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Abstract
We present an interactive visualization tool to explore high-

dimensional features of audiovisual data extracted from a video
archive of live music performances. Our tool presents overviews
of data features, similarities between song recordings, and de-
tails of the extracted visual and audio features. Features are ex-
tracted using neural networks, signal processing techniques, and
audio analysis tools. Furthermore, we present a similarity met-
ric to measure how different relevant recordings are compared to
other videos. We illustrate our approach via use cases showing
initial results to analyze song features, compare songs, identify
outstanding songs, and detect song clusters.

Introduction
Music visualization applies music information research ap-

proaches to extract meaningful features and then present them
through interactive visualization. There is vast related work on
music visualization tools that use audiovisual analysis. However,
most of the existing visualization tools focus on studio-recorded
songs and ignore the effects of a live performance ambiance on
the songs. Previous music visualization studies used a limited
amount of features to analyze songs. Most studies have relied on
notes and chords, and few have analyzed musical features such as
tempo, genre, mood, etc. Nonetheless, the literature lacks visu-
alization tools that analyze musical performance videos in detail
using a broader amount of audiovisual features, including both
video and audio-related features to analyze musical instruments,
frequency spectrum, or visual clutter.

We apply state-of-the-art video and audio analysis methods
to fill this gap and visualize songs based on a list of relevant live
song performance features. We performed a requirement anal-
ysis with the help of a domain expert and identified the impor-
tant features needed for the analysis of live song performances.
The selected features were then extracted using neural networks,
signal-processing techniques, and audio analysis tools. Further-
more, we present a similarity metric to measure how different a
specific song recording is compared to all other videos. Using
this measure, it is possible to identify outstanding songs that are
significantly different than others or to detect song clusters.

Our main contribution is an interactive visual tool, shown in
Figure 1, that integrates live performance features into a set of
intuitive, aesthetic, and engaging visualizations. Our visual de-
sign provides both an overview visualization and a detailed song
analysis view. The overview visualization communicates clusters
and similarities between different recordings. The detailed view
presents extracted visual and audio features of a song.

Related Work
We divided the related work into (1) antecedents that focus

on visualizing song similarities rather than describing each song
individually using its features and (2) related work that focuses on
describing single songs based on their features.

Visualization of Music Collections
AudioRadar [8] is an exploratory interactive visualization

tool for music collections. Using a radar view as a metaphor to
visualize a song, a song is added to the center of a circular visu-
alization, and similar songs are placed around it. The comparison
is based on four automatically analyzed dimensions, whether the
song is melodic or rhythmic, slow or fast, clean or rough, calm or
turbulent. The four-dimensional song space is also projected into
two dimensions by user-based feature selection. Although Au-
dioRadar allows for a detailed analysis of songs’ features, it only
presents an overall representation, whereas our tool presents both
detailed radial and timeline visual encodings. We also allow for
zoom, filter, and details on demand.

Another example is MuVis [5], a visualization tool that uti-
lizes treemaps for browsing and filtering songs to create playlists.
The extracted features are tags, track title, duration, genre,
song release dates, and fluctuation patterns. The tool provides
similarity-based positioning according to the properties of songs
which helps users add similar songs to a playlist. It is an interac-
tive tool supporting feature filtering and writing queries to navi-
gate around the treemap easily. Although very powerful to quan-
tify and order songs’ features, this work is not thought to analyze
temporal patterns, as our solution do.

Walshaw [17] proposed a tool to explore relationships be-
tween folk and traditional song collections using a given melodic
similarity measure. Datasets with multiple corpora are consid-
ered, exploring the similarity metric between each pair of songs.
Using these similarity scores, color-coded corpus graphs are con-
structed using the node-link representation. However, unlike
other tools, the implemented visualization is not interactive.

Jorge et al. [14] proposed a visualization that considers sim-
ilarities between small parts of songs, not comparing songs as a
whole. The visualization consists of an overview and detailed
view named global and local similarity graphs, respectively. The
global similarity graph uses t-SNE to map songs into a 2D space
and connects songs according to overall song similarities using
Hermite curves. Color coding highlights different artists’ covers
of the same songs. While this solution presents a powerful simi-
larity analysis, it lacks a detailed temporal analysis and compari-
son of individual song features.
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Figure 1. Screenshot of our solution. (a) presents a radial overview of the temporal distribution of audiovisual features for a selected song, (b) shows the power

spectrogram view of the song, and below shows the timeline view displaying the (c) discrete and (d,e) continuous audiovisual features over time.

