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Abstract
Spectral rendering encompasses methods aimed at generat-

ing synthetic imagery with realistic color expression by simulating
the interaction of light with different materials and wavelengths.
Unlike conventional rendering methods that use tristimulus RGB
values as input, spectral rendering uses the full spectrum of light
as input, which allows for more accurate color reproduction and
more realistic visual effects. Spectral rendering poses many new
challenges in terms of input data acquisition, memory use, and ef-
ficiency. In this paper, we provide a comprehensive survey of the
recent advances and open problems in spectral rendering, cover-
ing the main stages of the rendering pipeline such as spectrum
sampling and reconstruction, RGB to spectrum upsampling, and
selection of paths and wavelengths at rendering. We also discuss
the applications that benefit from spectral rendering. Our goal
is to provide an elaborate overview of the current state-of-the-art
and to identify future research directions and opportunities in this
exciting field.

Introduction
The recent advances in display technologies and the related

image processing methods, such as super-resolution, high dy-
namic range, and wide color gamut, have steered the demand of
consumers toward even better visual quality in terms of higher
resolution, faster computation, deeper scene depth, and more re-
alistic color expression. This paper addresses the challenge of
realistic color expression, which requires the displayed colors to
match the colors perceived in the real world. This requires not
only reproducing the surface color of an object, but also consid-
ering environmental factors such as light and material properties.
To achieve this, spectral rendering uses spectral data as the input
for the rendering process instead of conventional RGB tristimulus
values.

Recent research on spectral rendering has focused on spe-
cific areas, such as spectral sampling, spectral upsampling,
spectral rendering techniques, or particular applications, in-
cluding metamerism, subsurface scattering, color extinction, or
wavelength-dependent effects [26, 27]. In this paper, we aim to
address spectral rendering from the point of view of the entire
pipeline, from input to rendering to display. We review each stage
of the pipeline as addressed in the recent research with the goal
of formulating unsolved research questions and identifying future
research directions and their applicability potential.

Spectral Rendering
Spectral rendering determines the color of the display pixel

corresponding to the scene utilizing the spectra. Fig. 1 illustrates
the difference between two inputs for color rendering: spectral
reflectance and RGB values. The latter depends on color spaces,
which are color models covering a diverse range of colors, as

marked by triangles on the left side of Fig. 1, while the former
utilizes the constant spectrum for a particular color to maintain
the brightness of the color under different illumination and pro-
vide color fidelity to several light bounces.

Figure 1: RGB tristimulus values versus spectral reflectance.
The triangles on the chromaticity diagram show different color
gamuts, and the circles of the same color represent the white
points in the corresponding color space. The red circle shows
the location of the example color.

Figure 2: Benefits of spectral rendering for representing light and
material properties, and wavelength-dependent effects.

Spectral rendering can efficiently express light, material, and
pattern properties (Fig. 2, upper row). Metamerism is a phe-
nomenon in which the colors of the same object appear differ-
ently under direct and indirect illumination. The color bleeding
from the wall surface also affects metamerism. Subsurface scat-
tering is a material-related property commonly found in the skin
and clothes texture. Color extinction refers to the color becoming
sparse by participating media, such as fog. Wavelength-dependent
effects (Fig. 2, lower row) cannot be achieved by RGB-based ren-
dering alone while physical-based rendering can be performed
naturally by tracking the wavelengths per path, thus including all
wavelength-dependent effects.
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Figure 3: Schematic diagram of the spectral rendering pipeline.

Fig. 3 presents the three stages of the entire spectral ren-
dering process. The input stage is about obtaining spectral data
from the real-world scene and efficiently representing it. Opti-
mal wavelengths and corresponding ray paths are determined and
rendered during the rendering stage. Finally, the output stage con-
verts the output spectrum into the RGB components in the display
color space. The following sections explain the challenges and
solutions for each stage in detail.

