesis (since
p >> α = 0.05) and we conclude that overall there is no evi-
dence of any unexpected variation in the overall outcome across
glyphs and locations.

In summary, over all four omnibus tests we have found no
statistically significant evidence to reject the null hypothesis, that
the glyphs have equal probability of being correctly chosen, and
we have found no evidence to suggest there are statistically signif-
icant differences between the replication locations. We can there-
fore move on to consider the pooled data as a whole in testing the
main experimental hypothesis.

Analysis of the Pooled Results
The design goal for the visual entropy glyphs is to create a

perceived order among the glyphs that can be predicted by the
visual entropy calculation for the enclosing shape.

We use the pooled response data for each glyph, shown in
Table 1, to test the hypothesis that participants agree with the
predicted order. The independent variable is each glyph type
(A,B,C,D,E,F,G) and the dependent variable is the proportion
of correct choices made about the order of each glyph in the pair-
wise comparisons with all six other glyphs. We deem the response
”correct” when a participant’s choice is as predicted by the visual
entropy calculation. With n = 87 participants the total number of
trials per glyph is 87∗6 = 522, and this is therefore the maximum
correct score each glyph could achieve.

Table 1: Pooled results for the glyph pairwise order compar-
isons.

glyph success trials pvalue probability CI low CI high

A 469 522 <0.001 0.898 0.869 0.923

B 459 522 <0.001 0.879 0.848 0.906

C 462 522 <0.001 0.885 0.855 0.911

D 452 522 <0.001 0.866 0.834 0.894

E 456 522 <0.001 0.874 0.842 0.901

F 444 522 <0.001 0.851 0.817 0.88

F 427 522 <0.001 0.818 0.782 0.85

The null hypothesis, H0, for this analysis is that participants
will do no better than chance at choosing between glyphs in the or-
der predicted by the visual entropy calculations (probability <=
0.5 ) . The alternative hypothesis, Ha, is that a majority of partic-
ipants do agree with the predicted order (probability > 0.5).
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Figure 7. Pooled results showing 95% confidence intervals, the null hypoth-

esis, H0, is the probability < 0.5 that the majority of participants in agreement

with our entropy prediction is no better than chance.

As the results are a count of categorical choices, we apply an
exact binomial test against a simple majority for each glyph. Be-
cause the test is repeated for each level (glyph) we apply a Bon-
ferroni correction to the alpha threshold for the p-values and use
α = 0.05/7 = 0.007 as the significance level. The results of the
binomial tests are given in Table 1 and illustrated in Fig. 7.

For all seven glyphs tested, the p-values are < 0.001 and as
these are all smaller than α we can reject the null hypothesis of
chance performance, and accept the experimental hypothesis that
a majority of participants’ choices agree with the predicted order.

Effect Size
One approach for estimating effect size for binomial tests,

recommended in [37], is to calculate Cohen’s g [12]. This method
can be used to estimate the effect size for probabilities only in
comparison to a chance result of 50% correct answers. Cohen’s
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g effect sizes are calculated for each of the glyphs as shown in
Table 2 these results suggest that the effect size for all the glyphs
is Large (g > 0.25).

As discussed in detail in [9] the practical significance of ef-
fect size depends on context. Here, given the high probability of
users choosing the correct order, it seems reasonable for us to con-
clude the practical effect size will be strong. That is, very often
users will judge the order of the glyphs as predicted, and this may
be even more often if in practice we display a legend for the user
to refer to.

Table 2: Effect size estimate using Cohen’s g for each of the
glyph binomial tests.

glyph probability g effect

A 0.898 0.398 Large

B 0.879 0.379 Large

C 0.885 0.385 Large

D 0.866 0.366 Large

E 0.874 0.374 Large

F 0.851 0.351 Large

G 0.818 0.318 Large

range effect size

0.00 <= g < 0.05 Negligable

0.05 <= g < 0.15 Small

0.15 <= g < 0.25 Medium

g >= 0.25 Large

Response Times (RT)
To evaluate the seven glyphs at the three different global lo-

cations, we had to allow the test environment to vary between
the Perth, Switzerland and the online experiments. We anticipate
this could introduce either random or systematic noise into the
results. On the other hand, this is an ecologically valid testing
context since in real-world visualization applications, the view-
ing environment will differ between users. We found no evidence
for a statistically significant variation in accuracy (probability of
choosing the predicted response) due to location or glyph type in
the pairwise glyph order experiments reported above, and we now
test the response times.

