
Examining the Effects of Compression on Deep Learning
Remote Photoplethysmography
Benjamin Sporrer, Nathan Vance, Jeremy Speth, Patrick Flynn
University of Notre Dame
{bsporrer, nvance1, jspeth, flynn}@nd.edu

Abstract
Remote photoplethysmography (rPPG) is a camera based

technique used to estimate a subject’s heart rate from video. It
exploits the difference in light reflection between blood-dense tis-
sue and other tissue by detecting small variations in the color
of RGB pixels on skin. While often undetectable to the human
eye, these subtle changes are easily detectable from high-quality
video. Working with high-quality video presents many challenges
due to the amount of storage space required to house it, comput-
ing power needed to analyze it, and time required to transport it.
These problems can be potentially mitigated through the use of
compression algorithms, but modern compression algorithms are
unconcerned with maintaining the small pixel intensity variations
within or between frames that are needed for the rPPG algorithms
to function. When provided with compressed videos, rPPG algo-
rithms are therefore left with less information and may predict
heart rates less accurately. We examine the effects of compres-
sion on deep learning rPPG with multiple commonly used and
popular compression codecs (H.264, H.265, and VP9). This is
done at a variety of rate factors and frame rates to determine a
threshold for which compressed video still returns a valid heart
rate. These compression techniques are applied against multi-
ple public rPPG datasets (DDPM and PURE). We find that rPPG
trained on lossless data effectively fails when evaluated on data
compressed at compression constant rate factors (CRFs) of 22
and higher for both H.264 and H.265, and at a constant-quality
mode of CRF above 37 for VP9. We find that training on com-
pressed data yielded less accurate results than training on loss-
less or less compressed data. We did not find any specific benefit
to training and testing on data compressed at identical compres-
sion levels.

Introduction
Remote photoplethysmography (rPPG) relies on small vari-

ations in RGB pixel intensity to signal the change in a subject’s
blood volume. These fine details are readily present in high-
quality losslessly compressed videos, but such videos are very
challenging to work with due to storage and computational costs.
The ability to run rPPG algorithms on compressed videos is thus
highly sought after [1, 2].

Modern video compression techniques typically maintain vi-
sual quality as perceived by humans and are therefore uncon-
cerned with the loss of subtle information necessary for rPPG
algorithms. In 2D image arrays, pixels are typically correlated
spatially and information unnecessary for the human visual sys-
tem is removed [3]. Since each picture is coded without reference
to other pictures in the video sequence, this method of compres-

sion is known as intra coding. In video sequences, temporally
correlated pixels also contain duplicated information [3, 4]. Em-
ploying compression techniques in the temporal domain is known
as inter coding and is the key technique that separates video com-
pression algorithms from standard image compression. By com-
bining both intra and inter coding techniques, modern video com-
pression algorithms are capable of maintaining visual quality with
smaller videos files, thereby enabling easier storage, movement,
and computation.

In order for rPPG algorithms to work effectively, they must
be able to detect near imperceptible color changes that occur as
blood passes under the skin. For individual pixels this change of-
ten happens at sub-noise levels, thus requiring a region of pixels
to be aggregated [2]. By discarding redundant spatial or temporal
information unneeded for visual fidelity, video compression algo-
rithms inherently discard the small variations used by the rPPG
algorithms. Even a small variation in the pixel information can
undermine the ability of a rPPG algorithm to derive a signal from
a specific region of pixels. As the amount of compression in-
creases, rPPG algorithms have less detailed pixel information to
work with and their ability to accurately predict heart rates begins
to suffer.

This paper explores the effects of the popular H.264, H.265,
and VP9 compression codecs on the ability of a temporally dilated
3DCNN architecture, RPNet [5], and a temporal shift convolu-
tional attention network, TS-CAN [6], to produce accurate pulse
waveforms. We perform these tests against two public rPPG spe-
cific datasets, DDPM [7] and PURE [8].

Related Work
During the early years of rPPG development, most tech-

niques were tested on relatively small, private datasets. Re-
searchers were more focused on generating and improving their
own effective rPPG algorithms than on investigating potential pit-
falls, such as the effects of compression. The development of pub-
lic datasets enabled the comparison of techniques on a reasonable
scale [5].

A seminal study on the effects of the H.264 and H.265
codecs on rPPG was first explored by McDuff et al. [2]. They
utilized the constant rate factor (CRF), a factor that controls the
adaptive quantization parameter to provide constant video quality,
in an effort to understand the trade-offs between a video’s visual
fidelity, bit rate, and the accuracy of the cardiac frequency pro-
duced from rPPG [2]. The main conclusion of their work was
that a considerable drop occurs in the signal-to-noise ratio (SNR)
between compressed and raw videos. S̆ptelı̀k et al. produced
an analysis on the progress and limitations of rPPG [9]. They

https://doi.org/10.2352/EI.2024.36.10.IPAS-248
© 2024, Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2024
Image Processing: Algorithms and Systems XXII 248--1



reported that the field was plagued by a lack of consistency in
accurately representing compression formats as well as a vague-
ness in general compression terminology. A comprehensive study
was performed by Rapczynski et al. [1] on two publicly available
datasets, PURE [8] and MMSE-HR [10]. The videos within each
database were compressed using the FFmpeg x264 and x265 im-
plementations of H.264 and H.265 at every other CRF between 1
and 37. A CRF of 0 was chosen as the lossless baseline since it
reduces data size by approximately 80% while still maintaining a
strong PPG signal.

