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Abstract
Facial video inpainting plays a crucial role in a wide range

of applications, including but not limited to the removal of ob-
structions in video conferencing and telemedicine, enhancement
of facial expression analysis, privacy protection, integration of
graphical overlays, and virtual makeup. This domain presents se-
rious challenges due to the intricate nature of facial features and
the inherent human familiarity with faces, heightening the need
for accurate and persuasive completions. In addressing chal-
lenges specifically related to occlusion removal in this context,
our focus is on the progressive task of generating complete im-
ages from facial data covered by masks, ensuring both spatial and
temporal coherence. Our study introduces a network designed for
expression-based video inpainting, employing generative adver-
sarial networks (GANs) to handle static and moving occlusions
across all frames. By utilizing facial landmarks and an occlusion-
free reference image, our model maintains the user’s identity con-
sistently across frames. We further enhance emotional preser-
vation through a customized facial expression recognition (FER)
loss function, ensuring detailed inpainted outputs. Our proposed
framework exhibits proficiency in eliminating occlusions from fa-
cial videos in an adaptive form, whether appearing static or dy-
namic on the frames, while providing realistic and coherent re-
sults.

Introduction
Inpainting, being an intricate task in computer vision, ne-

cessitates meeting critical criteria, including the meaningful in-
tegration of generated content with surrounding elements for se-
mantic correctness and indistinguishable blending of filled-in re-
gions. Image inpainting involves the process of contextually fill-
ing in missing regions within an image to ensure visual consis-
tency. Video inpainting, on the other hand, extends the principles
of image inpainting by introducing temporal constraints to ensure
consistency across multiple frames. Within the realm of visual
media containing occlusions, such as those arising from object
removal, inpainting techniques strive to reconstruct missing con-
tent in a photorealistic and natural appearance. This challenge has
recently drawn considerable attention due to the significant need
for image and video editing applications across diverse industries.

While extensive research has addressed image inpainting,
video inpainting introduces additional complexities that remain
largely unexplored. Moreover, existing studies have predomi-
nantly focused on scenarios involving object removal and scene
inpainting, overlooking the distinct challenges posed by facial
video inpainting, particularly when human subjects are involved.

Facial video inpainting has diverse applications, ranging
from occlusion removal in video conferencing and telemedicine
to in-depth facial expression analysis, privacy preservation and
identity verification systems, and enhancement of virtual makeup
and beauty applications. For instance, privacy regulations man-
date the non-release of patients’ photo records without proper
anonymization, often achieved through masking biometric infor-
mation [1, 2]. This domain’s difficulties arise from the com-
plex nature of facial features and the inherent familiarity with
faces, increasing the challenge of achieving a convincing comple-
tion. Moreover, current studies have primarily revolved around
the removal of moving occlusions, denoted as moving masks, or
static masks across frames [3, 4, 5] as a separate problem. In
broad terms, extending the idea of video inpainting to handle dy-
namic and static bounding box masks in videos has diverse appli-
cations. These include object tracking in video surveillance and
autonomous driving systems, medical imaging, and graphic over-
lay in video content.

Our approach addresses these challenges by leveraging re-
cent advancements in video inpainting, employing a generative
adversarial network (GAN) to inpaint facial regions occluded
by masks with different patterns of movements. Our adaptive
pipeline takes inputs in the form of frames with applied masks,
which can either be static or move across frames, a single refer-
ence frame without masks, and ground truth frames without oc-
clusions. We detect facial landmarks from the latter set and in-
corporate them into our model alongside the masked frames and
a reference frame.

Considering both dynamic and static masks across all
frames, we conduct a comparative analysis of our framework with
two existing models, LGTSM (our baseline model) and Com-
bCN [4, 6], demonstrating our model’s superior performance in
inpainting occlusions with varied types of movements. This eval-
uation employs a publicly available facial video dataset [7]. The
remaining sections of this paper are organized as follows: Firstly,
we conduct a review of relevant literature on image and video in-
painting methods. Afterward, we provide a detailed exposition of
our proposed approach for facial video inpainting. We then pro-
ceed to present and analyze the experimental results, both qual-
itatively and quantitatively, based on the type of occlusion. The
paper is ultimately concluded with a summary and a discussion of
future directions for research.

