
Scalable and Efficient orchestration of machine learning work-
loads on DSPs with multi-level memory architecture
Aaron Sequeira, Febin Sam, Anshu Jain, Pramod Swami

Abstract
Deep learning has enabled rapid advancements in the field

of image processing. Learning based approaches have achieved
stunning success over their traditional signal processing-based
counterparts for a variety of applications such as object detec-
tion, semantic segmentation etc. This has resulted in the parallel
development of hardware architectures capable of optimizing the
inferencing of deep learning algorithms in real time. Embedded
devices tend to have hard constraints on internal memory space
and must rely on larger (but relatively very slow) DDR memory
to store vast data generated while processing the deep learning
algorithms. Thus, associated systems have to be evolved to make
use of the optimized hardware balancing compute times with data
operations. We propose such a generalized framework that can,
given a set of compute elements and memory arrangement, de-
vise an efficient method for processing of multidimensional data
to optimize inference time of deep learning algorithms for vision
applications.

Introduction
Deep learning algorithms have been developed for applica-

tions such as object detection, segmentation etc. In the automo-
tive industry particularly, there has been a push to deploy these
algorithms for advanced driver assistance systems (ADAS). The
requirement is to run deep learning algorithms on chip while min-
imizing energy consumption and maintain cost effectiveness. In
practice, deep learning algorithms for computer vision are de-
ployed on embedded devices for a variety of use cases such as:

1. Single network running on a single input stream.
2. Single network running on multiple input stream.
3. Multiple input running on multiple input streams.

Figure 1. Different use cases of deep learning models on embedded de-

vices

In order to effectively utilize the underlying hardware, care-
ful examination of the entire use case is required to the derive op-
timal mapping and scheduling while efficiently utilizing available
memory with a goal of providing most optimal solution. Since
deep learning architectures process large, multidimensional data,

it becomes imperative to create dataflows that can effectively use
available memory and reduce latency due to I/O operations.

As such, the addition of new layer types to deep learning
network architectures creates a constant need of developing new
dataflows to make efficient use of available memory. Hence, there
was a need to create a generic framework to represent the dataflow
to enable quicker prototyping of new dataflows while ensuring
low latency of execution due to the framework itself.

Related Work
Deploying learning-based vision models on embedded plat-

forms has been an ongoing enterprise since the start of the deep
learning age. Over time various architectures and associated soft-
ware systems have been developed to accelerate the execution of
deep learning algorithms. All implementations leverage the repet-
itive nature of computation in the algorithms, which typically are
linear algebraic operations such as 2D convolution, pooling etc.
The more popular implementations like CUDA [5] and OpenGL
[1] utilize underlying GPUs to parallelize execution of learning
algorithms across GPU cores. Whereas GPU based accelerators
provide lower latencies, it comes at a cost of high energy con-
sumption. Other implementations like AVX [2] utilize processor
intrinsic SIMD vector instructions to enable some level of par-
allel execution. This somewhat mitigates the energy consump-
tion issue but the latency of execution is much higher. There also
exist a class of heterogeneous processors comprising specialized
DSPs and CPUs that absorb the advantages of both of the earlier
mentioned approaches. Such systems have become widespread in
the embedded world due to the favorable trade-off between en-
ergy and latency of execution. The Texas Instruments’ Jacinto
and Sitara processors have implemented such heterogeneous pro-
cessors as subsystems within their SOCs. However, most software
implementations focus on reducing actual processor computation.
To the best of the authors’ knowledge, there has been no concerted
focus on developing systems to coordinate data movement across
memory regions with actual processor execution. We propose and
develop such a mechanism in the following sections. Prior art ref-
erenced within this paper refers to adhoc decision making within
the firmware to move and process data.