To select the appropriate omnibus tests, we tested for nor-
mality in the RT data using the Shapiro-Wilk method, across all
locations this suggested (W = 0.5578, p < 0.001) we had to re-
ject the null hypothesis and accept that the data is not normally
distributed. This result also holds if we test the data separately
at each location. Therefore we needed a non-parametric om-
nibus test and, as there is no direct equivalent for the two-way
ANOVA for this experimental design, we used two separate one-
way Kruskal-Wallis tests for the two independent variables loca-
tion and glyphs.

RT omnibus testing
We considered the RT variation between the glyphs (seven

levels) first using a one-way Kruskal-Wallis test. The result is
(χ2 = 0.24288,d f = 6, p = 0.9997) and as a result we cannot
reject the null hypothesis H0 that the difference in the means of
the RT between the glyphs is simply due to chance, with p >>
α = 0.005

We use the same type of non-parametric test to consider the

overall effect of location (three levels) on the response times with
the result (χ2 = 79.428,d f = 2, p< 0.001). In this case we do re-
ject the null hypothesis and accept the alternative hypothesis that
there seems to be statistically significant variation between the re-
sponse times in each location beyond that expected by chance.

Table 3: Post-hoc Dunn test results comparing the response
time (RT) between all location pairs, in all cases the null
hypothesis is rejected.

location statistic df pvalue alpha

MTK-PTH -4.935 2 <0.001 0.0167

MTK-SWS -8.476 2 <0.001 0.0167

PTH-SWS -2.598 2 0.0094 0.0167

To understand more about the variation between locations we
use the Dunn post-hoc test against the test criterion α = 0.05/3 =
0.01667, results are shown in Table 3. In all three possible lo-
cation pair comparisons the null hypothesis can be rejected sug-
gesting the RT differ statistically significantly between each of the
locations.

As noted above we anticipated some variation between loca-
tions in at least some of the results due to test environment dif-
ferences, and this analysis does suggest that some uncontrolled
factors, such as varying screen size (phone or laptop/desktop), re-
sponse method (mouse click or touch), or the experimental con-
text (in person vs remote) are effecting the response times by lo-
cation.

Application Domain Testing
Our results above suggest that the participants perceive the

visual entropy glyphs in an order that is in agreement with our vi-
sual entropy predictions. We should therefore be able to use them
to represent ordered categorical information or quantized numeri-
cal data on interval or ratio scales. In this section we examine the
use of visual entropy glyphs in a specific context. Our urban digi-
tal twin application, see Fig. 1, has a requirement that we display
both a sensor’s mean value and its variance, so that end users, for
example policy makers, can see at a glance which sensors they
can rely on most.

Previously, we displayed sensor data as the mean value over
an hour using the MetOffice color scale for temperature, here we
now also visualize uncertainty as the variance calculated over the
same hour using visual entropy glyphs, see Fig. 8. To set the range
of the uncertainty scale, we need to calculate the range of variance
for sensors in view, potentially over the whole city, so that we can
calculate the minimum and maximum values on this scale.

Experimental Method and Apparatus
To evaluate whether this representation can be effective, we

designed a signal detection experiment that requires the partici-
pants to search for a glyph based on its level of uncertainty, as
recommended as a follow on experiment by [6] and similar to the

IS&T International Symposium on Electronic Imaging 2024
Human Vision and Electronic Imaging 2024 206-7



Figure 8. The urban temperature data visualization showing both hourly

mean temperature values using the MetOffice color scale and the variance

of those values using our new visual entropy scale, this image is an example

of the high uncertainty target-present stimulus used in the experiment de-

scribed below.

search task implemented by [11]. This was a target-present/target-
absent visual search for either a low uncertainty target or a high
uncertainty target. A total of fifteen participants (n=15), students
and staff at Newcastle University (UK), each viewed forty images
(therefore amounting to a total of 600 trials), searching for the
least uncertainty glyph in ten target-present and ten target-absent
images and the same again for the highest uncertainty glyph.

The display used for this experiment was a Microsoft Sur-
face Pro 4, a display with 2736x1824 0.094mm square pixels at
a nominal viewing distance of 500mm. Given this geometry, we
calculated that the 24-cycle glyph was at the 10 cpd limit of hu-
man vision for this display, therefore we selected the set of five
glyphs shown in Fig. 8. Once again, we used PsychoPy to present
the stimulus to the participants. Ethics approval was granted, de-
tails of which were given earlier.