Related Work
Image Inpainting: Image inpainting is the task of filling miss-
ing regions within an image in a visually consistent manner. Tra-
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ditionally, this problem was approached using patch-based syn-
thesis methods, as outlined in studies such as those by Efros et al.
[8] and Barnes et al. [9]. While patch-based and diffusion-based
approaches [10] demonstrated success in certain scenarios, they
faced challenges, especially in dealing with complex structured
images.

In recent years, the main focus in solving image inpainting
problems has shifted to deep learning techniques, with significant
advancements in the field of Generative Adversarial Networks
(GANs) specially designed for image completion [11]. The dy-
namic domain of GANs has fulfilled the promise of generative
models by producing realistic examples in various applications
not limited to inpainting [12]. Notably, they have demonstrated
advancement in image-to-image translation tasks, transforming
photos, and generating photorealistic images that challenge hu-
man perception [13, 14].

GANs present an innovative approach to generative model-
ing, treating the problem as a learning task involving two sub-
models: the generator, which generates new examples, and the
discriminator, which classifies those samples as real or fake. The
generator and discriminator work collaboratively to enhance im-
age quality, resulting in images with heightened visual plausibil-
ity [15]. For example, an image inpainting network introduced by
Iizuka et al. [16] incorporates discriminators operating at mul-
tiple scales, yet these approaches may require additional post-
processing steps. In contrast, recent methodologies, such as the
partial convolution method proposed by Liu et al. [17], offer post-
processing-free alternatives to achieve similar outcomes.

Video Inpainting: Video inpainting is essentially an extension
of image inpainting, introducing temporal constraints to ensure
coherence across various frames, as discussed in prior research
[18, 19, 3, 4, 1, 6]. Despite the extensive work in image inpaint-
ing, video inpainting presents its unique challenges that remain to
be fully resolved.

Notably, most existing studies have predominantly concen-
trated on scenarios involving object removal and scene inpaint-
ing [5], often overlooking the specialized realm of facial video
inpainting involving human subjects. This area introduces ad-
ditional complexities due to the intricate nature of facial fea-
tures and the inherent familiarity of faces, rendering the task of
achieving a convincing completion even more demanding. For
video face inpainting, achieving temporal consistency is more
critical. In this context, maintaining consistency in facial struc-
tures like eyes, and nose, as well as facial attributes such as fa-
cial hair, eyeglasses, and expressions should be considered care-
fully. Challenges specific to facial video inpainting can arise from
occlusions caused by human-object interactions, dynamic back-
grounds, clothing or accessories, and variations in lighting condi-
tions. These complexities collectively hinder accurate facial fea-
ture analysis and reconstruction.

Moreover, the existing efforts in video inpainting, while
promising, have primarily revolved around the removal of moving
objects or individuals, denoted as moving masks, or static masks
across frames. Moving masks results in the shifting of occluded
regions’ positions throughout the video sequence [3, 4, 5]. How-
ever, in the scenarios where the masks are relatively big and con-
sistent across the frames, the task of inpainting becomes more
challenging, as the occluded area remains unchanged and there

Figure 1: Overview of the pipeline of the proposed GAN-based
expression-aware inpainting with the support of facial landmarks and a
single occlusion-free reference frame. The masked images and facial
landmarks are provided as input to the generator (G) to synthesize the
complete face images. The discriminator (D) then classifies generated
faces as real or fake.

are no similar features in the neighbor frames for reconstructing
the occluded frame correctly.

While patch-based methods have excelled in video inpaint-
ing, they come with significant computational time constraints
due to search algorithms. Furthermore, they face limitations in
dealing with complex objects like faces. In [6], the authors pro-
posed to jointly learn temporal-spatial structure for video inpaint-
ing, but masks are in a fixed shape and position across all frames,
which does not hold true for face inpainting where the subject is
in motion. Recently, a general video-to-video synthesis has been
proposed [20]; the proposed method utilizes optical flow infor-
mation across frames to ensure temporal consistency and would
require a large video dataset to ensure robustness to fine-grained
face variations.

Current facial video inpainting solutions do not effectively
address both problems of static and moving mask removal, ne-
cessitating modifications to make them applicable in several real-
world applications. Thus, there is a critical research gap for a new
adaptive approach with the capability of inpainting both static and
dynamic occlusions, specially designed for facial videos.