Song-based Music and Video Visualization
SongVis [12] is designed to present semantic descriptors of

music using icons. Songs are analyzed to extract the semantic fea-
tures using music information retrieval techniques, and icons are
assigned for each feature. For example, depending on the speed
of the tempo, a rabbit or a turtle icon is assigned to the song.

Misual [11] uses the waveform of audio as the main source
of information, and the visualization uses lighting and shading
techniques to make it appear 3D. Hence, the shape’s volume en-
codes the audio signal’s power. Repetitions through the song are
detected using the mel-frequency analysis and are color-coded,
making it easy, e.g., to identify the chorus part. The main goal
of the visualization is to help people categorize music, and the
design is intuitive and easy to understand. However, the features
considered are limited, and the work does not help analyze musi-
cal data.

Isochords [1] is an animated visualization that aims for mu-
sic classification based on structure. It uses MIDI files to extract
the musical events and visualizes them in a Tonnetz grid, encod-

ing major and minor chords using the arrow orientation. Isochords
allows users to see the musical events while listening to them.
Furthermore, examples show how the visual representation of the
music of different genres differs clearly. This work is designed
as an animation to be used as an ear training aid rather than a
multiple-feature analysis tool.

ImproViz [15] focuses on jazz music to analyze improvisa-
tions and explore different musicians’ harmonic styles. Manual
analysis is needed to prepare the visualization and was done for
the song “All Blues”. In this study, different musicians’ harmonic
palettes were explored. ImproViz only visualizes one song and
considers only the notes while doing so.

Similarity Based Music Collection Visualization
The previous approaches mentioned above either focus

on music collection visualization without visualizing individual
songs or focus on single-song visualization and ignore similarities
between songs. The work of A. Soriano et al. [16] provide visu-
alizations of similarity-based collections and song details. It con-
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structs unique icons for each song based on the MIDI information
encoding properties of individual notes played in the song. The
resulting icons are vertical elements that are composed of multi-
ple bars of different colors and sizes according to the underlying
structure of the song. It is possible to see an overview of all songs
on a scatter plot, where they are placed according to similarity.
Also, it is possible to see the icons of each song closely to get
more information about the song. However, even though using
MIDI files is a great way to create a similarity metric, the icons
created based on them are not very intuitive or easy to understand
for inexperienced people.

Feature Extraction
The input of this work consists of individual live song videos,

and corresponding metadata, from the Montreux Jazz Digital
Project (MJDP) [6, 7] archive. The metadata consists of the date
of the concert, in which hall the concert was performed, and the
performing artists.

Visual Features
The following visual features were extracted from the video

frames using image processing techniques:

Camera motion: Using varying camera motion to control the
viewer’s attention is widely applied by directors. It is of
interest to know how often panning, tilting, and zooming
are used throughout a video and whether it reveals a pattern.
This is a global feature and also interesting to explore in the
context of concert videos. For example, zooms towards the
artist or the musical instrument during a solo could be iden-
tified as a pattern. Using the optical flow between frames
it is possible to calculate the dominant flow angle and mag-
nitude, and predict the camera motion. For camera motion
extraction, a motion detection repository on GitHub [3] was
used which is based on OpenCV. The method extracts opti-
cal flow between two consecutive frames and determines the
dominant flow angle and magnitude to decide whether and
how the camera is moved.

Visual clutter: The cognitive load for watching a video can be
related to visual clutter in the frames of the video. Clutter
is a context-free feature that can reveal interesting patterns
in different types of movies. To measure visual clutter, a
feature congestion method was used. Accordingly, the clut-
ter in an image is correlated to the variance of luminance
contrast, color, and orientation of the image. Assuming that
if these properties change significantly through an image,
the image is cluttered. We used a Python library to mea-
sure clutter [10] which implements a feature congestion al-
gorithm. It is possible to individually calculate color, lumi-
nance contrast, orientation, and overall clutter values.

Musical instrument detection: In video analysis, one of the
most important tasks is to determine focus points, e.g.
through applying object detection to the frames to extract the
visible objects. In the context of a live song video, it is valu-
able to extract the musical instruments. For this purpose, a
pre-trained convolutional neural network for musical instru-
ment detection was used. The model returns 30 confidence
values representing the probability of 30 instruments being
visible in a given video frame. Then the confidence values

are thresholded so that only the ones with high confidence
values are considered. The model we used was trained on
4793 images to identify 30 different musical instruments [9].

