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Abstract
In this paper, a novel framework for semi-supervised learn-

ing based on graphs is introduced. We present an innovative ap-
proach for concurrently estimating label inference and perform-
ing a linear transformation. This specific linear transformation is
directed towards achieving a discriminant subspace, which effec-
tively reduces the dimensionality of the data. To enhance the semi-
supervised learning process, our framework places a strong em-
phasis on leveraging the inherent data structure and incorporat-
ing the information provided by soft labels from the available un-
labeled samples. The method we propose ultimately results in an
improved discriminative linear transformation. The effectiveness
of our approach is verified through a series of experiments con-
ducted on real image datasets. These experiments not only con-
firm the efficacy of our proposed method but also demonstrate its
superior performance when compared to semi-supervised meth-
ods that simultaneously incorporate integration and label infer-
ence.
Keywords: Graph-based semi-supervised learning, data graph,
label graph, graph fusion, pattern recognition.

Introduction
Graph-based semi-supervised learning (GSSL) encounters

several challenges. Firstly, its scalability to large datasets is not
straightforward, resulting in significant computational overhead
and time-intensive processes. Moreover, the choice of labeled
samples can exert a substantial impact on the final performance.
GSSL methods must also exhibit robustness in the face of poten-
tial mislabeling or outliers, which can adversely affect their per-
formance. Lastly, the quantification of confidence and security in
semi-supervised methods remains an unsolved issue.

In this paper, we introduce an efficient semi-supervised
learning approach known as DLGF (Data and Label Graph Fu-
sion for Semi-Supervised Learning). DLGF addresses these chal-
lenges by iteratively and concurrently estimating the soft label
matrix for unlabeled data and the linear transform. It harnesses
the power of graphs, which offer rich and meaningful information
to enhance the capabilities of semi-supervised algorithms. This
method integrates multiple graphs into a unified graph using an
adaptive fusion process that amalgamates data and the current
soft-label estimates. Furthermore, DLGF autonomously assigns
appropriate weights to each graph matrix.

The paper contains the following contributions:

• A method is developed to estimate the soft label matrix and

the linear transform simultaneously.
• An adaptive label graph is created using the current soft la-

bel estimates and the available labels, which is then merged
with the data graph to perform two types of regularization:
Regularization of the labels and regularization of the trans-
formed data.

The rest of this paper is structured as follows: We begin
by introducing the notations and reviewing related work. Sub-
sequently, we present the semi-supervised model. Following that,
we provide the results of our experiments conducted on five real
image datasets, along with comparisons to other semi-supervised
methods. Finally, we draw our conclusions.

Related work and notations

In this paper, big bold letters represent matrices and small
bold letters represent vectors. The training data matrix is denoted
X ∈ RD×(l+u), where D is the dimension of the samples and N =
l + u denotes the number of samples, l and u denote the number
of labeled and unlabeled samples, respectively. Tr(.) denotes the
trace of a matrix. Table 1 summarizes the main notations used in
this paper.

In the field of graph-based semi-supervised learning, two
main approaches have been explored: label propagation on graphs
(e.g. [8, 10, 3]) and graph-based embedding methods (e.g.,
[2, 7, 13]) with structural constraints (such as sparsity) on the
graphs. SLDA [14] and ISDA [11] use the LDA criterion to calcu-
late linear transforms. In these methods, the between-class graph
is fully connected from the perspective of LDA graph [9]. The
edge connecting two samples of the same class c has a weight of
1/N−1/nc (nc is the size of class c), while the weight of the edge
connecting samples of different classes is 1/N.

While the proposed method and the JSLDE method [1] re-
quire label and projected data smoothing, the current approach is
more rigorous in its smoothing techniques. In [1], the graph en-
forcing the smoothness only depends on the data, which can result
in poor quality if aberrant features or samples are present. Con-
versely, the proposed method uses a label graph to compute a sim-
ilarity graph, and the smoothness of the labels or projected data
is ensured through the automatic fusion of the data graph and the
label graph. The proposed method incorporates self-supervision
by using the label graph, taking advantage of the coarse labels.
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Table 1: Definition of the main variables used in this article.
Symbol Description
W Linear projection matrix ∈ RD×d