Input
To render with spectral inputs, one needs to consider sev-

eral aspects: how to acquire the spectral data from the real-world
scene, how to represent (sample) the continuous spectrum by dis-
crete models for efficient data manipulation and storage, and how
to convert (upsample) RGB data in a specific color space to spec-
tral data if the scene spectrum is not available. The latter is essen-
tial also for providing compatibility between spectral rendering
pipelines since most rendering tools and pipelines are designed
for RGB data.

One can distinguish spectra of natural colors that are smooth
in general and spectra of synthetic colors that are spiky due to an
abnormal spectrum shifting via fluorescent materials [16]. Spec-
tral data can be acquired directly from the real-world scene via
multispectral or hyperspectral cameras. The resulting spectral im-
ages are represented in three dimensions, spanning the 1D spec-
tral domain and the 2D spatial domain. Computational snapshot
hyperspectral cameras can obtain an entire spectral rectangular
cuboid within a single detector integration period via amplitude
or phase modulation [1, 2, 7, 9, 10, 24, 30]. However, the criti-
cal drawbacks of those spectral cameras are their limited resolu-
tion and incompatibility with different camera lenses. Addressing
these limitations is important for their practical use in production
pipelines.

Spectral Sampling
Spectral sampling refers to the process of representing the

continuous spectrum by a discrete model for subsequent storage
and processing (c.f. Fig. 1 lower right). A continuous spectrum
is directly available when using synthetic scenes. For the case
of real-world spectral data, the discrete model must be fit by us-
ing the available discretely-sensed data. In both cases, the aim
of the discrete model is to ensure the (perfect) reconstruction of
any desired spectral component, a process which is referred to as
spectral reconstruction.

An available continuous spectrum can be simply sampled

(a)

(b)

Figure 4: Spectral sampling approaches: Point-based and Basis
function-based. (a) a smooth spectrum case for natural colors. (b)
a spiky spectrum case mainly for fluorescent colors.

densely enough. In literature, this has been referred to as point-
based sampling. Fig. 4 illustrates it by the blue points, which
are used to represent the target spectrum on the black solid line.
The points can be set by Gaussian quadrature or Riemann summa-
tion [18]. Gaussian quadrature effectively integrates polynomials
over general weighting functions [5]. Riemann summation is the
weighted sum of equally spaced samples, where the weight is the
distance between the sample wavelengths [19]. The question is
how dense the point grid should be. An insufficient number of
sampling points results in color noise, i.e., chromatic aberration.
It is a general method applicable to any spectra shape, whether
smooth or spiky. However, it is not the best choice for spiky
spectra in terms of processing and storage efficiency. Specifi-
cally, if the blue points at the peak area of Fig 4b are missing,
sampled points cannot represent the spectrum shape accurately,
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which leads to color errors.
A more elegant signal processing approach is to decompose

the spectrum over a set of basis functions, with the aim to match
the smoothness of the underlying natural-color continuous func-
tion by a weighted sum of a few basis functions [4, 21]. Widely
used basis functions are the box function, harmonic basis func-
tions, or Gaussians, and the targeted discrete model is provided
by the weighting coefficients in the sum. In addition, characteris-
tic vector analysis and principal component analysis (PCA) have
been used to select the best set of basis functions in a purely dis-
crete setting [18]. The advantage of basis function-based repre-
sentation is that the spectrum is represented with fewer parame-
ters compared to the point-based representation. An open research
question is how to represent both smooth and spiky spectra simul-
taneously on a suitable basis. It is worth noting that the amount
of computation rises substantially when more basis functions are
utilized to represent the shape.

Upsampling
Upsampling can be considered as a particular case of spectral

reconstruction from a limited set of spectral components, most of-
ten from RGB values. It is an ill-posed problem, particularly due
to the metamerism that results in an infinite number of spectra
for the same RGB combination. Upsampling assumes a trade-off
between performance, speed, and storage while aiming at achiev-
ing a unique spectrum per chromaticity and taking into account
the range ([0, 1]) and the smoothness of the spectral reflectance
shape. There are two general approaches for upsampling: basis
function-based and diagram-based.