Audio Features
The following audio features are considered to be crucial and

were calculated using audio and signal processing techniques:

Tempo: The tempo of a song is a powerful tool for composers to
convey a feeling to the audience. Knowing the tempo may
also help to understand the mood during the concert, audi-
ence reaction, and even the genre of the song. Despite the
possibility of varying tempo through live performance, one
single averaged tempo was calculated in the unit of BPM.
We used Lybrosa [13] for the tempo, tempogram, spectro-
gram, and waveform audio features.

Tempogram: Besides the song’s tempo, it would be compelling
to see whether the song speeds up or slows down during a
live performance. In studio recordings, it is very unlikely to
observe varying tempo in jazz, rock, or pop songs. However,
for exploratory data analysis of live performances, we de-
cided to consider tempo in a time-dependent manner, based
on the initiation point of musical events. These are called
onset and they are directly related to the tempo of music at
a given time.

Power spectrogram: The power spectrogram shows the various
frequencies’ signal strengths over time. It provides a quick
overview of the audio signal and helps people grasp the
dominant frequencies. The spectrogram is extensively used
and is crucial for music analysis. Even though it is mostly
used by area experts, it is easy to understand for the general
audience.

Waveform: The waveform describes the amplitude of the audio
signal over time. It is the most basic form of audio visual-
ization very intuitive for the general audience, the wave rises
as the sound increases and it falls as the sound decreases. In
our case, the wave has been separated into two main compo-
nents, harmonic and percussive waves. Harmonic waves are
created by the melodic sounds and percussive waves are cre-
ated by the beats like hits on drums. This separation helps
users analyze which component is dominant over time.

Dominant musical instruments and instrument families:
Musical instrument detection in polyphonic songs is still an
open challenge for which no definitive solution exists in the
literature. We use a pre-trained sound classification model,
Essentia [2] to extract the dominant musical instruments
and instrument families, mood, and genre detection.

Dominant mood and genre: A common categorization of mu-
sic is according to the mood and genre of a song. These
properties are usually related to the tempo and musical in-
struments but are not completely determined by them. We
used Essentia [2] for dominant mood and genre as well.

Similarity Metric
With respect to comparing different songs based on the

above described audio/video features, we decided against the
common Euclidean distance and cosine similarity metrics due to
the influence of individual attributes’ value ranges, possibly dom-
inating the metric, ignoring relative values and not considering
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Figure 4.2: A visual explanation of the distance metric calculation.

where pik and pjk are i and jth data points’ kth feature vectors. For each pair of data points i, j the
distance is calculated for every feature k and the results are combined into one distance matrix. ijth

element of the distance matrix Dk gives the distance between feature vectors pik and pjk.
Finally, a weighted sum of the distance matrices is performed to get the final distance value. The

default values for all the weights would be 1/36 to make the weighted sum into an averaging function.
However having this weighted sum in the algorithm, allows users to choose which vector and feature
have more influence on the result. According to the use case, some features might be more important
than others and their roles in the distance can be manipulated.

For visualization purposes, it was aimed to calculate the locations of the songs on the two-
dimensional space using the pairwise similarity values. For this purpose, multi-dimensional scaling is
used. Multi-dimensional scaling is an algorithm to map objects with known dissimilarities into a con-
figuration of points in a Euclidean space where original dissimilarities between objects and Euclidean
distances between points match as well as possible [15]. Hence with the help of multi-dimensional
scaling, after having pairwise similarity values, it is possible to project the performance videos into
two-dimensional Euclidean space.

After calculating the two-dimensional positions of the performance videos in the Euclidean space K-
means clustering algorithm is run to detect the clusters in the dataset. K-means clustering algorithm
determines k clusters where the total distance from data points to their nearest cluster center is
minimized [16]. K in the K-means clustering algorithm is a hyper-parameter and is chosen to be three
in this thesis.

The outcome of the similarity calculation phase is the locations of the performance videos in the
two-dimensional Euclidean space and the three clusters constructed using the K-means algorithm.

4.4 Visual Design

To visualize the Jazz concert videos a three-layered visualization scheme was designed. The first layer
is called similarity based overview plot. It aims to visualize all of the songs and compare them based

19

Figure 2. Overview of the distance metric calculation based on the extracted audiovisual features.

correlations between attributes. Chebychev and Manhattan dis-
tances suffer from the same unit or value range problems and both
also neglect possible correlations in data.