Nowara et al. [11] investigated the effects of training a
deeply-recursive convolutional neural network (DRNN) tailored
for recovering physiological information on compressed videos
[12]. As in the initial compression study by McDuff et al. [2],
the dataset of facial videos collected by Estepp et al. [13] was
utilized. The attention based deep learning approach [12] was
trained directly on compressed data and it was determined that
there is significant advantage to training and testing on com-
pressed video of a similar CRF. This result suggests that arti-
facts related to the compression algorithm may be learned and ac-
counted for by the network’s architecture. Thus, the best method
for obtaining reliable rPPG from compressed data may be to have
specialized networks for each level of possible compression.

In an effort to establish a generalized model Nowara et al.
[14] performed a systematic test of the 12, 18, 24, 30, and 36
CRF levels across the H.264, H.265, and MPEG-4 compression
standards. They concluded that a network trained on videos of
the same or higher compression level can obtain reliable pulse
waveforms from compressed videos. Models trained on compres-
sion levels between CRF12 and CRF24 are capable of generaliz-
ing within that range, with models trained on higher compression
levels performing better.

Problem Definition
This paper explores how deep learning rPPG algorithms be-

have under three popular compression codecs, H.264, H.265, and
VP9. The goal is to determine an acceptable level of compres-
sion that allows the rPPG techniques to still accurately predict a
heartrate for each of the individual codecs. We compress rPPG
specific datasets with frame rates of both 30 FPS and 90 FPS
while varying the constant rate factor presets within FFmpeg.

We also explore how models trained on compressed data be-
have when tested on compressed data. This helps us to determine
if training on compressed data is a viable strategy to pursue in
balancing the need for accurate heart rates against storage and
processing requirements.

Background
To test the effects of compression algorithms on rPPG algo-

rithms, we examine three different compression codecs: H.264,
H.265, and VP9. These three codecs were chosen because they
have seen use in previous studies [14, 11, 1, 2, 9], are popular
among the general public, and are likely to remain in use for sev-
eral more years. We utilize the constant rate factor parameter for
the codecs (called constant quality in VP9) in order to maintain
the highest visual quality possible without limiting the exact bi-
trate or file size. Under this mode, videos are encoded with vary-
ing levels of compression in order to achieve a constant perceived
visual quality across frames of varying complexity and motion

[1, 2]. The compression algorithms are run with parameters as
close to the default FFmpeg implementation settings as possible.
The following sections provide background on compression, the
codecs we use, RPNet, TS-CAN, and our datasets.

Video Compression
Compression algorithms are ubiquitous in the modern com-

puting and internet landscape due to their ability to make an ac-
ceptable trade-off between bit rate, file size, and visual fidelity. In
general, codec algorithms use a combination of temporal predic-
tion between a sequence of video frames and spatial compression
within individual frames to eliminate redundant information. This
is done according to varying sets of parameters such that bit rates
and file sizes can be reduced while still presenting acceptable vi-
sual quality.

Codecs
H.264

With a market share upwards of eighty-three percent, the
most widely used and popular compression codec is H.264. For
H.264 the constant rate factor (CRF) varies in range between 0
and 51, with lower values signifying that less compression is per-
formed. For visual purposes, CRFs of 17 or 18 and below are
considered to be essentially lossless. In typical compression, a
range between 17 and 28 is consider to be acceptable with 23 be-
ing the selected default.

H.265
The H.265 codec was developed with the objective of pro-

viding increased compression efficiency over H.264. It provides
25-50% bitrate savings. The CRF functions identically to that
of H.264, but produces visual equivalent compression at higher
CRF values. The default CRF is 28 and should correspond to the
H.264 default CRF of 23 in terms of visual quality while using
only about half the file size.

VP9
The VP9 codec is an open-source video coding format that

was developed by Google and competes with H.265. The default
setting for VP9 is a two-pass encoding. We disabled the two-pass
encoding mode in favor of the “Constant Quality” mode. This
mode is similar to the CRF modes of H.264 and H.265. Despite
being named differently the parameter is still denoted as CRF in
the FFmpeg implementation and ranges from 0 and 63. The rec-
ommended range is between 15 and 35.

RPNet
We utilize our state of the art 3DCNN, RPNet, for rPPG anal-

ysis [5]. Our training regime seeks to minimize the negative Pear-
son correlation between the predicted waveform and ground truth
waveform. As data progresses through RPNet’s depth, the dila-
tion rates it uses for its temporal convolutions increases, resulting
in an increased receptive field. The dilated convolutions exam-
ine frames at the various past and future time points in order to
produce an effective output [5]. The architecture is comprised of
3D convolutions, max-pooling along the spatial dimension, and
global pooling across the feature maps [5].

248--2
IS&T International Symposium on Electronic Imaging 2024

Image Processing: Algorithms and Systems XXII



Preprocessing
To prepare videos for RPNet [5], we use the MediaPipe Face

Mesh tool [15] to crop the raw videos tightly around the face re-
gion. By using landmarks and cropping at the extreme points,
irregularities in the bounding box are reduced. Bicubic interpo-
lation is then applied to the cropped region in order to scale each
frame in the video clip down to 64×64 pixels.

These frames are used as input for RPNet such that each in-
put consists of 136-frame chunks. For every frame in a video, the
model predicts a waveform value. A stride of 68 frames (half the
length of the clip) is utilized between chunks. To produce a single
waveform the outputs are normalized, a Hann window function
is applied to the overlapping segments, and the results are added
together.

To establish ground truth we utilize the CHROM [16] pulse
detection technique to generate a face reference waveform that is
capable of estimating the offset between the finger and face. We
then calibrate the ground truth PPG signal by shifting it tempo-
rally such that the Pearson value is maximized between it and the
CHROM waveform.