The concept of discrete (parameterized) models of spectra
based on basis decomposition is general enough and can be as-
sumed also for reconstructing spectra from tristimulus values.
Such models facilitate simple and practical solutions with fast
computation. Frequently, they represent natural colors in the visi-
ble range as a smooth spectrum formed by a weighted sum of the
primary color spectra (SR,SG,SB)

S(λ ) = ωRλ
SR +ωGλ

SG +ωBλ
SB, (1)

where S(λ ) is the target reflectance and ω is the weight per pri-
mary spectrum [3, 13, 14, 17, 20]. Fig. 5a illustrates how the tar-
get spectrum (the black solid line) is formed by a weighted sum
of the RGB (the dashed lines). The primary spectra refer to the
RGB or XYZ spectra, which can be derived through different ba-
sis functions, including CIE XYZ spectrum matching functions
(x̄, ȳ, z̄) in the following integral equation:

X =
∫

λ

S(λ )I(λ )x̄(λ )dλ ,

Y =
∫

λ

S(λ )I(λ )ȳ(λ )dλ ,

Z =
∫

λ

S(λ )I(λ )z̄(λ )dλ ,

(2)

where S(λ ) is the unknown spectral reflectance and I(λ ) is an il-
luminant spectral power distribution (SPD). The CIE XYZ match-
ing functions are well-known spectral sensitivity curves providing
numerical descriptions of the CIE standard observer’s color re-
sponse. The XYZ tristimulus values are defined in the uniform
color space and can be converted from RGB values in various
color spaces via a transformation matrix.

The target spectrum reconstruction accuracy in the basis
function-based approaches clearly depends on the spectrum rep-
resenting functions. To simplify the decomposition, the box func-
tion has been considered instead of the basic CIE XYZ spectrum
matching functions, to maximize the brightness at a specific color
saturation. According to MacAdam [13], a single box function
is insufficient to express the smoothness of spectral reflectances
for natural colors that results in unwanted color shifts under indi-
rect illumination. Smits [20] has weighted the spectral difference
between RGB primary and CMYK secondary colors when com-
bining the spectra of white and RGB colors to ensure smoothness
in the target spectrum. The primary and secondary spectra are
derived from ten precomputed spectra using box functions. Al-
though it has achieved accurate smooth spectra in sRGB color
space, round-trip errors increase at wider color gamuts and with
multiple inter-reflections.

(a)

(b) (c)

Figure 5: Upsampling Methods: (a) a basis function-based ap-
proach, (b) a 2D chromaticity diagram-based approach, and (c) a
3D cube-based approach. Each black and gray point value is a
measured spectrum or a set of coefficients (e.g., 2nd-order poly-
nomials, Fourier series). .

Using a box function as the basis for the spectrum represen-
tation could not achieve maximum brightness when color gamuts
got wider than sRGB, so there has been a trial of adopting differ-
ent basis functions. For example, Otsu et al. [17] have tried to
optimize the spectrum representation by searching for a set of ba-
sis functions using PCA, a data-driven learning method based on
measured spectra [11]. Here, PCA can produce authentic smooth-
ness since it selects a set of three basis functions composing the
spectrum through the real spectra. They accelerate the compu-
tation speed by pre-defining the three basis functions for each
cluster that classify the measured reflectances according to XYZ
values. Clustering had benefits for computation, but it caused an
issue with the adjacent colors located at the boundaries of dif-
ferent clusters. The round-trip errors occur because their spectra
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look quite different due to different pre-defined basis functions
per cluster. Moreover, the critical drawback is out-of-range val-
ues in the output spectrum, such as negative regions.

