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Abstract
In this paper, we investigate the challenge of image restora-

tion from severely incomplete data, encompassing compressive
sensing image restoration and image inpainting. We propose a
versatile implementation framework of plug-and-play ADMM im-
age reconstruction, leveraging readily several available denois-
ers including model-based nonlocal denoisers and deep learning-
based denoisers. We conduct a comprehensive comparative anal-
ysis against state-of-the-art methods, showcasing superior per-
formance in both qualitative and quantitative aspects, including
image quality and implementation complexity.

Introduction
Numerous stochastic approximation iterative techniques

have been advanced to tackle the challenge of restoring images
from severely incomplete data [2],[9], e.g. compressive sensing
and image interpolation. One such method, which incorporates
regularization through BM3D filtering, was initially proposed in
[6] for compressive sensing and later extended for image deblur-
ring [5] and image denoising [13]. These approaches fall under
the category of plug-and-play (PnP) methods [10], where im-
age denoisers serve as regularizers. The Alternating Direction
Method of Multipliers (ADMM), utilizing off-the-shelf denoisers
as implicit image priors, stands out as the most widely used PnP
method.

Over the past decade, numerous variations of nonlocal im-
age restoration methods have emerged [5, 6, 7, 12]. These meth-
ods employ a range of nonlocal image denoisers, such as BM3D
[6], BM3D-SVD, and BM3D-Wiener, to address tasks like image
deblurring and super-resolution. They notably enhance the perfor-
mance of state-of-the-art methods like IDD-BM3D [5] and GSR
[7]. The recently introduced HSSE image restoration method [12]
adopts a similar approach, employing two denoisers within the
Plug-and-Play (PnP) Alternating Direction Method of Multipli-
ers (ADMM) framework. Specifically, it utilizes BM3D-SVD
on both internal and external patches. A comparative analysis
featured in a recent overview [11] highlights the superiority of
HSSE over other state-of-the-art methods. This advantage is par-
ticularly evident when compared to techniques utilizing image
sparsity, self-similarity, and deep learning priors. One drawback
commonly associated with most PnP ADMM methods, including
HSSE, is their slow convergence speed, often necessitating hun-
dreds or even thousands of iterations.

In this paper, we introduce an efficient PnP ADMM algo-
rithm that combines neural network and nonlocal sparsity priors
for image restoration. Our approach leverages a deep learning-
based denoiser as an external image prior, complemented by
BM3D-SVD incorporating soft-thresholding filtering as an inter-

nal image prior.
We conduct a comparative evaluation of our proposed

method against state-of-the-art techniques for compressive sens-
ing and image inpainting. Results demonstrate that our approach
yields reconstructed images of superior quality while requiring
significantly fewer computations, typically by a factor of tens or
hundreds.

Image Restoration Based on Nonlocal Collab-
orative Filtering and Neural Networks

In this section, we introduce a PnP ADMM image restora-
tion framework that integrates two distinct image priors: nonlocal
group sparsity and a neural network prior.

Let X be a grayscale image of size N ×M and the observa-
tions are given by the equation Y = H(x)+ ε , where H(.) repre-
sents a degradation operation (e.g. blur), ε is the additive zero-
mean i.i.d. Gaussian noise with the standard deviation σn.

For image restoration we will use image patches. Let x(i, j)
be a (reference) image patch of size n × m, taken from the in-
tersection of i-th row and j-th column (i = 1, ...,N; j = 1, ...,M)
of image X, and let X(i, j) = {x(i, j,0),x(i, j,1), ...,x(i, j,K−1)}, be a
group of patches consisting from the patch x(i, j,0) = x(i, j) and
K −1 most similar patches to it, all taken from the neighborhood
of x(i, j) of size L×L. The group of patches X(i, j) can be written
as a 3D array of size n×m×K.

A problem of reconstruction of image X from observation
Y can be formulated as the following unconstrained optimization
problem:

X̂ = argminX
1

2σ2
n
||Y −H(X)||2 + τ f (X),

where the first summand is a fidelity term, and a second summand
is a regularization term involving image priors f (X) with a regu-
larization parameter τ.

