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Abstract
The utilization of dual-energy X-ray detection technology in

security inspection plays a crucial role in ensuring public safety
and preventing crimes. However, the X-ray images generated in
such security checks often suffer from substantial noise due to the
capture process. The noise significantly degrades the quality of
the displayed image and affects the performance of the automatic
threat detection pipeline. While deep learning-based image de-
noising methods have shown remarkable progress, most existing
approaches rely on large training datasets and clean reference im-
ages, which are not readily available in security inspection sce-
narios. This limitation hampers the widespread application of
these methods in the field of security inspection. In this paper,
we addressed a denoising problem designed for X-ray images,
where the noise model follows a Poisson-Gaussian distribution.
Importantly, our method does not require clean reference images
for training. Our denoising approach is built upon the Blindspot
neural network, which effectively addresses the challenges asso-
ciated with noise removal. To evaluate the effectiveness of our
proposed approach, we conducted experiments on a real X-ray
image dataset. The results indicate that our method achieves fa-
vorable BRISQUE scores across different baggage scenes.

Introduction
The application of X-ray detection technology is widespread,

spanning various domains such as medicine, industry, and secu-
rity inspection. In the realm of security, X-ray technology is ex-
tensively utilized in locations like airports, customs checkpoints,
and railway stations to combat criminal activities. Security per-
sonnel leverages the power of X-ray images as a means to de-
termine the presence of prohibited items within packages. This
enables them to make prompt and informed decisions, ensuring
effective security measures are in place [1], [2]. However, the
raw images obtained often contain noise, which degrades the im-
age quality. Therefore, denoising X-ray images is an important
task. Image noise may be caused by different intrinsic (i.e., sen-
sor) and extrinsic (i.e., environment) conditions which are often
not possible to avoid in practical situations. The noise that we are
addressing is Poisson-Gaussian. X-ray emission and absorption
are random processes that can be modeled well by the Poisson
distribution considering the proportional relationship between X-
ray intensity and the number of photons arriving at a point. When
the mean of the Poisson distribution is high it is approximated as
Gaussian distribution. Noise also arises from electronic compo-
nents present in imaging systems. Gaussian noise is often used
to model electronic noise [3]. As far as sensing noise is consid-
ered, X-ray images have spatially varying noise. The dense ob-
jects absorb most of the photons, leading to a reduced number of

photons reaching the detector. In these regions noise is predom-
inantly Poisson. While lesser-density regions have more noise
with Gaussian distribution.

The goal of denoising is to reduce the noise while preserv-
ing as much of the original image information as possible. There
are two main types of image denoising algorithms: traditional al-
gorithms and learning-based algorithms. Traditional algorithms
use mathematical techniques to suppress noise. Learning-based
algorithms use neural networks to learn noise models from im-
ages [4], [5].

Many traditional methods for denoising images with Poisson
noise, such as VST+BM3D [6], Non-Local PCA [7], and Patch
Gaussian PCA [8] work by comparing the neighborhood of a pixel
to other similar regions in the image. In other words, these meth-
ods look at the pixels that are close to a given pixel and use them
to estimate the value of that pixel. This is done by assuming that
the pixels in a neighborhood are likely to be similar to each other.
These methods can be effective in suppressing the noise but do
not eliminate it, and can also introduce artifacts and reduce the
quality of the image. Also, it can be computationally expensive,
especially for large images.

Learning-based methods try to learn the noise model from
a collection of noisy images. Convolutional Neural Net-
works(CNNs) have recently been used in many image denois-
ing applications with successful performance. CNNs have been
shown to be effective at removing noise from images by learn-
ing to identify the noise patterns [9]. There are many supervised
learning techniques for denoising where clean targets are required
to train the neural network. Here, the network learns to map
from a noisy image to its clean target. Zhang et al. (2017) [10]
proposed a deep convolutional neural network (CNN)-based de-
noising method called DnCNN. It achieved better denoising per-
formance than traditional image denoising methods for images
affected by Gaussian noise. Both noisy images and their clean
targets are required to train the network. In many cases, clean
target images are not available. This limits the application of
image-denoising methods that require them. To solve this prob-
lem, researchers have developed methods that do not require clean
target images. One such method is Noise2Noise (N2N) [11],
which requires only independent pairs of noisy images. Another
method, Noise2Void (N2V) [12], does not require any pairs of
images, clean or noisy. Noise2Void [12] is a self-supervised de-
noising method that learns to predict the clean value of a pixel
from its noisy neighbors. A blindspot neural network is also a
self-supervised denoising method and uses the same idea to pre-
dict clean pixel values. In [14], the authors used the concept of
blindspot neural network and introduced a loss function appro-
priate for Poisson-Gaussian noise. Blindspot neural network ap-
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proach which is mentioned in [14] is used in this work for denois-
ing X-ray images. There is another method where the Poisson-
Gaussian noise model was created for microscopy images [18]
using pix2pix GAN [15], [16]. GAN trained on pairs of real im-
ages and their binary masks. It generated realistic noisy images.
During testing, GAN produced noise on black masks, forming
a synthetic background. Foreground was made by adding noise
to signal regions in masks. This dataset was trained on another
pix2pix GAN, performing well on real microscopy images [17].
However, this method could not be directly applied to security X-
ray images, as they have a white background, and predominant
is Gaussian and the Poisson noise is only present in the darker
regions of the image.