Architecture Overview
Our framework’s architectural design is centered around the

Learnable Gated Temporal Shift Module (LGTSM), a model pro-
posed by Chang et al. [4] for video inpainting. The LGTSM opti-
mizes 2D convolutions by intelligently shifting input channels to
their temporal neighbors, enhancing temporal understanding cru-
cial for video inpainting tasks. This design choice eliminates the
need for additional parameters from 3D convolutions or optical
flow data, resulting in a lightweight yet high-performance archi-
tecture.

To efficiently model temporal dynamics, we leverage the
Temporal Shift Module (TSM) in its online form, as proposed
by Lin et al. [21]. This module enables temporal modeling by
shifting the feature map along the temporal dimension without re-
quiring future frame features suitable for real-time applications.
Notably, TSM enhances temporal modeling capabilities at no ad-
ditional computational cost on top of 2D convolutions.

To further help LGTSM in aggregating non-local informa-
tion due to convolutional bias, our model is augmented with an
attention mechanism [22]. This mechanism empowers the net-
work to focus on diverse parts of the input data with regard to oc-
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clusion movement type e.g. moving or static, particularly improv-
ing global context understanding and capturing non-local features
within the feature maps.

It is worth noting that, the attention-driven, long-range de-
pendency modeling facilitated by this mechanism plays an im-
portant role in image-generation tasks. Traditional convolutional
GANs generate high-resolution details based solely on spatially
local points in lower-resolution feature maps. By incorporating
additional self-attention layers, our model can generate intricate
details by considering cues from all feature locations.

Our framework processes masked frames representing the
occluded region considering their pattern of movement, a single
reference frame without the mask, and facial landmarks as illus-
trated in Figure 1. The inclusion of an RGB reference face frame
is essential for overcoming occlusion challenges and preserving
the person’s identity, ensuring accurate inpainting by considering
individual facial features. For more details of the components of
our proposed approach, we refer to [23], originally designed for
the task of head-mounted display removal in Virtual Reality. This
source provides a comprehensive exploration of the details under-
lying our method.

The generator in our model, comprising 13 convolution
layers with the gated TSM, implements attention-based down-
sampling, dilation, and up-sampling. Self-attention layers are
strategically positioned to compute attention weights, allowing
the network to capture spatial relationships, dependencies, and
feature information within the input feature maps.

In the adversarial learning process, the discriminator evalu-
ates inpainted frames against ground truth frames, compelling the
generator to accurately fill occluded areas. This involves six 2D
convolution layers with TSM, ensuring a comprehensive evalua-
tion of the generated frames. The discriminator further ensures
the consistency of highly detailed features across distant portions
of the image, enhancing the overall visual fidelity.

Our model employs a combination of diverse loss func-
tions for effective convergence. The L1 Reconstruction Loss em-
phasizes pixel-wise accuracy, measuring the fidelity of inpainted
frames concerning ground truth frames. The VGG Loss based
on ImageNet captures perceptual differences by utilizing a pre-
trained VGG network on ImageNet, providing insights into high-
level features [24, 25]. The Style Loss, inspired by Gatys et al.
[26], ensures the preservation of stylistic features in the inpainted
frames. The Wasserstein GAN Adversarial Loss further guides
the generator to create realistic inpainted frames by fooling the
discriminator [27]. The FER loss evaluates the model’s perfor-
mance in recognizing multiple facial expression classes designed
based on [28], ensuring an accurate depiction of emotions in the
inpainted frames, ultimately contributing to the overall accuracy
of the model.

These losses play a crucial role in guiding the training pro-
cess, emphasizing factors such as reconstruction accuracy, per-
ceptual differences, style variations, adversarial learning, and ac-
curate replication of facial expressions, ensuring the generation of
visually appealing and consistent facial video outputs.

Experiments
In this section, we conduct a comprehensive comparison of

our proposed method with other existing models in the literature
for video inpainting, including our baseline model, LGTSM [4],

and CombCN [6]. CombCN, a two-stage deep video inpainting
method, utilizes a 3D fully convolutional architecture for tempo-
ral structure inference and a 2D fully convolutional network for
spatial detail recovery in image-based inpainting. We conduct
these experiments employing both quantitative and qualitative as-
sessments with random static and dynamic masks.