Here, we integrate a deep neural network prior with the non-
local group sparsity prior within a unified regularization frame-
work. We formalize the image reconstruction process by leverag-
ing the vectorized representation of the variable:

(X̂ ,(Âi, j)
N,M
i=1, j=1) = argmin

(Ai, j)
N,M
i=1, j=1,X

( 1
2σ2

n
||(Y −HX ||22

+∑
i, j

1
2σ2

i, j
||R(i, j)X −D(i, j)A(i, j)||22

+ τ f (X)+∑
i, j

1
ρi, j

||A(i, j)||1
)
.

(1)

Here Ai, j are vectors of the sparse spectral representation of
the groups, and Di, j the sparsifying synthesis operators (orthonor-
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mal matrices), such that for the true data Xi, j = Di, jAi, j. The
matrices Ri, j are the grouping matrices such that Xi, j = Ri, jX .

To facilitate the optimization on X , we apply alternating di-
rection method of multipliers (ADMM) algorithm [1], and intro-
duce auxiliary variable Z with the constraint X = Z. Then the
problems can be can be rewritten as the following four step opti-
mization problem.

1: Group-wise spectral analysis of Z

(Âi, j)
N,M
i=1, j=1 = argmin

(Ai, j)
N,M
i=1, j=1

(
∑
i, j

1
2σ2

i, j
||R(i, j)Z −D(i, j)A(i, j)||22+

∑
i, j

1
ρi, j

||A(i, j)||1
)
.

(2)

2: Estimation of Z

Ẑ = argmin(Z)
(
∑
i, j

1
2σ2

i, j
||R(i, j)Z −D(i, j)A(i, j)||22

+
µ

2
||X −Z −Λ||22

)
.

(3)

3: Estimation of X

X̂ = argmin(X)

( 1
2σ2

n
||(Y −HX ||22+

µ

2
||X −Z−Λ||22+τ f (X)

)
.

(4)

4: Update the Lagrange variable Λ

Λ = Λ− (X −Z). (5)

These optimization problems allow the following solutions

Step 1: For each (i,j), the solution for (2) is soft-thresholding of the
variable DT

(i, j)R(i, j)Z

(Âi, j) = SOFT(DT
(i, j)R(i, j)Z). (6)

Step 2: Solution for the quadratic criterion in (3) gives:

Ẑ =
(
∑
i, j

1
σ2

i, j
RT
(i, j)R(i, j)+µI

)−1(
∑
i, j

1
σ2

i, j
RT
(i, j)D(i, j)A(i, j)

+µ(X −Λ)
)
.

(7)

Step 3: If τ = 0 the solution for (4) is as follows:

X̂ =
( 1

σ2
n

HT H +µI
)−1

(HTY +µ(z+Λ)). (8)

Implementation of the algorithm. If we consider problems
1 and 2 as the analysis and aggregation stages of the BM3D algo-
rithm [4], we observe that this algorithm not only provides solu-
tions but also facilitates data-adaptive data grouping, specifically

through the synthesis of grouping matrices Ri, j. Additionally,
it computes group-wise weights, denoted as noise standard de-
viations σ i, j2, reflecting the Gaussian noise present in observa-
tions. These weights play a crucial role in aggregating group-
wise patch estimates. Notably, an improved calculation method
for these weights is introduced in the updated version of BM3D
[8]. To regularize the estimate of X , we employ a deep neural net-
work denoiser. For implementing the derived algorithm, we uti-
lize both the nonlocal collaborative filter BM3D and a deep neural
network denoiser. The neural network operator is denoted as Φ.
It’s worth noting that in this implementation, we adopt BM3D-
SVD [11] with soft thresholding as is, akin to the denoiser em-
ployed in HSSE [12], without any intervention in the codes that
adjust the weights according to the formulas (7)-(8).

Step-by-step iterations of the developed algorithm, which
we call ADMM-NN3D, following cascaded Neural Network and
three- dimensional (3-D) collaborative filtering (NN3D) frame-
work [3], are given below:

1) Filtering of the (i − 1)−iteration estimate with deep de-
noiser: X̃ (i−1) = Φ(X̂ (i−1)).