Our hypothesis in this study is that the target-present glyphs
should be easy to find because of the choice of log-scale incre-
ments in the generating frequency and as a result the discrim-
inability should be high. If this is case, we also hypothesize that
there should be a response time difference between target-present
and target-absent trials.

Results of the Domain Testing
We analyzed the outcome data in R using the psycho pack-

age [29] from a total of 300 responses per glyph type (highest
and lowest uncertainty), of which 150 were target-present and 150
target-absent in each group. The confusion matrix for the low un-
certainty glyph searches is shown in Fig. 9. As hypothesized, the
low uncertainty glyph is easy to find in visual search tasks, with
high discriminability, d’, while the response bias, β is towards
answering (n) target-absent.

The confusion matrix for the high uncertainty glyph in Fig.
10 gives similar results, with a slightly higher response bias to-
wards target-absent.

Response times were analyzed using two-way within-
subjects t-tests, the results are shown in Table 4. As was hypoth-
esized, target-absent trials took significantly longer to complete
(approximately twice as long) than target-present trials.

There was no statistically significant difference between
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Figure 9. Confusion matrix for the low uncertainty glyph visual search from

150 target-present and 150 target-absent trials. There is a slight response

bias towards false negatives (target-absent when it is present).
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Figure 10. Confusion matrix for the high uncertainty glyph visual search

from 150 target-present and 150 target-absent trials.

mean glyph search times for low and high uncertainty glyphs
in the target-absent condition, and nor did we expect one as the
search task is essentially the same.

There was a statistically significant difference (p < 0.05)
between target-present search times for the low- and high- un-
certainty glyphs, with it taking on average 0.3 seconds longer to
find the more complex, high uncertainty glyph. This was also
supported by comments from some participants who reported the
more complex glyph was harder to search for.

In summary, the results from the application domain testing
seem in agreement with our general hypotheses from the earlier
sections: Participants could, with low error rates, search for and
successfully find glyphs with different levels of uncertainty. We
also identified the possibility that glyphs with higher visual en-
tropy (more complex shapes) are slower to search for than those
with low visual entropy.

Conclusion
There are many visual representations of uncertainty in tech-

nical publications that work for statisticians and for technical au-
diences. It is harder to find good visual representations of un-
certainty in the everyday media and in documents intended for

Table 4: Signal detection experiment mean response times,
all differences are statistically significant (p < 0.0125 with Bon-
ferroni correction), except between glyph absent conditions.

Response times(s) Low glyph High glyph pvalue

Glyph present (y) 1.49 1.78 0.0019

Glyph absent (n) 3.26 3.1 0.28

pvalue <0.001 <0.001
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non-technical high-level decision makers.
We set out an argument for the use of visual entropy as a

visual coding scale for visually transmitted information. We hy-
pothesised that even though the human brain is not an ideal in-
formation theoretic signal receiver, it should still be sensitive to
varying levels of entropy in signals. Intuitively, we can consider
entropy in this case to be analogous to visual complexity. We
then set out to rigorously evaluate this approach by creating a set
of glyphs and using those glyphs to represent uncertainty. We
addressed three research questions:

• Can we use visual entropy as a measure of shape complex-
ity that predicts the human ranking of simple and complex
shapes? We demonstrated we were able to predict human
ranking of glyphs, using sample entropy as a proxy for vi-
sual entropy, with high confidence.

• Can we demonstrate empirically through experiments that
shape is an ordered visual channel? We demonstrated a
natural ranking order among our proposed visual entropy
glyphs allowing us to represent ordinal categorial, or nu-
merical interval, data on a discrete scale.

• Can we use visual entropy glyphs in visual search tasks?
We demonstrated users could successfully search for glyphs
with predefined levels of uncertainty in an urban digital twin
visualization of temperature sensors.

There is a similarity between our work and the ideas de-
scribed in [18], where an informal argument for the use of wave-
length and amplitude for representing uncertainty is made. Here
we have provided a theoretical basis for this approach, a rigor-
ous evaluation of glyph ranking and an initial application domain
validation of the effectiveness of visual entropy glyphs.

We believe that visual entropy provides a useful concept with
which to reason about glyph shape ordering. We have shown that
we can measure it, predict human ranking of glyphs using this
measure and apply these glyphs in a 3D visualization environ-
ment. We believe we have presented a rigorous novel approach
for visualizing ordinal data that has potential application to bi-
variate data including uncertainty visualization. A Python library
Vizent is available on Github that implements these ideas.
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