For the implementation of our network, we leverage PyTorch
version 1.10.0. In configuring the convolutional layers, we adopt
a kernel size of 5 × 5 for the initial convolution layer, a 4 × 4
kernel size with a stride of 2 for down-sampling layers, and a
3× 3 kernel size with dilation factors of 2, 4, 8, and 16 for the
dilated layers. The remaining convolution layers utilize a 3× 3
kernel size. The attention layers employ a 1×1 kernel size. The
activation function employed throughout is the LeakyReLU. For
optimization during training, we utilize the Adam optimizer with
a learning rate set to 9.8×10−5.

Finally, the weights assigned to the overall loss function in
our model, are set as 1, 4, 10, 1, and 1 for Adversarial, FER, Style,
VGG, and L1 Reconstruction losses, respectively. These weights
play an important role in emphasizing the contribution of each
loss component to the overall optimization objective during the
training process.

Given the limited availability of facial video datasets com-
pared to image datasets suitable for learning-based models, we
employ the FaceForensics [7] dataset in this study. This dataset
comprises 1,004 videos with over 500,000 frames featuring faces
of newscasters collected from YouTube, with most videos con-
taining frontal faces cropped to a size of 128×128 pixels—ideal
for training purposes. For testing, we use 150 videos with a dura-
tion of 32 frames, while the remaining videos contribute to train-
ing the models. All models undergo training on the FaceForensics
dataset using random static and dynamic bounding boxes as out-
lined in [3] to ensure a fair comparison.

Quantitative results
Quantitatively, we evaluate the models using various met-

rics, including mean square error (MSE), peak-signal-to-noise ra-
tio (PSNR), and structural similarity index (SSIM) to assess im-
age quality. It is noteworthy that these metrics provide detailed
insights into the quality of the inpainting results. Additionally,
we report Learned Perceptual Image Patch Similarity (LPIPS)
and Fréchet inception distance (FID) score as evaluation metrics,
known for their alignment with human judgments of image simi-
larities.

The first assessment involves applying static masks to the
video frames, and the comparative evaluation is presented in Ta-
ble 1. Our proposed model demonstrates superior performance
compared to CombCN and LGTSM across a spectrum of evalua-
tion metrics. As outlined in Table 1, our proposed model excels
by achieving the lowest MSE, LPIPS, and FID scores, signifying
minimized errors and perceptual discrepancies. Moreover, it at-
tains the highest PSNR and SSIM values, indicating better quality
and structural fidelity in the context of static occlusion removal.

Shifting the focus to the task of moving mask removal, our
proposed model maintains competitive performance, surpassing
CombCN and LGTSM across the evaluation metrics summarized
in Table 2. The same set of metrics is employed to provide a
comprehensive assessment of the inpainting quality in scenarios
involving moving masks. As evident in the table, our model
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achieves the lowest MSE, showcasing a 36.36% improvement
over LGTSM and a notable 58.82% improvement over CombCN.
The model also excels in LPIPS, where it outperforms LGTSM
by 31.69% and CombCN by an impressive 71.05%. Addition-
ally, our model exhibits superior FID scores, indicating a 14.22%
improvement over LGTSM and a substantial 37.91% improve-
ment over CombCN. Remarkably, our model attains the highest
values in PSNR, boasting a 5.85% increase over LGTSM and a
remarkable 13.80% increase over CombCN. Similarly, in SSIM,
our model outshines with a 1.04% increase over LGTSM and a
notable 3.01% increase over CombCN. It is noteworthy that, de-
spite the integration of online TSM in LGTSM, our model consis-
tently outperforms LGTSM in real-time scenarios. This observa-
tion underscores the efficacy of our proposed method in handling
dynamic occlusions in real-world settings. Furthermore, in our
investigation into the impact of online and offline TSM usage in
both our model and LGTSM, where TSM is an integral part of the
network, we conducted an ablation study. This study aims to elu-
cidate the influence of leveraging temporal information from fu-
ture neighboring frames in the context of moving mask removal.
The inclusion of offline TSM proves particularly advantageous
when masks are in motion. This feature enables both models to
leverage information from future frames without occlusion in the
inpainting of the current frame’s masked features, resulting in out-
puts of higher quality. As indicated in Table 2, our model exhibits
the highest performance when employing offline TSM compared
to the offline counterpart in LGTSM.