Proposed Representation
To get around the limitation of having to process the full in-

put tensor to a layer, we generalize the representation of data using
”workloads”. We define a workload to be a container encapsulat-
ing the processing of a set of inputs generating exactly one out-
put. There may be multiple inputs and each input may represent
the full or part of a tensor. Using this workload representation,
we can abstract the layer type as a parameter of the workload and
keep the input tensor variable. A workload contains the following

https://doi.org/10.2352/EI.2024.36.10.IPAS-255
© 2024, Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2024
Image Processing: Algorithms and Systems XXII 255--1



constituent elements:

1. Buffer: A 2D object that defines the memory region contain-
ing a full or part tensor. The tensor within the buffer itself
may be N-dimensional.

2. Joint : A structure containing access information of a ten-
sor within a buffer. The joint is describes M-dimensions to
access the tensor within the buffer as well as the offset re-
quired to jump between dimensions. It is not necessary that
this maps exactly to the tensor. It is sometimes convenient to
assume a flattened representation of the tensor for purposes
of processing the data. For our implementation, we found it
practical to restrict the dimensionality to 4.

3. Link : A structure that connects multiple source joints to a
single sink joint. It is primarily responsible for defining tim-
ing information to execute the movement of data between
the constituent buffers and relative to the other links present
in the workload. The link also defines operations to be per-
formed on source joints to generate the output data. Based
on the kind of operation performed on the data, we further
classify links into the following categories:

• Transfer Link: Used to transfer data from source to
sink and perform basic data operation. Generally im-
plemented using DMA units.

• Processing Link: Used to transform a series of input
data. The exact operation is detailed as part of flags
within the link. Implementation of processing link is
by any specific processing unit.

Figure 2. Illustration of relation between links, joints and buffers

Due to the nature of tensor processing in vision algorithms
on hardware, we tend to process a larger amount of data in the
first and last iterations as compared to the intermediate iterations.
To incorporate this phenomenon, we allow joints to have 3 stages:
pipeup, pipeline and pipedown. Thus each joint contained within
a link can be viewed as an independent state machine moving
through each of the three aforementioned stages.

Illustrative Example of Workload
Consider the processing of convolution layer. The size of the

input tensor and weights is usually very large and may not fit on-
chip. More often than not these tensors are stored in the DDR. To
balance the access time against the size of memory on-chip, we
bring part of the tensor to on-chip memory and process part-wise.
Post processing, output may be reassembled part-by-part in the
DDR. To express this process, we make use of the workload as
depicted in Fig.3.

• Transfer links (T1, T2, T3) progressively bring in partial
data from large DDR memory to much faster on chip mem-
ory (L2/L3).

Figure 3. Minimal workload representation showing buffers with associated

memory spaces and connecting links

Algorithm 1 UpdateJoint: Function to update state of joint
Require: repeatIter < repeat

iterCount← iterCount +1
if iterCount > period then

f reqIter← f reqIter+1
iterCount = 0

end if
if f reqIter > f req then

repeatIter← repeatIter+1
f req← 0

end if
if f req = 0 then ▷ Following updates the flow stage

stage← PIPEUP
else if f req = f req−1 then

stage← PIPEDOWN
else

stage← PIPELINE
end if

Algorithm 2 ExecuteLink: Function to execute link
Require: iterCount > delay

jointIdx← 0
while jointIdx < numJoints do

updateJoint( joint[ jointIdx])
jointIdx← jointIdx+1

end while
link. f uncExec(link) ▷ Executes link specific function

255--2
IS&T International Symposium on Electronic Imaging 2024

Image Processing: Algorithms and Systems XXII



Figure 4. Top: Network cycles consumed for each layer. Bottom: Percentage of cycles consumed by workload as a fraction of layer cycles.

• Processing link (P1) depicts a generic processing unit (can
be DSP, CPU, GPU etc) that performs some operation, in
this case convolution, on input data and dumps the output
into a partial output buffer in L3.

• Transfer link (T4) takes the output data generated by P1 and
progressively reassembles it in DDR.

Timing Diagram
Following Algorithms 1 and 2, we define the time of acti-

vation of each link using the following table. By coordinating
the execution between links using the delay, frequency and pe-
riod variables (Algorithm 1), we complete processing of a block
of data. An example of link activation can be seen if Fig.5 with
reference to illustrative example of convolution workload in Fig.3.