Besides searching for the basis functions for spectrum rep-
resentation, Mallett and Yuksel [14] and Burns [3] have concen-
trated more on finding the weighting factor in the spectrum rep-
resentation. They get primary spectra using CIE XYZ spectrum
matching functions. Mallett and Yuksel [14] have used RGB tris-
timulus values as weights and conducted spectral primary decom-
position, which searches each primary spectrum separately. As-
suming Sred(λ ) + Sblue(λ ) + Sgreen(λ ) = 1, the spectrum S(λ )
can fulfill the energy-conserving condition. They have used sRGB
tristimulus values under D65 illumination as an input, thus getting
robust results under different illuminants. However, the method
has limited performance at wide gamuts because it cannot ex-
press highly saturated colors. Burns [3] has applied a hyper-
bolic tangent-based function (tanh(x)+1)/2 to the estimated tar-
get spectrum via CIE XYZ spectrum matching functions for the
[0, 1] spectral range condition. Optimization has been done by
minimizing the square of the reflectance slope to find a smooth
spectrum shape. The resulting colors are pleasant within the ob-
ject color solid, while the boundary values exhibit non-smooth
square-shaped spectra.

The basis function-based approach does not work well for
colors that are not formed by combining primary colors. For
example, subtractive colors, such as yellow, magenta, and cyan,
are challenging because any overlap between the primary spec-
tra causes undesired nonlinear absorption during the linear color
combination. Specifically, the purple spectrum demonstrates con-
centrated energy at both long and short wavelengths, with little
power at medium wavelengths. On the other hand, the yellow
spectrum contains short waves throughout the visible wavelength
range.

Diagram-based methods structure the RGB-to-spectrum
mapping process using a 2D chromaticity diagram and a 3D cube-
shaped lookup table. A diagram-based approach can address more
complex representative coefficients for each spectrum of given
RGB values in intuitive and memory-efficient lookup tables. Each
point in a diagram has a measured spectrum or a set of coeffi-
cients (e.g., 2nd-order polynomials, Fourier series) for the cor-
responding coordinates. Meng et al. [15] have interpolated the
color gamut area as a grid system in Fig. 5b with an equal bright-
ness assumption (X+Y+Z = 1). The target spectrum is estimated
by weighting the adjacent points. The grid interval is reduced in
half at the color gamut boundary to alleviate artifacts due to in-
terpolation. Since it is critical to accurately and quickly choose
which neighboring points to use, they have divided the cases into
two categories: inner and boundary points. Subsequently, bilin-
ear interpolation has been employed for inner points and trian-
gular interpolation for boundary points. Each grid point has a
pre-measured spectrum, which guarantees the smoothness of the
estimated spectrum. Since the suggested grid covers the whole
chromaticity diagram, it performs well even in wide color spaces.
However, the performance is strongly influenced by the point den-
sity of the grid, which is directly related to the memory require-
ment. Also, in this system, they did not consider the spectrum
range constraints, and re-scaling in the end to fit in the [0, 1] range
caused the color error.

3D cube-based lookup tables illustrated in Fig. 5c expand

one more dimension from the 2D table for more degrees of free-
dom, e.g., 3D coordinate system instead of 2D chromaticity coor-
dinates, more adjacent points, or brightness factors [8, 22, 23, 25].
Wang et al. [25] increase the table dimension for the XYZ coordi-
nate system and more adjacent points when constructing the out-
put spectrum. The voxel includes the spectral reflectances from
input XYZ based on measured 1400 reflectances and generated
reflectances for saturated colors. The saturated color spectra gen-
erated via Bouguer’s law in Eq. 3 primarily aim at achieving the
wide gamut of color spaces

Ssat(λ ) = 10−Smeas(λ )l , (3)

where Ssat is the spectral reflectance of a saturated color, and
Smeas is the measured reflectance. When the light path length l
is increased for the same wavelength λ , the color becomes more
saturated. A target spectrum at the red point in Fig. 5c is derived
by linear interpolation of the eight closest colors among measured
and generated reflectances marked with gray voxels at the yellow
cube in Fig. 5c. The eight XYZ values of the closest colors form
the cube, which surrounds the target XYZ value to satisfy the re-
flectance value condition. The target spectrum is calculated on
the same-shaped cube as the XYZ cube. It can achieve smooth-
ness of spectrum like other measured data-based methods. Explic-
itly considering the saturated color spectra differentiates from the
methods so far, but the reliability of the generated spectra needs
to be examined carefully.