Qualitative results
In qualitative evaluations, our model demonstrates signifi-

cant improvements when handling static masks, as highlighted in
Figure 2. The inpainted frames from our model exhibit a remark-
ably closer resemblance to the ground truth (GT) frames com-
pared to the other models. This visual evidence underscores the
efficacy of our model in generating realistic outputs, showcasing
its proficiency in addressing occlusion removal and preserving fa-
cial structure and expressions. This success is attributed to strate-
gic elements, including the utilization of a single reference image
in the masked area, the integration of FER loss, and the incorpo-
ration of facial landmarks [23].

Similarly, in scenarios involving moving masks, as illus-
trated in Figure 3, our model indicates a more satisfactory simi-
larity between the inpainted frames and the GT frames compared
to alternative models. This competitive performance compared
to our baseline can be attributed to several key factors: attention
usage challenges, the limited necessity for reference usage, and
the adoption of an online inpainting strategy in contrast to the
offline approach. In scenarios involving moving masks, the us-
age of reference images may not be inherently necessary for this
specific task as the model can recover and learn the occluded fea-
tures from the neighbor frames and also future frames in offline
learning. Furthermore, When occlusions occur in diverse areas
across different frames, the model encounters challenges in cap-
turing long-range dependencies through its attention mechanism.
In contrast, in stable mask scenarios, our model reveals significant
performance which is attributed to the beneficial reference usage
and attention mechanism. These elements play a pivotal role in
ensuring accurate and visually pleasing inpainting results in such
a situation.

In summary, our model consistently outperforms LGTSM
and CombCN, highlighting its effectiveness in recovering oc-
cluded areas with both moving and static masks. This superiority
is particularly evident when leveraging offline TSM, where fea-
tures from future frames contribute to learning, or when solely ad-
dressing static masks across entire frames. Notably, the enhanced
performance is more evident in scenarios involving static masks,
where our model excels in maintaining accurate facial shapes,
such as lips, overcoming challenges observed in other models as
can be observed in 2.

Additional visual comparisons and videos with respect to the
diversity of the subjects and reference frames used for inpainting
can be found in the supplementary materials.
Table 1: Quantitative results of FaceForensics validation set with static
masks. The metrics are averaged resulted from our model, the baseline
model (LGTSM), and the CombCN model.

Model Ours LGTSM [4] CombCN [6]
MSE↓ 0.0013 0.0017 0.0022
PSNR↑ 30.01 28.45 27.27
SSIM↑ 0.9525 0.9418 0.9354
LPIPS↓ 0.0317 0.0437 0.0831
FID↓ 0.5974 0.6626 0.7973

Figure 2: Sample of inpainted frames in FaceForensics validation set
(ID 18) resulted from our model, LGTSM, and CombCN, along with
the corresponding input and GT frames. The applied masks are static
on the frames. Images: RCN TV (https://www.youtube.com/watch?v=
8ILvKPA3TI0)

Conclusion
Facial video inpainting emerges as a key research problem

with widespread applications, ranging from video conferencing
and medical imaging by eliminating occlusions to enhancing fa-
cial expression analysis, improving security systems, and refining
virtual makeup. This field presents specific challenges, necessi-
tating solutions that can deliver realistic and convincing comple-
tions. Our expression-based video inpainting network, anchored
in generative adversarial networks (GANs), adaptively addresses
challenges posed by both static and moving occlusions. By intel-
ligently leveraging facial landmarks and an unoccluded reference
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model (online LGTSM), and the CombCN model. The results of our model and LGTSM with offline TSM are also described.

Model Ours with Of-
fline TSM

Ours with Online
TSM

LGTSM with Offline
TSM [4]

LGTSM with Online
TSM [4]

CombCN
[6]

MSE↓ 0.0006 0.0007 0.0009 0.0011 0.0017
PSNR↑ 32.67 32.05 30.98 30.27 28.17
SSIM↑ 0.9662 0.9615 0.9592 0.9516 0.9334
LPIPS↓ 0.0254 0.0304 0.0354 0.0446 0.1078
FID↓ 0.5762 0.6629 0.6703 0.773 1.067

Figure 3: Sample of inpainted frames in FaceForensics validation set
(ID 73) resulted from our model, LGTSM, and CombCN, along with
the corresponding input and GT frames. The masks vary along the
frames. Images: MTV Lebanon News (https://www.youtube.com/watch?
v=irbGBNQaZ1E)

image, our model smoothly preserves the user’s identity across
frames. The incorporation of a FER loss function further helps
emotional preservation, yielding outputs that are not only realistic
but also emotionally detailed. Beyond maintaining facial expres-
sions and identity coherently across frames, our model exhibits
temporal consistency throughout the inpainted sequences.