The remaining sections of this paper are structured as fol-
lows: Proposed Method section provides a description of the
proposed method, including its key details and the approach
adopted for training and testing. In Experiments and Results
section, the dataset used for evaluation, and the experimental re-
sults obtained from the implementation of the proposed method
are presented and discussed in detail. Finally, Conclusion section
concludes the paper by giving the insights gained.

Proposed Method

Noisy Image Blind-spot Neural
Network Denoised Image

Figure 1. Methodology followed.

Figure 1 gives the block diagram of the proposed denois-
ing algorithm. This method involves denoising the image using
Blindspot neural network. A brief description of the Blind-spot
neural network is given below for ease of understanding.

Blind-spot Neural Network
N2V [12] is a deep learning-based image denoising method

that can be used with only noisy inputs. It uses a blind spot net-
work to overcome the problem of degenerate learning, which oc-
curs when a normal network is fed with the same noisy image as
both input and label. The blind spot network works by not using
the center pixel as input, but rather as the target. This encourages
the network to learn denoising by leveraging information from
neighboring pixels, thereby restoring the true values of the blind
spot area. The network architecture is a slightly modified version
of the five-level U-Net architecture [13], as utilized by Lehtinen
et al. [11]. Three additional 1×1 convolution layers are included
at the end of the network. Throughout the network architecture,
all convolution layers utilize the leaky ReLU activation function,
except for the final 1×1 convolution layer which employs a linear
activation function [20].

In the self-supervised technique of denoising, the goal is
to predict the values of a “clean” image x = (x1 . . .xn) given a
“noisy” image y = (y1 . . .yn) by observing the neighborhood of
the pixel yi. The noise model considered in this work is the
Poisson-Gaussian model. In the case of Poisson-Gaussian noise,
a noisy observation is created by first adding Poisson noise to a
clean observation, and then adding Gaussian noise that is inde-
pendent of the clean observation. Further, since the mean of Pois-

son distribution is high, it is approximated as Gaussian with equal
mean and variance [14]. Khademi et al. (2021) [14], proposed a
loss function that is appropriate to address the Poisson-Gaussian
model and used the same network architecture used in [20]. This
loss function is used to train the blindspot neural network (BNN).

This network is trained in such a way that it takes inputs as
noisy images and estimates mean µi and total variance σ̂i

2 at each
noisy pixel by observing its neighbourhood. The loss function
used to train this network is as follows:

L = ∑
i

(
(yi −µi)

2

σ̂i
2 + log(σ̂i

2)

)
(1)

The mean µi and total variance σ̂i
2 are estimates of the noisy

pixel yi. The clean pixel value is estimated using noisy pixel yi,
Poisson-Gaussian noise parameters a and b are obtained as shown
below:

x̂i =
yiσ

2
i +(aµi +b)µi

(aµi +b)+σ2
i

(2)

where a and b are Poisson-Gaussian noise parameters, σ2
i = σ̂i

2−
(aµi +b) and yi is noisy pixel value [14]. These noise parameters
a and b are estimated using Nelder-Mead optimization [19] with
objective function as

a,b = arg mina,b ∑
i

(
(yi −µi)

2

axi +b
+ log(axi +b)

)
(3)

where xi is the clean pixel value. since the network does not have
access to clean data µi is used instead of xi [14].

Training strategy
The network architecture follows modified U-net architec-

ture [20], trained for 300 epochs with a learning rate of 0.0003,
each epoch consisting of 50 batches of 128×128 crops from ran-
dom images from the training set and batch size of 4. In our
dataset, each image is a 16-bit grayscale image and of different
shapes. But the network can be trained only on 8-bit grayscale im-
ages of shape 512×512. So, the original image is mirror padded
to 1024× 1024 and that image is split into four 512× 512 im-
ages. Khademi et al. (2021) [14] used this blindspot network
for denoising microscopy images. So first we trained the network
with microscopy images which are available, to make the network
learn the noise model. When the network is directly tested with
the split 512×512 x-ray images, the denoised images got blurred
and visibility became poor. This is because most of the pixels in
microscopy images are black and X-ray images have white back-
ground.

So, the Blind-spot network was re-trained with those split
16-bit 512×512 images and tested. During testing, the four parts
of the mirror padded image are tested separately, then merged
those denoised parts to form 1024 × 1024 and cropped out the
mirror padded part to bring the denoised image back to its origi-
nal shape as the test image.