For a more memory-efficient 3D lookup table, the spectrum
is parameterized by spectral coefficients that support fast trans-
formation into the spectrum [8, 22]. For example, the second-
order polynomial coefficients (ci) of Jakob and Hanika [8] in Eq.
4 significantly save the memory, where runtime memory usage
is comparable to saving three RGB floats. The coefficients are
calculated by the CERES solver, and easily transformed into the
spectrum through the sigmoid function in Eq. 5.

S(λ ) = Sigmoid(coλ
2 + c1λ + c2), (4)

where

Sigmoid(x) =
1
2
+

x

2
√

1+ x2
. (5)

The sigmoid function simplifies the evaluation and reflects the en-
ergy conservation requirement of the nonlinear mapping. On the
other hand, Tódová et al. [22, 23] have defined the spectrum using
Fourier coefficients, i.e., a combination of trigonometric moments
and the 0th moment, for the moment representations.

Furthermore, the 3D cube coordinates of Jakob and Hanika
[8] are more logically improved than basic RGB coordinates.
They have designed the 3D cube by extending the three quadri-
lateral areas of the optimized polynomials via a brightness fac-
tor for more precise smoothness in the brightest colors. Specif-
ically, connecting red, green, and blue points to white points
and each complementary color in the sRGB color gamut con-
structs the polynomial rectangular area. The proposed cube struc-
ture demonstrates remarkable performance over smoothness and
a wide gamut. Thus, the follow-up work by Tódová et al. [22, 23]
expands the 3D cube of Jakob and Hanika with a customization
option: adding extra voxel values based on user-selected mo-
ment representations with unique IDs at specific RGB colors. The
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wide gamut beyond sRGB is addressed by node clipping, which
matches wide gamut colors to the closest boundary sRGB value
along the axis connected to the center of the destination gamut
while preserving high saturation. The customization option at the
upsampling lookup table is interesting and has potential, espe-
cially in the artistic view, but there is lots of room for improve-
ment in data structure and computation speed.

Renderng Process
Spectral rendering determines the spectral contributions to

a pixel by computing multiple reflection paths from each light
source to the viewer, with spectral data as sensed, modeled, and
represented in the input stage. The main challenge in the spec-
tral rendering process is how to select the ray paths and wave-
lengths to trace for optimal performance. We compare single-
wavelength and multiple-wavelength tracing methods and analyze
various techniques for multiple-wavelength tracing.

The first attempt at spectral rendering was using a sin-
gle wavelength per path by adding a wavelength dimension as
one dimension of the Monte Carlo path integration. It achieves
physically-based rendering by tracing the wavelength but causes
significant color noise relative to RGB rendering due to the loss
of color information. That is, RGB has three color components,
while a single wavelength represents one color component, so
only one-third of the color information can reach the final pixel.

To transmit more color information, Evans and McCool [6]
have produced a cumulative normalized SPD of stratified random
wavelengths to track multiple wavelengths per path. That is, the
average SPD of multiple random wavelengths inside a wavelength
cluster assigned to a specific optical path is transferred to the pixel
sensor. The wavelengths are importance-sampled using normal-
ized illuminant SPDs. Multiple wavelengths within the same clus-
ter may follow a single path through importance sampling of re-
flection directions. While Monte Carlo rendering decides the path
from a light source to the pixel, multiple spectral rendering de-
cides the path depending on the wavelength.

(a) Uniform Wavelength Sam-
pling

(b) Non-uniform Wavelength
Sampling

Figure 6: Multiple wavelength spectral rendering techniques,
where the distance or the area α = β . The solid black line is
the current hero wavelength that selects the supplementary wave-
lengths indicated by the dashed lines. The solid white lines are
the other hero wavelengths.