Figure 5. Timing Diagram of various links within the workload. Highlighted

cells indicates period of activation.

Observations
We present the performance of our proposed representation

by running benchmark networks for deep learning on proprietary

Texas Instruments SOCs. Specifically, data reported in Fig. 6 is
taken from the TDA4VE device. To further illustrate the advan-
tages of our proposed representation, we display the layer level
performance of mobileNetv1 [3], a standard benchmark network
for embedded vision in various input configurations.

100 101 102

0

10

20

30

40

50

49
K

0.5
M

1M

49
K

0.5
M

1M

49
K

0.5
M

1M

49
K

0.5
M

1M

GMACs (in giga cycle)

Pe
rf

or
m

an
ce

(in
m

s)

MobileNetv1 [3]
Resnet50v1 [4]
Resnet18v1 [6]

InceptionNetv1 [7]

Figure 6. GMACs vs time taken for execution of network on device for

benchmark networks of labeled input plane sizes.

From the graph in Fig. 6, we can clearly infer that for in-
creasing input network input size, the execution of network on

IS&T International Symposium on Electronic Imaging 2024
Image Processing: Algorithms and Systems XXII 255--3



chip scales proportionally. Specifically, we look at the default in-
put configuration and network when input is scaled to 0.5MP and
1MP. We attach the layer level dimensions in Table 1.

Table 1: MobileNet Body Architecture [3]

Type / Stride Filter Shape Input Size
Conv / s2 3×3×3×32 224×224×3
Conv dw / s1 3×3×32 dw 112×112×32
Conv / s1 1×1×32×64 112×112×32
Conv dw / s2 3×3×64 dw 112×112×64
Conv / s1 1×1×64×128 56×56×64
Conv dw / s1 3×3×128 dw 56×56×128
Conv / s1 1×1×128×128 56×56×128
Conv dw / s2 3×3×128 dw 56×56×128
Conv / s1 1×1×128×256 28×28×128
Conv dw / s1 3×3×256 dw 28×28×256
Conv / s1 1×1×256×256 28×28×256
Conv dw / s2 3×3×256 dw 28×28×256
Conv / s1 1×1×256×512 14×14×256

5× Conv dw / s1 3×3×512 dw 14×14×512
Conv / s1 1×1×512×512 14×14×512

Conv dw / s2 3×3×512 dw 14×14×512
Conv / s1 1×1×512×1024 7×7×512
Conv dw / s2 3×3×1024 dw 7×7×1024
Conv / s1 1×1×1024×1024 7×7×1024
Avg Pool / s1 Pool 7×7 7×7×1024
FC / s1 1024×1000 1×1×1024
Softmax / s1 Classifier 1×1×1000

Note that, for the point of analysis we exclude fully con-
nected layer due to workload integration for the specific dataflow
being incomplete at the time of publication. As can be seen in
Fig. 4, we can observe that there is an initial spike for workload
cycles for higher resolutions as compared to the default dimen-
sions. However, as the input size increases, the consumption of
workload cycles as a percentage of overall layer level cycles falls.

Table 2: Comparison of code footprint size of firmware (in Kilo-
bytes) of proposed implementation against prior art

Device Prior Art Workload % change
TDA4VH 210.12 87.75 58.23
TDA4VM 116.50 57.3 50.81
TDA4VE 210.12 87.75 58.23
AM62A 211.31 85.94 59.33

Additionally, there is a significant fall in code memory foot-
print as can be observed from Table 2. The size decrease is
attributed to the generalization of the dataflow mechanism and
movement of decision-making code off the device.

Results
The proposed orchestration mechanism provides a simplis-

tic way to create and execute specific dataflows while consum-
ing less than 35% of overall network cycles when executed on TI
SOCs. The proportion of network cycles consumed by the pro-
posed workload falls with rising input sizes. The mechanism also

allows for core dataflow related decisions to be moved off chip
which results in over 50% reduction in code size across devices
under consideration. Apart from the quantitative improvement,
we find that it is easier to add newer dataflows without touching
the firmware. Triaging dataflow failures has also become easier
since the dataflow is decided off-chip as compared to earlier im-
plementation.
The proposed mechanism has been implemented on Texas Instru-
ments SOCs: TDA4VH, TDA4VE, TDA4VM and AM62A de-
vices.