Postprocessing
Due to our evaluation methods requiring inferred heart rates,

we take the Short-Time Fourier Transform (STFT) of the output
waveform with a window size of 10 seconds and a stride of 1
frame. This creates a 10-second latency tolerance for our sys-
tem in application scenarios. To reduce the quantization effects,
the waveform is padded with zeros such that the bin width in the
frequency domain is 0.001 Hz (0.06 bpm). After applying a band-
pass filter at .66 and 3 Hz (40 and 180 BPM), we select the highest
peak as the inferred heart rate [17].

TS-CAN
We investigate the effects of compression on the Tempo-

ral Shift Convolutional Attention Network (TS-CAN) [6]. This
network was developed to investigate both the temporal and spa-
tial features in a given video. Preprocessing of a video involves
cropping around a subject’s face and downsampling the resulting
cropped video to 36 x 36 pixels. Pairwise differences between
frames are calculated from the downsampled cropped video and
fed into the network along with the raw frames in 20-frame seg-
ments.

To match both refinements for increased spatial resolution
and the dimensions used with RPNet we increase the size of the
input video to 64 x 64 frames [18]. The model layers are grouped
following the rPPG-Toolbox implementation [19]. Postprocess-
ing of the resulting waveform is performed via the method de-
scribed in the ”Postprocessing” section outlined above.

Metrics
The metrics used to evaluate our data are the same as the

ones proposed by Speth et al. during the development of RPNet
[5]. Each video has its metrics calculated independently.

Mean Error (ME)
The ME captures the bias of the method in BPM, and is de-

fined as follows:

ME =
1
N

N

∑
i=1

(HR′
i −HRi) (1)

Where HR and HR′ are the ground truth and predicted heart
rates, respectively. Each contained index is the heart rate obtained
from the STFT window as specified in the ”Postprocessing” sec-
tion, and N is the number of STFT windows present.

Mean Absolute Error (MAE)
The MAE captures an aspect of the precision of the method

in BPM, and is defined as follows:

MAE =
1
N

N

∑
i=1

|HR′
i −HRi| (2)

Root Mean Squared Error (RMSE)
The RMSE is similar to MAE, but penalizes outlier heart

rates more strongly:

RMSE =

√√√√ 1
N

N

∑
i=1

(HR′
i −HRi)2 (3)

Waveform Correlation (rwave)
The waveform correlation, rwave, is the Pearson correlation

coefficient (r) between the ground truth and predicted waves.

Heart Rate Correlation (rhr)
The heart rate correlation, rhr, is the Pearson correlation co-

efficient (r) between the ground truth and predicted heart rates
over time.

Datasets
DDPM

The DDPM dataset [7] is an interviewer interviewee decep-
tion detection dataset in which a paid actress asked 24 questions
of a given subject. For each particular question subjects were in-
structed to either be truthful or deceptive, but otherwise were free
to behave as they saw fit. It is comprised of 86 sessions of simulta-
neous video and pulse recordings. Sessions lasted approximately
11 minutes each. DDPM was natively recorded at 90 FPS. The
original RGB videos were losslessly compressed using FFV1, a
lossless intra-frame codec developed within FFmpeg.

PURE
PURE [8] is a benchmark public rPPG dataset consist-

ing of 10 subjects recorded over 6 separate sessions of varying
controlled head motions. Each session lasted approximately 1
minute. A finger pulse oximeter was used to capture the sub-
jects’ physiological signals. It was captured natively at 30 FPS.
Each frame in the dataset was saved and stored as an individual
png image file.

Experiments
Compression Guidelines

Each video in our two datasets was compressed with the
FFmpeg libx264 implementation of H.264 at CRF values from

IS&T International Symposium on Electronic Imaging 2024
Image Processing: Algorithms and Systems XXII 248--3



6 to 36, stepping by 6 [2]. We did not include the H.264 default,
CRF23, but did include CRF28, the H.265 default. We then tested
CRFs of 20, 21, and 22 to investigate the range in which statistical
changes were evident. For H.265 we tested the same CRF values
as H.264 since the bitrate still changes exponentially. We used
the default encoding speed of ”medium” and the default YUV420
pixel format [1]. The audio stream was ignored.

For VP9 we sought to select CRF parameters such that the
bitrate of the produced constant quality videos closely matched
the bitrate of each tested H.265 CRF level. We encoded a subset
of five videos from the DDPM dataset (subjects “2020-043-059”,
“2020-048-050”, “2020-048-052”, “2020-049-055”, and “2020-
050-062”) at 40 different VP9 CRF parameters. For each constant
quality level, the bitrates of the five videos were averaged and
compared to the average bitrate across all videos of each H.265
CRF level. The following CRF values were selected to test: 8,
18, 30, 35, 37, 40, 45, 50, 52, and 59. The VP9 compression
algorithm was run with the equivalent of the “medium” preset,
“-cpu-used 3”, and it ignored the audio stream.

The ffmpeg commands utilized for each codec can be seen
in Table 1. The variables for each command include the input and
output videos, the output FPS, and the CRF.

Table 1: Generalized FFmpeg commands

Codec FFmpeg Command

H.264 ffmpeg -nostdin -y -i {input video} -r {fps} -
c:v libx264 -crf {crf} -an {ouput video}

H.265 ffmpeg -nostdin -y -i {input video} -r {fps} -
c:v libx265 -crf {crf} -an {ouput video}

VP9 ffmpeg -nostdin -y -i {input video} -cpu-used
3 -r {fps} -c:v libvpx-vp9 -b:v 0 -crf {crf} -an
{ouput video}

Train on Uncompressed; Test on Compressed
FFmpeg’s encoder implementations x264, x265, and libvpx-

vp9 were used to compress our videos in accordance to the H.264,
H.265, and VP9 codecs, respectively. Compression was per-
formed using all the unique combinations of the CRF and pa-
rameters described in the ”Compression Guidelines” section for
each encoder across all videos in both DDPM and PURE. This re-
sulted in the creation of 30 uniquely compressed DDPM datasets
containing 96 videos each and 30 uniquely compressed PURE
datasets containing 59 videos each. In total we generated 60
uniquely compressed datasets and 4650 videos.