Other multiple wavelength tracing methods have developed
actively following Evans and McCool [6]. Among them, the
most remarkable work is a uniform wavelength sampling method
known as hero wavelength sampling [29]. Hero wavelength sam-
pling effectively solves the color noise problem with trivial com-
putation overhead. Hero wavelengths are determined randomly
to steer the direction of a light path without spectral aliasing.

With respect to a hero, i.e. central wavelength, constantly spaced
supplementary wavelengths are selected to cover all wavelength
ranges as shown in Fig. 6a. The jth supplementary wavelength λ j
at a given hero wavelength λh is mathematically described as

λ j(λh)= (λh−λmin+
j

C
(λmax−λmin))mod(λmax−λmin)+λmin,

(6)

where λmin and λmax are the minimum and maximum wavelength,
respectively, and the total number of supplementary wavelengths
is C = 3. Assuming every wavelength generates a particular path,
supplementary wavelengths follow the given path generated by
a hero wavelength via the combined sample density, which is
the probability of sampling a set of wavelengths on a fixed path.
The set of three uniformly-distributed supplementary wavelengths
and a hero wavelength per path is integrated with around equal
weighting driven from the balance heuristic. Equal weighting
raises the advantages of using several wavelengths in the case
of smooth spectra. On the other hand, it is not efficient if the
spectrum has a strong wavelength dependency, where the spectral
energy is concentrated on a particular region.

For efficient selection of wavelengths with high energy in
hero wavelength sampling, non-uniform wavelength sampling
provides more freedom with flexible hero wavelength sampling
or supplementary wavelength sampling that is not bound by the
hero wavelength. Since non-uniform wavelength sampling can
select informative wavelengths where the energy is concentrated,
as demonstrated in Fig. 6b, it can achieve equivalent performance
as uniform wavelength sampling with tracing fewer wavelengths.

A task-specific non-uniform wavelength sampling method
has been proposed by Kutz et al. [12] who have used weighted
delta tracking to select hero wavelengths that prevent wavelength-
dependent extinction in the participating media. The weights are
derived from the collision probability at the maximum or average
across all wavelengths. Eliminating null collisions allows efficient
spectrum rendering in participating media with hundreds of scat-
tering events in each direction. As a result, color noise and bright
color outliers are decreased. A more general method has been
proposed by West et al. [28] who have sampled the supplemen-
tary wavelengths using stochastic multiple importance sampling
(SMIS), while hero wavelengths have been selected randomly as
original hero wavelength sampling. In particular, the sampling
probability density function of the supplementary wavelengths
is proportional to the product of the observation response and
the light source SPDs and creates a stratified probability pattern.
SMIS demonstrates flexible importance sampling of wavelengths
on the continuous spectrum domain and outperforms the original
hero wavelength sampling in locating the peak energy wavelength
with less color noise.

Output
The output color of the spectral rendering is in the form of

a spectrum and needs to be converted to the RGB tristimulus val-
ues of the display color space. First, the standard XYZ matching
functions in Eq. 2 transform the spectrum into XYZ values of the
uniform color space. Second, the transformation matrix converts
the XYZ values into the output RGB values in the display color
space. The two-step process adequately handles the spectrum-to-
RGB conversion task in the output stage.
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Conclusions
To achieve realistic color expression considering environ-

mental factors such as light and material properties, spectral ren-
dering requires spectral data as the input for the rendering process
instead of conventional RGB tristimulus values. This paper has
reviewed the entire spectral rendering pipeline, from input to out-
put. Finding spectral representations at the input stage is essential
for the subsequent stages. Since the high peak reflectance area is
informative for identifying the major wavelengths, the extended
spectra representation can be applied at the rendering stage. The
output stage corresponds to the inverse of upsampling to obtain
the RGB values of the display color space from the output spec-
trum. When looking at the entire spectral rendering stages at once,
discovering high-energy regions of the spectrum is a common is-
sue, though there are various tasks in each stage. Consequently,
joint optimization of various stages with common spectral repre-
sentation information might be a future research direction. Fur-
thermore, backpropagation can be applied to update the main
wavelength selection when addressing spectral rendering from a
holistic perspective.
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