Hd , Ld Data graph and its Laplacian ∈ RN×N

Hb, Lb Between-class graph and its Laplacian ∈ RN×N

Hl , Ll Label graph and its Laplacian ∈ RN×N

X Samples matrix ∈ RD×N

Lp Laplacian for projected data smoothness ∈ RN×N

Ls Laplacian for soft labels smoothness ∈ RN×N

Y Original label matrix ∈ BN×C

F Soft label matrices ∈ RN×C

wd , wl Weights for soft labels graph
vd , vl Weights for projected data graph

Proposed approach
Our proposed model is designed to capture the underlying

data structure and its concealed clusters by employing two sim-
ilarity graphs. Simultaneously, it learns a soft label matrix de-
noted as F and a linear projection matrix designated as W using
both the available labels and the entire dataset. The first of these
graphs, referred to as the ”data graph”, encodes the degree of sim-
ilarity between the various features present in the data. In paral-
lel, the ”label graph” is constructed to represent the similarities
among labels assigned to all samples. During the iterative opti-
mization process, unlabeled samples are assigned predicted soft
labels. Subsequently, these two distinct graphs are amalgamated,
and an automatic weighting mechanism is applied to enhance the
final solution. This involves fine-tuning the influence of both the
data and the labels. The computation of soft labels and the linear
transformation is executed with the objective of satisfying var-
ious critical properties, including achieving class differentiation
and ensuring the smoothness of labels and projections.

Soft label matrix to between-class graph and label
graph

In this section, we establish a relation connecting a given
estimate of the label matrix F with the between-class graph matrix
Hb as well as to the label graph matrix Hl .

Between-class graph matrix Hb is the similarity matrix of the
between class graph. In the supervised case and using the K near-
est neighbor adjacency graph, the entries of the graph matrix Hb
can be specified as follows:

Ab(i, j) =


1 if [xi , x j are in different class]

and[x j ∈ Nb(xi) or xi ∈ Nb(x j)]

0 otherwise

(1)

where Nb(xi) is a list of neighbors of xi with different labels.
In our work, many data samples have no class information.

A label matrix F is used, where each row Fi∗ represents the class
membership of the data sample xi. The inner product Fi∗ ·F j∗ is
1 if the two samples xi and x j have the same label, and 0 if they
do not. Thus, the between-class graph similarity matrix Hb can
be derived from the soft label matrix by the relation Ab(i, j) =
1−Fi∗ ·F j∗, which can also be written in matrix form as:

Hb = E−FFT (2)

where E ∈ RN×N is a matrix whose entries are equal to one.

Label graph matrix Hl is a symmetric similarity matrix repre-
senting the degree of similarity between labels. Integrating label
and data information into a useful graph is the biggest challenge
in making label information as important and influential as data
information. The entries of this matrix Hl(i, j) are set to the Pear-
son correlation coefficient in the range [-1, +1], which encodes a
normalized similarity value for a given pair of soft labels Fi∗ and
F j∗. The obtained matrix then becomes non-negative and sparse
by keeping the K highest values for each row.

Latent space with local margins’ maximization
The desired linear transform can be achieved by maximizing

the local margins in the projection space between heterogeneous
samples. This is achieved by maximizing the following criterion:

maxW
1
2 ∑i ∑ j ∥WT xi−WT x j∥2 Ab(i, j) = maxW Tr

(
WT XLb XT W

)
(3)

Where, Lb = Db −Hb is the Laplacian matrix of the between-
class graph, Db is a diagonal matrix with elements are the column
(or row) sums of the symmetric between-class graph matrix Hb.

When equation (2) is substituted into equation (3), the latter
becomes:

maxW Tr
(
WT X(Db− (E−FFT ))XT W

)
⇐⇒

minW Tr
(
WT X(E−FFT )XT W

)
s.t. WT XDb XT W = I. (4)

The label matrix F can also be predicted in the semi-supervised
context. The linear transform W and the label matrix F can be
estimated simultaneously by minimizing the following criterion:

g(W,F) = Tr
(
WT X(E−FFT )XT W

)
s.t. WT XT Db XW = I and F≥ 0 (5)

In the proposed criterion (5), the between-class similarity
matrix is more general and based on margins associated with all
data. Each sample xi has two different encodings. The first en-
coding is the linear projection WT xi, commonly known as the
low-dimensional representation. The second encoding is the soft
label Fi∗, which provides a prediction of class membership.

