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Abstract 

Although CNN-based classifiers have been successfully 
applied to object recognition, their performance is not consistent. In 
particular, when a CNN-based classifier is applied to a new dataset, 
the performance can substantially deteriorate. Furthermore, 
classification accuracy for certain classes can be very low. In many 
cases, the poor performance of ill-performing classes is due to 
biased training samples, which fail to represent the general 
coverage of the ill-performing classes. In this paper, we explore how 
to enhance the training samples of such ill-performing classes based 
on coverage optimization measures. Experimental results show 
some promising results. 

1. Introduction  
CNN-based classifiers have been successfully applied to 

objection recognition, outperforming conventional classification 
methods [1-9]. However, there are noticeable performance 
differences between training and validation data (Fig. 1) and the 
performance can deteriorate when applied to a new dataset (e.g., 
ObjectNet).  

When a CNN-based classifier trained using the IMAGENET 
dataset is applied to the ObjectNet dataset, the classification 
accuracy can be very low for some classes (Fig. 2). When the CNN-
based classifier was applied to other datasets (ImageNet-Sketch, 
ImageNet-Rendition), the performance also deteriorated noticeably 
as shown in Fig. 2.  

If class-wise performance is compared, the performance 
differences raise more concerns. Fig. 3 shows class-wise 
performance differences between ImageNet and the other three 
datasets (ObjectNet, ImageNet-Sketch, ImageNet-Rendition). For 
some classes, the differences are very large. For example, for the 
pitcher class (ObjectNet), the classification accuracy is zero. The 

reason for this poor performance is that the pitcher types of the 
ImageNet dataset are different from those of the ObjectNet dataset 
(Fig. 4). Most of the ImageNet pitcher classes are glasses or 
porcelain, whereas most of the ObjectNet pitcher classes are plastic. 
Due to this kind of biased training data, the performance of CNN-
based classifiers can deteriorate for new test samples.  

It would be very difficult to collect training samples that cover 
all types of certain classes. If performance deterioration occurs due 
to biased training samples, the training samples of such ill-
performing classes need to be enhanced to obtain more consistent 
performance. Adding more training samples to ill-performing 
classes may not work adequately. Also, increasing the number of 
training samples of certain classes may produce undesirable effects 
since the classes may be over-represented during the training 
procedure. 

In this paper, we investigate how to enhance the training 
samples of such ill-performing classes based on coverage 
optimization measures. 

 
• Fig. 2. Performance on new datasets (ResNet18). 

 
Fig. 1. Performance differences between training and validation data. 
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Fig. 3. Class-wise performance differences. 

2. Method  
2.1 Feature Space 

Researchers have proposed various algorithms to add training 
samples systemically, which include uncertainty sampling [10], 
query-by-committee [11], ensemble approach [12], Bayesian 
approach [13], and learning loss [14]. 

In this paper, we defined an uncertainty metric to add new 
training samples without redundant samples. For high-dimensional 
data with a large number of classes, it is difficult to measure the 
usefulness of new training samples for performance enhancement. 
To solve this problem, we first find an effective feature space where 
the usefulness of new training samples can be effectively measured. 
Then, for ill-performing classes, we first examined their 
distributions in the feature space.  

For example, a training sample of the ImageNet dataset is an 
image (224x224x3). We want to add a new image if the new image 
is substantially different from the existing training images. Defining 
such a metric in the input space (224x224x3) is rather difficult. The 
number of nodes of the final layer of most CNN-based classifiers is 
the same as the number of classes. We can use the values of these 
nodes as a feature vector. However, since the number of classes of 
the ImageNet dataset is 1000, it is difficult to define a metric that 
measures the usefulness of new training samples. 

In this paper, we selected the top three nodes of the final layer 
and used the three values to define a feature space.  Although the 
top three nodes may be different for each input image, we found that 
the variations are very small. For example, Table 1 shows the top 
three node percentiles for the ‘mitten’ class. For 88.8%, the top three 
nodes are identical. We used these dominant top three nodes as a 
feature space. 

 
Table 1. The top three node percentiles for the ‘mitten’ class. 

 

 
 

Fig. 5 shows the distributions of the existing training samples of 
the ‘sock’ classes and candidate training samples in the feature space. 
It can be seen that most of the candidate training samples show 
similar characteristics and may not be helpful in enhancing the 
performance of ill-performing classes. 
 

ImageNet index 658 806 474 911 496

Output count 1099 35 21 19 14

Proportion 84.5% 2.7% 1.6% 1.5% 1.1%

 

 
Fig. 4. (a) the pitchers of the ImageNet dataset are glass, metal or porcelain, (b) the ObjectNet dataset has many plastic 

pitchers. 
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(b) 

 
(c) 

 
(d) 

Fig. 5. Training sample distributions in the feature space 
(Sock). (a) 3D distribution, (b-d) 2D distributions. 

 
2.2 Uncertainty Metric for Usefulness 

We want to add a new training image that is substantially 
different from the existing training images. We defined an 
uncertainty metric as follows (Fig. 6): 

 
𝑚௨௡௖௘௥௧௔௜௡௧௬ = 𝑚𝑖𝑛௧∈௧௥௔௜௡௦௘௧(ฮ𝑛𝑒𝑤 𝑑𝑎𝑡𝑎 − 𝑡ฮ) 

 
We used the Euclidean distance in the dominant 3-dimensional 
space. A new image is added to the train set if 
 

𝑚௨௡௖௘௥௧௔௜௡௧௬   >   𝑡௨௡௖௘௥௧௔௜௡௧௬ . 

For a small value of   𝑡௨௡௖௘௥௧௔௜௡௧௬ , more samples will be selected 
(Table 2). 