2) Update of the estimate : X̂ (i) = αX̂ (i−1)+β X̃ (i−1)

α+β

3) Filtering with the nonlocal collaborative denoiser: X̃ (i) =
BM3D(X̂ (i)),

4) Update of the filtered estimate:

V̂ (i) =
αX̃ (i)+µ(X̂ (i−1)−Λ(i−1))

α +µ

5) Filtering V (i) with the deep denoiser Φ:

Ṽ (i) = Φ(V̂ (i)).

6) Update the reconstructed image estimate

X̂ (i) = (HT H +µI)−1(HTY +µ(Ṽ (i)+Λ
(i−1))),

7) Update the Lagrangian multiplier term

Λ
(i) = Λ

(i−1)− (X̂ (i)−V̂ (i)),

where V̂ (i) is the auxiliary estimate at the ith stage of the iterative
algorithm, and X̂ (i), is the output at ith stage of the algorithm.

Experiments
In this section, we present experimental results conducted

on Set 12, which comprises twelve commonly used grayscale im-
ages of dimensions 256x256 and 512x512 pixels [14]. These re-
sults aim to demonstrate the efficacy of the proposed algorithm
for both image inpainting and compressive sensing (CS) image
reconstruction. Following established practices in prior research,
block-based compressive sensing is employed across all tested
methods, utilizing a block size of 32 × 32.

For each given CS subrate, the corresponding measurement
matrix is constructed by generating a random Gaussian matrix and
subsequently orthogonalizing its rows [15]. In the case of image
inpainting, we consider image restoration with randomly missing
pixels, with varying percentages of missing pixels.

The primary parameters of the BM3D-SVD denoiser are
configured similarly to those utilized in other methods, such as
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HSSE: each patch size is set to 7 × 7, the number of similar
patches is fixed at K = 60, noise standard deviation is set to
σn =

√
2, and the ADMM balance factor is adjusted to η = 0.001

for inpainting and η = 0.003 for compressive sensing. Addition-
ally, we employ the Drunet denoiser [14] as the neural network
denoiser F(·).

For the proposed method ADMM-NN3D, the number of iter-
ations ranges from 40 to 70, depending on the subrate, with lower
subrates requiring a larger number of iterations. Notably, this iter-
ation count is significantly lower than that used in state-of-the-art
SSR and HSSE methods, where iteration counts varied from 500
to 2000.

The results of image compressed sensing methods and im-
age inpainting are tabulated in Tables 1 and 2, respectively. It is
evident from these tables that the proposed method consistently
outperforms state-of-the-art techniques.
Table 1: PSNR values of compressed sensing methods on Set12
for different subrates.

CS Methods 0.1 0.2 0.3 0.4 Average
SDA 23.68 25.84 27.28 28.49 26.32

ReconNet 24.56 26.31 29.33 30.71 27.73
IRCNN 26.31 30.64 33.15 34.99 31.27
SSR 27.57 30.84 32.90 34.91 31.56
GSR 26.85 30.91 33.43 35.46 31.66

HSSE 27.71 31.24 33.67 35.71 32.08
CREAM 27.31 31.66 34.14 36.11 32.31

ADMM-NN3D 28.72 32.59 34.76 36.35 33.11

Table 2: PSNR values of image inpainting methods on Set12 for
different percentage of missing pixels.

Inpainting Methods 90 % 80 % 70 % 60 % Average
SSR 25.27 28.42 30.59 32.35 29.16

HSSE 25.32 28.77 31.06 32.91 29.52
ADMM-NN3D 25.92 29.67 32.07 34.47 30.53

The results of the compared methods are drawn from the
studies referenced in [12] and [15]. Figure 1-2 illustrates exam-
ples of image inpainting and CS reconstruction using HSSE and
our proposed method, showcasing a notable enhancement in re-
construction quality with a PSNR improvement of over 3 dB.

Conclusions
In this paper, we introduced a novel ADMM image restora-

tion method that incorporates nonlocal self-similarity (BM3D-
SVD) and deep neural network priors. Our experiments showcase
that the proposed method surpasses state-of-the-art techniques in
both speed (requiring 10-20 times fewer computations) and recon-
structed image quality for both image inpainting and compressed
sensing image reconstruction tasks.
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