Projected data and label smoothness over a fused
graph

To address the issue of high-dimensional data, it is desirable
to exploit the structure of the data by imposing smoothing con-
straints on the associated graphs, leading to a better model (e.g.,
[4, 13, 15]). This approach aims to simultaneously estimate and
recover both labels and linear transforms by combining two forms
of smoothing: smoothing of the labels and smoothing of the em-
bedding. The smoothing is applied to a fused graph, which is ob-
tained by integrating the data graph and the label graph (updated
during the optimization process), represented by wd Hd +wl Hl ,
where wd and wl are automatically determined weights. The data
graph Hd is calculated once, while the computation of the label
graph Hl is updated using the current estimated F.

The term that enforces the label smoothness is:
1
2 ∑i ∑ j ∥Fi∗−F j∗∥2 [wd Ad(i, j)+wl Al(i, j)]

= wd
( 1

2 ∑i ∑ j ∥Fi∗−F j∗∥2 Ad(i, j)
)

+ wl
( 1

2 ∑i ∑ j ∥Fi∗−F j∗∥2 Al(i, j)
)

= wd Tr
(
FT Ld F

)
+wl Tr

(
FT Ll F

)
. (6)
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The projected data smoothness term is given by:

1
2 ∑i ∑ j ∥WT xi−WT x j∥2 [vd Ad(i, j)+ vl Al(i, j)]

= vd Tr
(
WT XLd XT W

)
+ vl Tr

(
WT XLl XT W

)
. (7)

Proposed Semi-Supervised Model
Finally, a non-negative label matrix F is forced to con-

tain orthogonal columns. The orthogonality of F is en-
forced by minimizing the Frobenius norm ∥FT F − I∥2 =
Tr
(
(FT F− I)T (FT F− I)

)
. By including the smoothing con-

straints equations (6) and (7) and the orthogonality of F, the prob-
lem (5) can be rewritten as follows:

g(W,F) = Tr
(
WT X(E−FFT )XT W

)
+ β

(
wd Tr(FT Ld F)+wl Tr(FT Ll F)

)
+ γ

(
vd Tr(WT XLd XT W)+ vl Tr(WT XLl XT W)

)
+ α Tr

(
(FT F− I)T (FT F− I)

)
s.t. WT XDb XT W = I and F≥ 0 (8)

where β and γ are two balance parameters. The weights wd , wl ,
vd and vl are used to merge the data graph and the label graph.
They are set to automatic values. α is a large positive number.

Auto Weighted Graph Fusion
Since we have two graphs to be fused for two types of

smoothness, we have four weights wd , wl , vd , and vl . Thus, wd
and wl are the weights that fuse the two graphs into a single graph
for soft label smoothness Hs = wd Hd +wl Hl . Where, vd and
vl are used to fuse the two graphs for projected data smoothness
Hp = vd Hd + vl Hl . During optimization, the label similarity
matrix Hl and the four weights change, making the two graph
matrices Hs and Hp hybrid and adaptive, which are used to derive
the final desired solution.

Similar to methods that use automatic weighting (e.g., [5,
12]), we use weights corresponding to the second, third, fourth,
and fifth terms in the objective function of equation (8), respec-
tively. These adaptive weights are set to:

wd = 1

2
√

Tr(FT Ld F)
, wl =

1

2
√

Tr(FT Ll F)
(9)

vd = 1

2
√

Tr(WT XLd XT W)
, vl =

1

2
√

Tr(WT XLl XT W)
(10)

As it will be seen in the iterative optimization scheme, these
weights are not constant, since they depend on F, W, and Ll .
We emphasize that due to the use of the automatic weights, the
minimization of the following objective function is equivalent to
the problem defined in (8):

e(W,F) = Tr
(
WT X(E−FFT )XT W

)
+β

(√
Tr(FT Ld F)+

√
Tr(FT Ll F)

)
+γ

(√
Tr(WT XLd XT W)+

√
Tr(WT XLl XT W)

)
+α Tr

(
(FT F− I)T (FT F− I)

)
s.t. WT XDb XT W = I and F≥ 0 (11)

Optimization
To minimize the objective function given in (8), we use an

iterative optimization algorithm.

First, the four weights wd , wl , vd , and vl are initialized with a
constant value (e.g., 0.5). The soft label matrix associated with the
unlabeled samples FU is initialized randomly or with the constant
value 1/C, where C is the number of classes. The iterative process
solves W and F by calling the following phases:

Phase 1. Update Hb using equation (2) and updated Hl us-
ing the current estimate of F. Then calculate the corresponding
Laplacian matrices Lb and Ll .