Since the frame rate for DDPM was recorded at 90 FPS and
PURE was captured at 30 FPS, we upsampled PURE and down-
sampled DDPM such that we had all video arrays for both datasets
stored at both 90 FPS and 30 FPS. This was done to accommo-
date the models trained at specific frame rates and to test if the
performance effects witnessed in 3DCNNs for pulse estimation at
varying frame rates were present in compressed videos [5]. Un-
like the original frame rate reduction method employed in Speth
et al. [5] that called for skipping frames, we utilized the same
method seen in Vance et al. [17] to downsample DDPM from
90 FPS to 30 FPS. This method takes place before the videos are
cropped by averaging each pixel value across sets of three frames.
This change was made to better emulate the behavior seen in a
camera with a slow shutter speed. To upsample the PURE video

arrays from 30 FPS to 90 FPS we utilized trilinear interpolation.
Together these two samplings created an additional 60 uniquely
compressed datasets and brought the total number of compressed
videos analyzed to 9300.

The originally recorded DDPM dataset was losslessly en-
coded from raw video using FFV1, the lossless intra-frame codec
developed within FFmpeg. The videos resulting from this encod-
ing were used to train RPNet via the aforementioned pipeline.
We train the model using 5-fold cross-validation by splitting the
dataset into five disjoint subsets, each including 77 of the origi-
nally released 96 videos. The remaining 19 videos were excluded
based upon inconsistencies in the original data. For each split,
one subset was used for each of the testing and validation sets
and three were merged to form the training set. The training was
completed for a duration of 40 epochs using the negative Pearson
loss function and Adam optimizer configured with a .0001 learn-
ing rate. The best model based on the loss function from each fold
was then selected to test on compressed data.

All 90 FPS DDPM and upsampled 90 FPS PURE datasets
were tested against this model. A second model using the down-
sampled FFV1 30 FPS DDPM dataset was trained under the same
parameters described above. The resulting model was used to test
all the downsampled 30 FPS DDPM and 30 FPS PURE datasets.
For TS-CAN the same datasets were used to create TS-CAN 90
FPS and TS-CAN 30 FPS models. The training was completed
for 80 epochs using the Adam optimizer configured with a learn-
ing rate of .0001 and with a model depth of 2 [18].

Train and Test on Compressed
We set up experiments in which we trained models on each

compressed DDPM and PURE dataset in their native FPS resolu-
tions. Thus, for each dataset, codec, and tested CRF combination,
there exists a model trained specifically on that uniquely com-
pressed variant, i.e. a model was trained with every unique codec
and CRF combination of the compressed DDPM 90 FPS datasets.
The same holds true for every PURE 30 FPS dataset. This train-
ing was done following the same manner as our original training
outlined in the ”Train on Uncompressed; Test on Compressed”
section. We once again utilized disjoint splits in order to perform
5-fold cross validation. When training on PURE, the total number
of videos in a reassembled split was 59. No videos were excluded
from the PURE splits.

This training yielded 60 unique models. For the 30 DDPM
models generated through this training regime, each one was used
to test all the unique 90 FPS DDPM compressed datasets within
the given codec of its training data. For example, the model gener-
ated from the H.264 compressed dataset of 90 FPS DDPM using
a CRF of 12 was tested against itself and every other H.264 com-
pressed 90 FPS DDPM dataset. Using the 30 FPS PURE models
generated through this training, the same testing regime was ap-
plied to the 30 FPS PURE compressed datasets. In total each of
the sixty models was used to test 10 datasets.

Results
Train on Uncompressed; Test on Compressed

A noticeable decrease across all performance metrics was
observed as the amount of compression increased. This decrease
was witnessed for 90 FPS DDPM, 90 FPS PURE, 30 FPS DDPM,
and 30 FPS PURE. As seen in Table 2, the 90 FPS DDPM datasets

248--4
IS&T International Symposium on Electronic Imaging 2024

Image Processing: Algorithms and Systems XXII



dataset. All metrics are calculated with a 95% confidence interval.
Codec CRF ME MAE RMSE rwave rHR

FFV1 none 2.081 ± 1.551 4.265 ± 0.841 9.982 ± 2.431 0.541 ± 0.037 0.645 ± 0.082

H.264

6 2.106 ± 1.549 4.298 ± 0.827 10.031 ± 2.400 0.539 ± 0.037 0.639 ± 0.077
12 1.881 ± 2.396 4.622 ± 1.458 10.435 ± 2.983 0.524 ± 0.040 0.625 ± 0.090
18 1.605 ± 3.001 5.181 ± 2.023 11.222 ± 3.389 0.500 ± 0.042 0.591 ± 0.107
20 1.156 ± 4.091 5.972 ± 2.686 12.186 ± 3.793 0.471 ± 0.045 0.569 ± 0.101
21 0.670 ± 4.969 6.890 ± 3.242 13.194 ± 3.991 0.443 ± 0.047 0.530 ± 0.102
22 -0.156 ± 6.339 8.438 ± 4.147 15.079 ± 4.708 0.400 ± 0.048 0.469 ± 0.108
24 -2.929 ± 8.033 13.274 ± 5.107 20.607 ± 5.556 0.294 ± 0.046 0.270 ± 0.105
28 -7.988 ± 10.098 22.572 ± 5.677 29.247 ± 5.686 0.155 ± 0.030 0.066 ± 0.055
30 -10.354 ± 10.364 25.673 ± 5.575 31.477 ± 5.693 0.089 ± 0.026 0.032 ± 0.031
36 -10.473 ± 10.494 27.019 ± 5.193 32.314 ± 5.408 0.028 ± 0.012 0.021 ± 0.027