Acknowledgments
We would like to thank Mr. Shyam Jagannathan, who is a

Senior Member of Technical Staff in the Embedded Processors
Group at Texas Instruments, for presenting our work at the Elec-
tronic Imaging conference, 2024.

References
[1] Kurt Akeley. The OpenGL graphics system: a specification.

June 1992. URL: https://www.microsoft.com/en-
us/research/publication/the-opengl-graphics-

system-a-specification/.

[2] Takuya Edamatsu and Daisuke Takahashi. “Fast Multiple-
Precision Integer Division Using Intel AVX-512”. In:
IEEE Transactions on Emerging Topics in Computing 11.1
(2023), pp. 224–236. DOI: 10 . 1109 / TETC . 2022 .

3196147.

[3] Andrew Howard et al. “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications”. In: (Apr.
2017).

[4] Miguel Lopez-Montiel et al. “Evaluation Method of Deep
Learning-Based Embedded Systems for Traffic Sign Detec-
tion”. In: IEEE Access 9 (July 2021), pp. 101217–101238.
DOI: 10.1109/ACCESS.2021.3097969.

[5] John Nickolls et al. “Scalable Parallel Programming with
CUDA: Is CUDA the parallel programming model that ap-
plication developers have been waiting for?” In: Queue 6.2
(Mar. 2008), pp. 40–53. ISSN: 1542-7730. DOI: 10.1145/
1365490.1365500. URL: https://doi.org/10.1145/
1365490.1365500.

[6] Allena Venkata Sai Abhishek. “Resnet18 Model With Se-
quential Layer For Computing Accuracy On Image Classi-
fication Dataset”. In: 10 (July 2022), pp. 2320–2882.

[7] C. Szegedy et al. “Going deeper with convolutions”. In:
2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Los Alamitos, CA, USA: IEEE Com-
puter Society, June 2015, pp. 1–9. DOI: 10 . 1109 /

CVPR . 2015 . 7298594. URL: https : / / doi .

ieeecomputersociety . org / 10 . 1109 / CVPR . 2015 .

7298594.

Author Biography
Aaron Sequeira received his B.Tech degree in Electronics and

Communication Engineering from the National Institute of Technology
Karnataka (2021). He currently works at Texas Instruments as an
embedded software engineer working on optimizing on-chip dataflows for
computer vision tasks. His areas of interest are deep learning, computer

255--4
IS&T International Symposium on Electronic Imaging 2024

Image Processing: Algorithms and Systems XXII



vision and embedded systems.
Febin John Sam received his B.Tech in Electrical and Electronics
Engineering from National Institute of Technology Dimapur (2019) and
his M.Tech in Computer Science Engineering from Indian Institute of
Technology Kharagpur (2021). He now works at Texas Instruments in
the Embedded Processing Analytics Technology Division. His work
has focused on Memory Management on DSPs, to enable low latency
inference of Deep Learning Computer Vision networks.
Anshu received his B.Tech and M.Tech in electrical engineering from
Indian Institute of technology Bombay ( 2008). He is currently a senior
embedded engineer at Texas Instruments India and has over 12 years
of experience in the field. His domains of interest are signal processing
specifically around computer vision, radar and deep learning.
Pramod Swami is a Distinguished Member of Technical Staff at Texas In-
struments (TI), leading the software development for EdgeAI processing.
His domains of interest are Embedded systems, Digital Signal Processors,
Deep Learning, Computer Vision, Image Processing, and Video coding.
He received his Bachelor’s degree in Electronics and Communication
Engineering from Malaviya National Institute of Technology (MNIT)
Jaipur in 2001. He holds close to 50 USPTO patents and 25+ prestigious
conference papers.

IS&T International Symposium on Electronic Imaging 2024
Image Processing: Algorithms and Systems XXII 255--5