Phase 2. F is fixed, estimate the linear transform matrix W.
Here, the objective function (8) becomes:

g(W) = Tr
(
WT X(E−FFT )XT W

)
+ γ

(
vd Tr(WT XLd XT W)+ vl Tr(WT XLl XT W)

)
(12)

Let the matrix Q = X(E− FFT )XT + γ X(vd Ld + vl Ll)XT .
Then, the solution for W is nothing but the eigenvectors of
(XDb XT )−1 Q corresponding to the smallest eigenvalues.

Phase 3. W is fixed. The label matrix F is determined as
follows. In this case, the objective function (8) will be:

g(F) = Tr
(
WT X(−FFT )XT W

)
+β Tr(FT Ls F)

+α Tr
(
(FT F− I)T (FT F− I)

)
s.t. F≥ 0 (13)

where Ls = wd Ld +wl Ll . The above function can be minimized
by using one step of a special gradient descent scheme. With
respect to the matrix F, the gradient matrix of the function g is
given by:

∂g
∂F = 2 [−XT WWT XF+ β Ls F+2α F(FT F− I)]

= 2 [−ZF+β Ls F+2α F(FT F− I)]. (14)

where, Z = XT WWT X. The matrices Z and Ls can be set to the dif-
ferences between two non-negative matrices: Z = Z+ −Z−, and Ls =

L+ −L− with Z+ = 1
2 (|Z|+Z) and Z− = 1

2 (|Z| −Z). L+ and L−

have similar expressions.
Let P+ = Z−F + β L+F + 2α FFT F and P− = Z+ F + β L−F +

2α F. Therefore, the gradient of g with respect to the element Fi j is given
by:

∂g
∂Fi j

= [ ∂g
∂F ]i j = [2(P+−P−)]i j = 2(P+

i j −P−i j ). (15)

The update rule that allows the minimization of Eq. (13) becomes:

F t+1
i j ←− F t

i j−λi j
∂g

∂Fi j
. (16)

To ensure a non-negative result, let learning rate (or gradient step)

λi j =
Ft

i j
2P+

i j
. Then updating rule of (16), becomes:

F t+1
i j ←− F t

i j
P−i j
P+

i j
j = 1, ...,C. i = l +1, ....,N. (17)

After updating, the matrix FU is normalized so that its ℓ1 norm
is equal to one, i.e., |FU |1 = 1. The resulting soft label matrix is

F =

(
FL

FU

)
, where FL is equal to YL .

Phase 4. Fix both W and F. Then we estimate the four weights
using the equations (9), and (10).

Algorithm 1 shows the main steps of the proposed semi-supervised
learning algorithm. Once the model is learned, we can map any training
or test data sample to the projection subspace by doing the following:

y = WT x. (18)
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Algorithm 1 Data and Label Graph Fusion For SSL (DLGF)

Input:
- Data matrix X ∈ RD×N , and its label matrix Y ∈ BN×C .
- Parameters α , β , and γ .
Output:
The label matrix F and the linear transform matrix W.
Process:
1- Initialize F ∈ RN×C as explained in the optimization section.
2- Estimate Hd and its Laplacian Ld . Use the KNN graph.
3- Initialize the weights wd , wl , vd , and vl to 1/2.
Repeat

• Estimate Hb, then Hl and its Laplacian Ll .
• Estimate W using the smallest eigenvalues of Eq. (12).
• Create Z = XT WWT X and calculate FU using Eq. (17).
• Normalize FU such that ∥FU ∥1 = 1.
• Using the Eqs. (9), and (10), we update wd , wl , vd , and vl

Until Convergence
4- Discrete the estimated F, update Hb and Db. Then recalculate W.

Performance Study
Experimental setup

We use the following five image datasets: Extended Yale1 (1774
images, 28 classes), PIE2 (1926 images, 68 classes), UMIST3 (575 im-
ages, 20 classes), MNIST4: (60,000 images, 10 classes, Resnet50 fea-
tures), Caltech1015 (9000 images, 101 classes).

We test the performance of our method with several semi-supervised
approaches. All of these techniques, including ours, used the same con-
figurations and conditions in Table 2 (i.e., databases, number of labeled
images, dimensionality reduction, and parameter values) in the experi-
ments.

Table 2: Setup and conditions used for the experiments
Parameters values {10−9,10−6,10−3,100,103,106,109}
Feature reduction PCA retaining 95% of the data variance
Dataset splits 50 % for training, and 50 % for testing.
p (# of labeled images per class) {1,2,3} in Table 3, and {5,10,20,30} in Table 4

We randomly splits the dataset into a training and a test part. In other
words, we use ten random splits for evaluation.