H.265

6 2.067 ± 1.789 4.386 ± 0.998 10.145 ± 2.693 0.538 ± 0.038 0.639 ± 0.093
12 1.976 ± 2.053 4.557 ± 1.142 10.363 ± 2.819 0.529 ± 0.041 0.629 ± 0.095
18 1.509 ± 4.355 6.082 ± 2.758 12.200 ± 3.875 0.475 ± 0.051 0.570 ± 0.114
20 0.956 ± 5.709 7.211 ± 3.623 13.406 ± 4.493 0.440 ± 0.055 0.533 ± 0.109
21 0.710 ± 6.275 8.093 ± 3.990 14.423 ± 4.656 0.410 ± 0.057 0.495 ± 0.114
22 -0.397 ± 7.034 9.536 ± 4.461 16.120 ± 5.154 0.373 ± 0.053 0.440 ± 0.123
24 -2.981 ± 8.754 14.597 ± 5.828 22.198 ± 6.354 0.276 ± 0.053 0.233 ± 0.105
28 -7.152 ± 10.719 22.795 ± 5.113 29.673 ± 5.052 0.153 ± 0.035 0.066 ± 0.028
30 -8.316 ± 11.757 25.725 ± 5.489 31.940 ± 5.330 0.105 ± 0.027 0.038 ± 0.034
36 -9.386 ± 12.238 28.101 ± 4.841 33.552 ± 4.965 0.019 ± 0.008 0.017 ± 0.042

VP9

8 1.970 ± 1.748 4.409 ± 0.978 10.173 ± 2.577 0.539 ± 0.037 0.640 ± 0.083
18 2.033 ± 2.208 4.660 ± 1.295 10.414 ± 2.823 0.525 ± 0.038 0.629 ± 0.090
30 0.793 ± 4.848 6.807 ± 3.242 12.927 ± 4.059 0.446 ± 0.049 0.543 ± 0.099
35 0.548 ± 5.569 7.225 ± 3.883 13.408 ± 4.712 0.445 ± 0.050 0.532 ± 0.111
37 0.283 ± 5.844 7.690 ± 4.133 13.925 ± 4.952 0.429 ± 0.051 0.513 ± 0.113
40 0.050 ± 7.128 9.354 ± 4.817 15.970 ± 5.677 0.385 ± 0.055 0.447 ± 0.134
45 -0.231 ± 7.210 10.557 ± 5.011 17.326 ± 6.053 0.350 ± 0.057 0.392 ± 0.150
50 -1.768 ± 8.800 14.973 ± 5.673 22.473 ± 6.358 0.266 ± 0.053 0.224 ± 0.116
52 -2.614 ± 9.431 17.711 ± 6.019 25.335 ± 6.297 0.223 ± 0.050 0.147 ± 0.078
59 -3.626 ± 10.210 22.119 ± 5.050 29.131 ± 4.856 0.148 ± 0.047 0.046 ± 0.038

at the highest compression levels (CRF36 for H.264 and H.265
and CRF59 for VP9) are displaying a RMSE of over 29 beats per
minute and a rHR of less than .05. This suggests that the RPNet
model trained on FFV1 90 FPS DDPM is unable to accurately
provide the pulse waveform at these levels. Of particular interest
in determining where RPNet breaks down is rHR. For a predicted
heart rate to be correlated relatively well with the ground truth,
this measure should be at least .5. For H.264 and H.265 the rHR
drops below the .5 threshold at a CRF level of 22. For VP9 the
rHR drops below the .5 threshold at a CRF level above 40.

Evaluating MAE is a key metric when performing rPPG re-
search. Figures 1 and 2 trace the behavior of MAE as the constant
rate factor changes for DDPM and PURE at 30 FPS and 90 FPS.
Perhaps most evident in the graphs is the much higher MAE for
PURE than DDPM. The RPNet model we used was trained on
the lossless FFV1 DDPM dataset. Since PURE is overall a less
complicated dataset, it is not surprising the model did not per-
form well when testing against it. This result echoes the findings
of Vance et al. [17] when they found that without augmentations
models trained on DDPM and tested on PURE suffered poor per-
formance. Despite the obviously poorer performance our models
had when testing against PURE, the graphs still illustrate a rise in
MAE as the CRF increases. The initial increase seen for PURE
in the H.264 and VP9 graphs happens rapidly between CRF6 and
CRF12 and CRF8 and CRF30, respectively. For H.265 there is
a slightly more gradual increase until CRF20, at which point a
sharper increase is observed. This increase is seen for both the 30
FPS and 90 FPS datasets at relatively the same rate. The trends

are exclusive to the PURE datasets and suggest that a model not
suited for the test dataset may quickly lose the ability to extract
PPG data as the CRF increases.

The 30 FPS and 90 FPS trained models track even closer
when tested on the compressed variants of DDPM and overall
have a lower MAE than when testing against PURE. An increase
in MAE across the board is still witnessed as the constant rate fac-
tor is increased. This increase is somewhat gradual for the VP9
compressed datasets, with the sharpest rise beginning to take hold
around CRF40. The graphs for the H.264 and H.265 codecs ap-
pear to be almost identical. Both codecs begin to suffer a steep
increase in MAE between CRF20 and CRF22, which then accel-
erates much quicker as CRF values above 22 were used to gener-
ate the test dataset.

As stronger compression is applied, the average ability of
RPNet to predict a subject’s heart rate within 5 BPM falls off very
quickly. The FDA allows pulse oximeters to have an error range
between 2% and 3%, which roughly translates to about 5 BPM.
The base value for the mean average error appears to quickly sur-
pass these levels for each codec and CRF, but the range of any
given MAE is quite large when considering the 95% confidence
intervals. For instance, for the DDPM dataset compressed using
H.265 and CRF21 the MAE confidence interval is ±3.99. With
the base MAE of 8.093 it is possible that some videos compressed
under such parameters could fall below the 5 BPM threshold.