Experiment and results
In this section, we begin by providing an introduction to

our X-ray image dataset. The experiments in this study were
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conducted on a GPU system equipped with the following spec-
ifications: Intel(R) Core(TM) i7-10700 CPU, 32GB RAM, and
NVIDIA GeForce RTX 3060 GPU.

Dataset Overview

The dual energy X-ray image dataset is obtained from a sim-
ulated baggage inspection environment, where bags were packed
with random objects and subjected to X-ray scanning using se-
curity equipment. The dual-energy X-ray images used in our
study were provided by Vehant Technologies Private Limited, In-
dia. The grayscale images vary in size and are captured in 16-bit
format. The dataset comprises a total of 1217 X-ray grayscale im-
ages, and they were divided into a training set consisting of 1085
images and a test set containing 132 images. This division al-
lows us to train and evaluate our proposed method effectively on
diverse X-ray scenes and configurations present in the dataset.

Evaluation Criteria

Due to the unavailability of clean and noise-free X-ray im-
ages, traditional evaluation metrics like peak signal-to-noise ra-
tio (PSNR) and structural similarity index (SSIM) cannot be uti-
lized. To address this challenge, we opted for a non-reference im-
age quality assessment method called Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) to objectively evaluate the
performance of our method. BRISQUE leverages scene statistics
of locally normalized luminance coefficients to quantify potential
quality losses caused by distortions, enabling the evaluation of
image quality. A lower BRISQUE value indicates higher image
quality, providing a reliable metric for assessing the effectiveness
of our approach [4].

BRISQUE algorithm involves normalizing the pixel inten-
sities using Mean Subtracted Contrast Normalization (MSCN),
MSCN images are multiplied by shifted versions of themselves
in four orientations (horizontal, vertical, off-diagonal, and on di-
agonal). This captures the neighborhood relationships between
pixels. Features are extracted at 2 scales - the original image scale,
and at a reduced resolution (low pass filtered and downsampled by
a factor of 2). From the normalized and pairwise product images,
a feature vector of size 36×1(18 at each scale) is computed. Now,
these feature vector is fed to a pre-trained support vector machine
regressor to calculate the final quality score of the image [21].

Results and Discussion

The results of denoising for different baggage scenes are
shown in Figures 2-4. In the context of 16-bit grayscale security
images with a white background, identifying differences between
noisy and denoised images can be visually challenging. So, qual-
itative results are shown in Tables 1, 2 for high and low energy
images. From those results, it is observed that after denoising the
quality of the image has been improved as denoised images have
low BRISQUE scores.

Figure 2. BAG 1, Left to Right: Noisy version, Denoised Version

Figure 3. BAG 2, Left to Right: Noisy version, Denoised Version

Figure 4. Left to Right: Noisy CTP image, Denoised CTP image

Comparison Results
The deep learning method was compared against conven-

tional techniques like VST+BM3D and non-local PCA for image
denoising using the BRISQUE score metric. The results consis-
tently favored the deep learning method, indicating that it outper-
forms VST+BM3D and non-local PCA in terms of image quality
assessment (the visual comparison is shown in the Figure 5). The
deep learning method’s ability to capture and learn complex fea-
tures from the data allows it to achieve higher perceptual quality,
resulting in lower BRISQUE scores compared to the traditional
methods. The results are shown in Tables 1 and 2. It can be
observed that the BNN based solution has the lowest BRISQUE
scores, showing the effectiveness of the method.

Though the results are good, there are some discrepancies
that were observed. We tested the method for 132 images and the
method failed for 16 images. Also, it is well known that the high
energy images are more noisy, still, we observe that the BRISQUE
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Table 1. BRISQUE Scores of different high energy baggage scenes before and after applying denoising methods

Denoising methods

Baggage Scene Before Denoising VST+BM3D NLPCA PGPCA BNN

BAG3 35.5 36.72 47.43 36.14 33.22
BAG4 36.16 35.76 47.38 35.70 33.61
CTP 41.87 43.65 47.08 41.90 35.94

Table 2. BRISQUE Scores of different low energy baggage scenes before and after applying denoising methods

Denoising methods

Baggage Scene Before Denoising VST+BM3D NLPCA PGPCA BNN

BAG3 36.5 41.29 46.99 36.35 33.64
BAG4 36.8 38.02 47.28 36.09 33.65
CTP 43.89 45.9 47.67 43.99 39.44

scores are lesser for high energy compared with the low energy.
This could be due to the fact that BRISQUE scores are calculated
based on perception and also, it was not trained for Poisson noise.
We are working on these aspects to improve the method and the
metric.

Conclusion
In this work, we have addressed the challenges posed by the

Poisson-Gaussian noise model in security imaging by proposing
a deep learning-based denoising method tailored to this specific
noise model. Our experimental results have shown that the deep
learning method outperforms traditional denoising methods, such
as VST+BM3D and Non-Local PCA, in terms of denoising per-
formance, as evaluated by the BRISQUE score.
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