Experimental Results and Method Comparison
In this section, we present the results of our experiments designed

to assess the effectiveness and performance of our proposed approach in
comparison to five other semi-supervised methods. We conducted each
method ten times using different random combinations of training and
test samples and recorded the mean classification accuracy to ensure a
fair comparison. The Table 3 displays the best average classification rates
achieved on the test data. For classification in the low-dimensional space
generated by the projection methods, we employed the Nearest Neighbor
Classifier, with the highest accuracy highlighted in bold for emphasis.

1www.vision.ucsd.edu/∼ leekc/ExtYaleDatabase/ExtYaleB.html
2www.ri.cmu.edu/pro jects/pro ject 418.html
3htt ps : //www.she f f ield.ac.uk/eee/research/iel/research/ f ace
4http://yann.lecun.com/exdb/mnist/
5htt p : //www.vision.caltech.edu/ImageDatasets/Caltech101

Analysis of results

The results of the experiments in Table 3 show that the proposed
method (DLGF) outperforms the other competing methods. DLGF was
found to be superior in all 16 cases (5 image datasets, each with differ-
ent sets of labels). In comparison with the JSLDE method, the proposed
DLGF method showed significant improvement, with differences in the
rate of 11.7%, 10.3%, and 5.6% for p = 1,2,3, respectively. The results
also demonstrate that the proposed method performs well even for large
datasets (MNIST), as seen in Table 4.

Visualization study of the graph weights

Figure 1 illustrates The values of the graph coefficients against the
number of iterations on the MNIST dataset. (a) displays the weights for
smoothing the soft labels, wd and wl , while (b) shows the coefficients for
smoothing the projected data, vd and vl . These coefficients are dependent
on the current solutions for the soft labels and linear transform, and their
changes reflect the adaptive process where current solutions are used to
update the estimation coefficients. As seen in the graphs for wd and wl ,
wd decreases as optimization progresses after the third iteration, while wl

increases. For the projected data smoothing constraints represented by
vd and vl , they generally decrease over both the data graph and the label
graph, but the optimal graph may vary depending on the solution.

Conclusion
In this paper, we introduce a semi-supervised learning approach that

involves the fusion of self-weighted data and label graphs. This method
leverages unlabeled data to discern the data’s underlying structure, predict
soft labels, and employs an adaptive label graph to enhance these predic-
tions. Through an iterative process, the data and label graphs are amal-
gamated to construct a high-performance graph, which serves as a critical
criterion in the learning process. Importantly, this method concurrently
estimates the fusion coefficients of the graphs, as well as the linear trans-
form and soft labels. It stands out as an efficient and effective solution,
particularly in scenarios where only a limited number of labeled images
are available.
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Table 3: Best average classification accuracy in (%) (test data).

Dataset p SLDA[14] TR-FSDA[6] ISDA[11] MVCGL[16] JSLDE[1] DLGF

PIE
1 33.2 16.3 34.2 30.7 34.2 35.5
2 46.5 24.1 51.8 45.4 52.7 54.1
3 54.6 27.6 57.6 52.6 58.3 61.4

UMIST

1 37.6 38.3 38.1 42.2 44.2 55.9
2 47.8 46.7 47.5 50.1 53.3 63.6
3 58.0 53.3 57.6 56.7 63.0 68.6

EXT-Yale

1 47.9 41.8 47.9 42.9 46.4 50.8
2 63.4 59.4 63.3 57.3 65.4 66.7
3 67.1 63.4 67.2 64.7 68.8 70.1

Caltech101

1 47.8 61.3 47.5 67.3 66.7 69.5
2 65.8 67.7 65.9 72.2 75.3 78.2
3 73.3 71.2 73.0 78.2 78.1 80.1

Table 4: Best average classification accuracy in (%) on the MNIST
dataset (Unlabeled data).

Data type p MLAN SLDA[14] ISDA[11] JSLDE[1] DLGF

Unlabeled

5 74.1 64.6 63.6 81.7 89.2
10 81.8 79.6 78.4 86.0 90.1
20 84.6 86.3 85.1 88.8 91.9
30 86.3 90.5 89.9 91.6 93.5
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(a) soft label smoothness.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration

0

0.2

0.4

0.6

0.8

1

S
c
a
le

d
 V

a
lu

e

MNIST Dataset

v data

v label

(b) projected data smoothness.
Figure 1: Scaled value of the adaptive coefficients (AC) versus the num-
ber of iterations on the MNIST dataset.
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