The graphs in Figure 2 further reveal the variability that large
confidence intervals can have on performance. Testing on PURE
results in MAE figures with very large error bars. Due to the

IS&T International Symposium on Electronic Imaging 2024
Image Processing: Algorithms and Systems XXII 248--5



(a) (b) (c)
Figure 1: The change in MAE as the compression rate factor increases for H.264, H.265, and VP9 for DDPM using RPNet.

(a) (b) (c)
Figure 2: The change in MAE as the compression rate factor increases for H.264, H.265, and VP9 for PURE using RPNet.

(a) (b) (c)
Figure 3: The change in MAE as the compression rate factor increases for H.264, H.265, and VP9 for DDPM using TS-CAN.

(a) (b) (c)
Figure 4: The change in MAE as the compression rate factor increases for H.264, H.265, and VP9 for PURE using TS-CAN.

inherent difficulty in cross-dataset testing between DDPM and
PURE the sample mean MAE is well above the FDA threshold.
Even in the presence of large error bars the testing data always
results in a MAE well outside the 5 BPM range.

For the VP9 datasets seen in Figure 1c, CRF40 is the cut-

off for maintaining a MAE below 5 within the 95% confidence
interval. The drop below 5 is guaranteed to occur at CRF22 for
H.264 and CRF24 for H.265. At lower CRF levels the 30 FPS
DDPM datasets perform slightly worse than the 90 FPS ones.
This suggests that videos with a higher frame rate more readily

248--6
IS&T International Symposium on Electronic Imaging 2024

Image Processing: Algorithms and Systems XXII



retain the rPPG data under a low amount of compression. Addi-
tionally, videos compressed with VP9 appear to better maintain
PPG information than either H.264 or H.265 at higher compres-
sion levels. At the highest VP9 compression level, CRF59, the
MAE is 22.119± 5.050. For H.264 and H.265 similar MAE of
22.572±5.677 and 22.795±5.113, respectively, are witnessed at
CRF28, the equivalent of CRF50 in VP9.

Similar trends to those seen in the RPNet models are wit-
nessed in the TS-CAN based models. When testing using TS-
CAN models, the datasets with higher levels of compression tend
to suffer performance loss. The model trained on FFV1 90 FPS
DDPM videos performs poorly across all compressed datasets for
both PURE and DDPM. In Figure 3, the average MAE for all
codecs and compression levels is above 30 beats per minute for
every compressed 90 FPS dataset. This poor performance could
be the result of a lack of dilation. As noted in the ”RPNet” section,
RPNet utilizes temporal dilations to increase its receptive field
and create an architecture more agnostic to frame rate changes.
The TS-CAN architecture does not share this attribute. Addition-
ally, since TS-CAN works with frame differences, it is possible
that 1/90th of a second delta is overwhelmed with noise and in-
capable of inferring the derivative of the pulse wave. The overall
poor performance results seemingly mean that TS-CAN is less ro-
bust to higher frame rates than RPNet and make it challenging to
say anything concrete about the behavior of the 90 FPS TS-CAN
model. It should be noted that these models do see a slight im-
provement as the compression level of the test datasets near the
default level of each codec. This observation is most apparent in
Figures 3a and 3b, but even with this improvement the MAE still
rests at over 30 beats per minute. These results suggest that for
video captured at 90 FPS TS-CAN is unable to recover any viable
PPG signal.

Diminishing performance is strongly witnessed when ana-
lyzing the behavior of the TS-CAN models trained on the down-
sampled FFV1 30 FPS DDPM dataset. This trend is present
across all codecs for both DDPM and PURE as seen in Figures
3 and 4. Much like RPNet, a significant decrease in performance
begins to to take hold around CRF22 for both H.264 and H.265.
Datasets compressed at CRFs beyond CRF24 suffer a sharp in-
crease in performance degradation. For DDPM 30 FPS H.264
datasets, the TS-CAN model begins predicting heart rates with
a MAE in excess of 25 at CRF28. This result is almost double
the MAE of 12.61± 1.14 at CRF22 and demonstrates the sharp
increase in error as CRF levels begin to move beyond the recom-
mended default range.

When analyzing the H.265 PURE models seen in Figure 4b
the sharp performance degradation is readily apparent. At CRF22
TS-CAN achieved a MAE of 11.715 ± 1.269. At CRF28 the
MAE increased more than three fold from that seen at CRF22
to 35.002± 2.592. Between CRF6, which achieved a MAE of
6.38± 0.695, and CRF22 the MAE less than doubled. For VP9,
the increase is more gradual. Between CRF37 and CRF40 and
CRF40 and CRF45 the MAE increases by approximately 7.5, be-
tween all other sequentially tested compression levels it increases
by approximately 4. Regardless of codec, the 30 FPS TS-CAN
model performs worse than its 90 FPS counterpart for the highest
compression level datasets.

Comparing the MAE between the TS-CAN and RPNet mod-
els shows that the TS-CAN models perform worse in all cases

except for when tested against the compressed 30 FPS PURE
datasets. The TS-CAN models outperform the RPNet models
significantly, which could be a result of PURE being one of the
datasets heavily used in the creation of TS-CAN. In the case of
H.264 and H.265 the TS-CAN 30 FPS model maintains a MAE
under 10 beats per minute until the tested dataset CRF surpasses
18. For VP9, the MAE of the TS-CAN 30 FPS model also main-
tains a MAE of under 10 beats per minutes until the tested dataset
reaches a constant quality factor of 18. As the compression fac-
tor is increased for the testing datasets these MAE values increase
such that by the time higher CRF values are tested the models re-
port MAE in excess of 40 beats per minute. This once again sug-
gests that all PPG signal data is lost beyond a certain compression
level. It is of note that the 30 FPS TS-CAN models were seen to
be more robust to cross-dataset training at lower CRFs than the
RPNet models.