Future work in video inpainting holds promising directions,
notably in the domains of higher-resolution 2D video inpainting
and 3D volumetric video inpainting. For higher-resolution 2D
video inpainting, the focus lies in refining neural architectures to
accommodate increased data complexity, ensuring the preserva-
tion of intricate facial details at high resolutions. This advance-
ment is vital for applications such as high-quality video confer-
encing and medical imaging. Simultaneously, delving into 3D
volumetric video inpainting opens avenues for immersive virtual
and augmented reality experiences. Adapting neural networks to
handle the temporal and spatial intricacies of 3D video data will
be key for practical deployment in such real-world scenarios.
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Álvarez, “A survey on gans for computer vision: Recent
research, analysis and taxonomy,” Computer Science Re-
view, vol. 48, pp. 100553, 2023.

[13] Kanghyeok Ko, Taesun Yeom, and Minhyeok Lee, “Su-
perstargan: Generative adversarial networks for image-to-

IS&T International Symposium on Electronic Imaging 2024
Image Processing: Algorithms and Systems XXII 246--5

https://www.youtube.com/watch?v=irbGBNQaZ1E
https://www.youtube.com/watch?v=irbGBNQaZ1E


image translation in large-scale domains,” Neural Networks,
vol. 162, pp. 330–339, 2023.

[14] Vinicius Luis Trevisan de Souza, Bruno Augusto Dorta Mar-
ques, Harlen Costa Batagelo, and João Paulo Gois, “A re-
view on generative adversarial networks for image genera-
tion,” Computers & Graphics, 2023.

[15] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros, “Context encoders: Feature
learning by inpainting,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2016, pp.
2536–2544.

[16] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa,
“Globally and locally consistent image completion,” ACM
Transactions on Graphics (ToG), vol. 36, no. 4, pp. 1–14,
2017.

[17] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang,
Andrew Tao, and Bryan Catanzaro, “Image inpainting for ir-
regular holes using partial convolutions,” in Proceedings of
the European conference on computer vision (ECCV), 2018,
pp. 85–100.

[18] Wenqi Yang, Zhenfang Chen, Chaofeng Chen, Guanying
Chen, and Kwan-Yee K Wong, “Deep face video inpainting
via uv mapping,” IEEE Transactions on Image Processing,
vol. 32, pp. 1145–1157, 2023.

[19] Ryan Szeto and Jason J Corso, “The devil is in the details:
A diagnostic evaluation benchmark for video inpainting,” in
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2022, pp. 21054–21063.

[20] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,
Andrew Tao, Jan Kautz, and Bryan Catanzaro, “Video-to-
video synthesis,” arXiv preprint arXiv:1808.06601, 2018.

[21] Ji Lin, Chuang Gan, and Song Han, “Tsm: Temporal shift
module for efficient video understanding,” in Proceedings of
the IEEE/CVF international conference on computer vision,
2019, pp. 7083–7093.

[22] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena, “Self-attention generative adversarial networks,”
in International conference on machine learning. PMLR,
2019, pp. 7354–7363.

[23] Fatemeh Ghorbani Lohesara, Karen Eguiazarian, and Sebas-
tian Knorr, “Expression-aware video inpainting for hmd re-
moval in xr applications,” in Proceedings of the 20th ACM
SIGGRAPH European Conference on Visual Media Produc-
tion, 2023, pp. 1–10.

[24] Karen Simonyan and Andrew Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556, 2014.

[25] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael Bernstein, et al., “Imagenet
large scale visual recognition challenge,” International jour-
nal of computer vision, vol. 115, pp. 211–252, 2015.

[26] Leon A Gatys, Alexander S Ecker, and Matthias Bethge,
“A neural algorithm of artistic style,” arXiv preprint
arXiv:1508.06576, 2015.

[27] Martin Arjovsky, Soumith Chintala, and Léon Bottou,
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