 

 
Fig. 6. Measuring the uncertainty metric. 

 
Table 2. Number of selected images for different threshold values. 

 

 

3. Experimental results  
We selected seven ill-performing classes for the experiments. 

Table 3 shows the seven classes and the number of new images, 
which were manually collected using a search engine. 

 
Table 3. Selected seven classes. 

 
 

 

Fig. 7. ResNet architecture. 

We used the ResNet architecture (Fig. 7) for the experiments. 
We chose it since we needed to train the network many times. We 
trained the network using the original ImageNet dataset and the 
selected new images with different threshold values (t_uncertainty: 
0.25, 0.3, 0.35, 0.4). We used the pretrained weights as initial 

0.25 0.3 0.35 0.4
487 218 209 200 187
588 745 718 678 644
658 676 665 652 629
737 332 318 284 256
806 854 835 819 800
879 295 280 260 253
930 773 752 718 671

Average 556 540 516 491

t_uncertainty
Index

ImageNet index class name number of new images
487 cellular telephone 227
588 hamper 783
658 mitten 691
737 pop bottle 359
806 sock 873
879 umbrella 317
930 french loaf 813
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weights. The batch size was set to 650 and the max epoch was set to 
90. Fig. 8 shows the selected new training images for the ‘Mitten’ 
class.  

 

 

 

 
Fig. 8. Selected training images for 𝑡_𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 0.3 

(Mitten). 
 
Tables 4-7 show the performance improvement for the four 

datasets (ImageNet, ObjectNet, ImageNet-Sketch, ImageNet-
Rendition) when the training samples of the seven ill-performing 
classes were enhanced using the proposed algorithm. We also used 
all the new training images for comparison (‘passive’). For some 
classes, the improvement is noticeable. For example, for the ‘French 

loaf’ class of ObjectNet, the classification accuracy was changed 
from 1.8% to 15.4%. For the ‘umbrella’ class of ImageNet-Sketch, 
the classification accuracy was changed from 32% to 70%.  

 

4. Conclusions 
In this paper, we explored how to improve the coverage of 

training data by adding new training samples for ill-performance 
classes without introducing redundant training samples. To address 
this problem, we first find an effective feature space where the 
usefulness of new training samples can be measured. Experimental 
results show performance improvement for some ill-performance 
classes. 
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Table 4. Performance improvement for the ImageNet dataset 

 
 

Table 5. Performance improvement for the ObjectNet dataset 

 
 

Table 6. Performance improvement for the ImageNet-Sketch dataset 

 
 

Table 7. Performance improvement for the ImageNet-Rendition dataset 

 

0.25 0.3 0.35 0.4

cellular telephone 72.0% 70.0% 68.0% 74.0% 68.0% 74.0%

hamper 66.0% 70.0% 64.0% 64.0% 68.0% 60.0%

mitten 64.0% 74.0% 70.0% 72.0% 76.0% 70.0%

pop bottle 58.0% 70.0% 72.0% 68.0% 74.0% 66.0%

sock 60.0% 60.0% 68.0% 62.0% 64.0% 60.0%

umbrella 50.0% 50.0% 52.0% 56.0% 54.0% 52.0%

french loaf 56.0% 58.0% 58.0% 58.0% 56.0% 58.0%

Average 60.9% 64.6% 64.6% 64.9% 65.7% 62.9%

ImageNet Pretrained Passive
Proposed (t_uncertainity)

0.25 0.3 0.35 0.4

cellular telephone 4.8% 11.3% 12.6% 12.1% 10.4% 10.8%

hamper 3.1% 9.8% 9.8% 10.4% 9.8% 11.0%

mitten 2.1% 11.1% 12.5% 11.1% 10.4% 14.6%

pop bottle 4.3% 17.7% 16.3% 17.7% 17.7% 19.1%

sock 2.2% 9.3% 11.0% 11.0% 11.0% 14.8%

umbrella 3.1% 6.3% 5.6% 7.5% 3.8% 6.3%

french loaf 1.8% 11.8% 14.5% 14.9% 15.4% 14.9%

Average 3.0% 11.0% 11.8% 12.1% 11.2% 13.1%

ObjectNet Pretrained Passive
Proposed (t_uncertainity)

0.25 0.3 0.35 0.4

cellular telephone 11.80% 27.50% 23.5% 35.3% 21.6% 37.3%

hamper 11.80% 17.60% 17.6% 27.5% 23.5% 21.6%

mitten 3.90% 5.90% 5.9% 9.8% 11.8% 5.9%

pop bottle 5.90% 11.80% 17.6% 9.8% 9.8% 9.8%

sock 0.00% 34.00% 32.0% 38.0% 36.0% 40.0%

umbrella 32.00% 68.00% 64.0% 70.0% 62.0% 62.0%

french loaf 0.00% 2.00% 2.0% 3.9% 2.0% 3.9%

Average 9.30% 23.80% 23.2% 27.8% 23.8% 25.8%

ImageNet-Sketch Pretrained Passive
Proposed (t_uncertainity)

0.25 0.3 0.35 0.4

cellular telephone 9.70% 12.90% 11.30% 17.70% 12.90% 19.40%

hamper N/A N/A N/A N/A N/A N/A

mitten 0.00% 5.20% 5.20% 5.20% 6.50% 2.60%

pop bottle N/A N/A N/A N/A N/A N/A

sock N/A N/A N/A N/A N/A N/A

umbrella N/A N/A N/A N/A N/A N/A

french loaf N/A N/A N/A N/A N/A N/A

Average 4.80% 9.00% 8.20% 11.50% 9.70% 11.00%

ImageNet-
Rendition

Pretrained Passive
Proposed (t_uncertainity)
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