Train and Test on Compressed
When testing models trained on compressed data, we find

that the effectiveness of the models is tied to the level of com-
pression of the test set. This is in opposition to Nowara et al.
[11], who found that models trained on compressed datasets per-
formed better when tested on datasets of the same compression
level. The performance of models against the test datasets can be
seen in Figures 5 and 6. The performance of a given compressed
dataset within each codec is plotted in relation to a model trained
on a specific CRF of the same codec. The x-axis of each graph
represents the CRF of the dataset that a given model is tested on.

Figures 5 and 6 show that regardless of domain or codec per-
formance steadily degrades as the amount of compression applied
to the training set increases. For the 90 FPS DDPM datasets and
H.264 and H.265 codecs, models trained on compressed variants
between CRF12 and CRF22 experience a slight decline in MAE
as the compression level of the tested dataset increases. This holds
true until they are tested on datasets compressed at CRF24 or
above. The models then experience a rapid increase in MAE,
suggesting that beyond CRF24 PPG information is not recover-
able, even for models trained on compressed data. All models
experience a decrease in MAE as the compression level of the test
dataset increases from CRF6 to CRF24, but the initial decrease
in MAE is much greater for the model trained on CRF24. This
suggests that all the models ultimately perform at their peak when
tested against datasets compressed between CRF20 and CRF22.
Like the other models, the one trained on CRF24 also begins
to experience a rapid increase in MAE when testing on datasets
compressed at CRF24 or above. All models underperformed the
model trained on the FFV1 90 FPS DDPM dataset.

Examining Figure 5c demonstrates that models trained on
the VP9 compressed datasets have far more disparity between
performance than models trained on the H.264 and H.265 com-
pressed datasets. The performance difference seen between mod-
els when testing the H.264 and H.265 models was very slight and
in most cases almost within the 95% confidence interval of each
another. This is not the case with the VP9 models, which all have
much larger ranges of error. The VP9 models experience a slight
decline in MAE from CRF8 to CRF40 before seeing it increase
steadily through CRF59. All the compressed VP9 models were
outperformed by the models trained on FFV1 90 FPS DDPM.

Due to the poor cross-dataset performance experienced when

IS&T International Symposium on Electronic Imaging 2024
Image Processing: Algorithms and Systems XXII 248--7



(a) (b) (c)
Figure 5: Figures depicting the MAE resulting from testing and training on compressed versions of 90FPS DDPM.

(a) (b) (c)
Figure 6: Figures depicting the MAE resulting from testing and training on compressed versions of 30FPS PURE.

training RPNet on DDPM and testing on PURE, specific PURE
30 FPS CRF models were trained. As expected, we see much
stronger results than we did when using the DDPM trained model
to test PURE. Viewing Figure 6 shows that the MAE for any tested
dataset is relatively close between models, but increases as the
CRF of the training set increases. The largest disparity occurs for
models trained on less compressed data. An interesting result oc-
curs for H.264, where MAE decreases as the CRF of the testing
dataset moves from CRF6 to CRF12 and from CRF20 to CRF21
and CRF22. This suggests that even though more compression
occurs at CRF12 than at CRF6 and at CRFs 21 and 22 than at
CRF20 that the model is capable of overcoming the compression
artifacts at theses CRF levels. For CRFs 21 and 22 this could be
due to the fact that these CRFs are closer to the H.264 default
of CRF23 and thus are more fine-tuned within the FFmpeg algo-
rithm. Another possible explanation is that the videos in PURE
may be more conducive to keep PPG data when compressed at
these levels. VP9 also experiences a similar drop between models
trained on the CRF37 dataset and those trained on the CRF40 one.
The models trained and tested on the H.265 compressed datasets
have the best performance. Even when testing against the CRF36
dataset the MAE is only approximately 8 BPM for all models.

Conclusions
When training is completed on uncompressed data we find

that rPPG reliably breaks down once video compression reaches
a constant rate factor 22 for both H.264 and H.265 and a constant
quality factor (CQF) of 37 for VP9. Testing on data compressed
above these thresholds begins to yield diminishing returns until it
removes almost all useful PPG data at CRF36 or CQF59.

When training is performed on compressed data, we find that

rPPG is not any more accurate. Regardless of codec, the most ac-
curate model is the one trained on the lossless FFV1 version of
DDPM (excluding cross-dataset training). Additionally, we find
that models suffer a general degradation in performance as they
are trained on compressed data of higher CRFs. This would sug-
gest that a possible solution to the rPPG compression problem is
to train models at the least compressed version possible. Models
trained on low level CRFs such as CRF12 for H.264 or H.265 still
perform relatively well while saving space and processing time,
but not as well as those trained on lossless data. To save resources
the best scenario is to evaluate losslessly-trained models on com-
pressed data. A model trained on lossless data still performs rel-
atively well on compressed data up until CRF22 for H.264 and
H.265 or CQF37 for VP9.

Extensive studies into this domain quickly run into issues
with the scalability of training models with specific compression
parameters. There are many possible combinations of compres-
sion algorithm parameters one could run as just a first pass. A
transcoding of any compressed video increases the number of
such combinations even further. It would be quite challenging to
create models such that one was trained for each possible encod-
ing scenario and dataset. To add further difficulty to this problem,
potential videos of interest may have endured multiple genera-
tions of compression, such as when videos are stored on social
media sites. A video obtained from such a platform could be a
result of multiple transcodings, meaning the PPG signal would
essentially non-existent.

For rPPG to work effectively, we recommend processing
video at compression levels below the CRF22 or CQF37 thresh-
olds. Optimally, depending on the storage and data requirements
we suggest training and testing on lossless data if possible.

248--8
IS&T International Symposium on Electronic Imaging 2024

Image Processing: Algorithms and Systems XXII



References
[1] Michal Rapczynski, Philipp Werner, and Ayoub Al-Hamadi, “Ef-

fects of video encoding on camera-based heart rate estimation,”
IEEE Transactions on Biomedical Engineering, vol. 66, no. 12, pp.
3360–3370, Dec 2019.

[2] Daniel J. McDuff, Ethan B. Blackford, and Justin R. Estepp, “The
impact of video compression on remote cardiac pulse measurement
using imaging photoplethysmography,” in 2017 12th IEEE Interna-
tional Conference on Automatic Face & Gesture Recognition (FG
2017), May 2017, p. 63–70.

[3] Sachin Dhawan, “A review of image compression and comparison
of its algorithms,” vol. 2, no. 1, 2011.

[4] G.J. Sullivan and T. Wiegand, “Video compression - from concepts
to the h.264/avc standard,” Proceedings of the IEEE, vol. 93, no. 1,
pp. 18–31, Jan 2005.

[5] Jeremy Speth, Nathan Vance, Patrick Flynn, Kevin Bowyer, and
Adam Czajka, “Unifying frame rate and temporal dilations for im-
proved remote pulse detection,” Computer Vision and Image Under-
standing, vol. 210, pp. 103246, Sep 2021.

[6] Xin Liu, Josh Fromm, Shwetak Patel, and Daniel McDuff, “Multi-
task temporal shift attention networks for on-device contactless vi-
tals measurement,” in Advances in Neural Information Processing
Systems. 2020, vol. 33, p. 19400–19411, Curran Associates, Inc.

[7] Jeremy Speth, Nathan Vance, Adam Czajka, Kevin W. Bowyer, Di-
ane Wright, and Patrick Flynn, “Deception detection and remote
physiological monitoring: A dataset and baseline experimental re-
sults,” in 2021 IEEE International Joint Conference on Biometrics
(IJCB), Aug 2021, p. 1–8.

[8] Ronny Stricker, Steffen Müller, and Horst-Michael Gross, “Non-
contact video-based pulse rate measurement on a mobile service
robot,” in The 23rd IEEE International Symposium on Robot and
Human Interactive Communication, Aug 2014, p. 1056–1062.

[9] Radim Spetlı́k, Jan Cech, and Jiri Matas, “Non-contact reflectance
photoplethysmography: Progress, limitations, and myths,” in 2018
13th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2018), May 2018, p. 702–709.

[10] Zheng Zhang, Jeffrey M. Girard, Yue Wu, Xing Zhang, Peng Liu,
Umur Ciftci, Shaun Canavan, Michael Reale, Andrew Horowitz,
Huiyuan Yang, Jeffrey F. Cohn, Qiang Ji, and Lijun Yin, “Multi-
modal spontaneous emotion corpus for human behavior analysis,”
in 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), Las Vegas, NV, USA, Jun 2016, p. 3438–3446, IEEE.

[11] Ewa Nowara and Daniel McDuff, “Combating the impact of video
compression on non-contact vital sign measurement using super-
vised learning,” 2019, p. 0–0.

[12] Weixuan Chen and Daniel McDuff, “Deepphys: Video-based
physiological measurement using convolutional attention networks,”
2018, p. 349–365.

[13] Justin R. Estepp, Ethan B. Blackford, and Christopher M. Meier,
“Recovering pulse rate during motion artifact with a multi-imager
array for non-contact imaging photoplethysmography,” in 2014
IEEE International Conference on Systems, Man, and Cybernetics
(SMC), Oct 2014, p. 1462–1469.

[14] Ewa M. Nowara, Daniel McDuff, and Ashok Veeraraghavan, “Sys-
tematic analysis of video-based pulse measurement from com-
pressed videos,” Biomedical Optics Express, vol. 12, no. 1, pp. 494,
Jan 2021.

[15] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClana-
han, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-Ling Chang,

Ming Guang Yong, Juhyun Lee, Wan-Teh Chang, Wei Hua, Manfred
Georg, and Matthias Grundmann, “Mediapipe: A framework for
building perception pipelines,” , no. arXiv:1906.08172, Jun 2019,
arXiv:1906.08172 [cs].

[16] Gerard de Haan and Vincent Jeanne, “Robust pulse rate from
chrominance-based rppg,” IEEE Transactions on Biomedical En-
gineering, vol. 60, no. 10, pp. 2878–2886, Oct 2013.

[17] Nathan Vance, Jeremy Speth, Benjamin Sporrer, and Patrick Flynn,
“Promoting generalization in cross-dataset remote photoplethys-
mography,” 2023, p. 5984–5992.

[18] Nathan Vance and Patrick Flynn, “Refining remote photoplethys-
mography architectures using cka and empirical methods,” , no.
arXiv:2401.04801, Jan. 2024, arXiv:2401.04801 [cs].

[19] Xin Liu, Girish Narayanswamy, Akshay Paruchuri, Xiaoyu Zhang,
Jiankai Tang, Yuzhe Zhang, Soumyadip Sengupta, Shwetak Patel,
Yuntao Wang, and Daniel McDuff, “rppg-toolbox: Deep remote ppg
toolbox,” , no. arXiv:2210.00716, Nov. 2023, arXiv:2210.00716
[cs].

IS&T International Symposium on Electronic Imaging 2024
Image Processing: Algorithms and Systems XXII 248--9