The Mahalanobis distance measures the distance between a
point and a data distribution. It computes how far a point is from
the mean of a distribution in terms of standard deviation along the
principal component axes. Hence it is expected to see correlations
between different features. Furthermore, important properties are
that it is scale-invariant and unitless, which is beneficial as there
is no consensus on the units of our extracted features. Most fea-
tures result in probabilities, but, for example, visual clutter returns
scalars.

Given a data point feature vector p and a distribution D with
its mean value vector µ and covariance matrix C, the formulation
is as follows:

dmah(p,D) =
√

(p−µ)C−1(p−µ)T (1)

Some audio/video features were prioritized and structured as
follows:

• The musical instruments are captured in a matrix M of size
30 x Number of Frames in the Video, with each entry Mi j
being the probability of instrument i appearing on frame j,
thresholded to 0 if less than 0.5.

• For the camera motions the outcome is a matrix C of size 3
x Number of Frames in the Video where Ci j is 1 if motion i
is detected on frame j, 0 otherwise.

• The visual clutter feature is a vector of scalars with elements
as many as frames in the video

• The outputs of dominant musical instruments and dominant
mood and genre features for all videos are vectors of prob-
abilities for each one of the instruments, mood, and genre

classes. Overall the lengths of these vectors are the same for
each video.

In our implementation, we applied the Mahalanobis distance
to individual features and combined the resulting scalars into one
distance value. In contrast to flattening all features into one long
vector, this makes it easier to interpret the role of each feature on
the distance and also the result is simpler to explain to the users.

Note that for some features their vector or matrix sizes are
related to the length of the video, but the Mahalanobis distance
assumes vectors of equal length. A simple workaround is padding
with zeros to make all vectors the same length as the longest
video.

The principle to calculate the distance is shown in Figure 2.
For musical instrument detection, visual clutter, and camera mo-
tion, since the lengths of the vectors are related to the length of
the video, zero filling is applied to make the vectors of differ-
ent videos the same length. For dominant musical instruments,
mood, and genre detection, this is not needed as these represent
one vector per video. In Figure 2, pik represents the different fea-
ture vectors k for a song video i. In the feature matrices Vk, we
collect the feature vectors k = 1 . . .36 of all data points i = 1 . . .n
(rows).

The covariance matrices Ck needed for the Mahalanobis dis-
tance are defined individually for each feature. The calculation of
the point-to-point distances is given by

dmah(pik, p jk,C
−1
k ) =

√
(pik − p jk)C

−1
k ((pik − p jk)T , (2)

where pik and p jk are the i- and j-th data points’ k-th feature vec-
tors. For each pair of data points i, j, the distance is calculated for
each feature k and combined into one distance matrix Dk

i j, where
the element i j is the distance between feature vectors pik and p jk.
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Finally, a linear combination of the distance matrices is
formed to get the final distance values. The default (average)
weights 1/36 can be adjusted by the user to emphasize certain
feature groups. According to the use case, some features might
be more important than others, and their roles in the distance can
be manipulated.

For visualization purposes, multi-dimensional scaling [4]
(MDS) was used to plot songs in a two-dimensional space based
on their pairwise similarity values. Furthermore, K-means clus-
tering can be applied to detect song clusters based on their feature
similarities. The outcome of the similarity calculation phase is
the locations of the performance videos in the two-dimensional
Euclidean space and clusters constructed using the K-means al-
gorithm.

Visual Design
Our design choices aim at simplicity, intuitiveness, and at-

tractiveness. Our visual design comprises four main components.
Therefore, we chose a radial view that resembles a phonograph
record to show the time-dependent features, a linear timeline view
that allows the users to explore the evolution of the song’s features
over time, and a 2D scatterplot visualization that shows songs as
dots clustered in space by similarity.

For color coding, we map each feature to a different color
as in Figure 6(b). For the musical instruments, the instruments in
the same family are represented by similar colors. For example,
percussive instruments such as drums and tambourines are both
encoded by shades of purple.

Radial Overview
For the overview plot, we designed a radial view resembling

a phonograph record as shown in Figure 3 which is endearing for
music visualization. We aim to prompt the user to explore the fea-
tures with an engaging and attractive design. The features visu-
alized are visual clutter, camera motion, and the detected musical
instruments. Since all of these features are time-dependent, we
re-arranged them into a radial timeline. Radial timeline represen-
tations are great for presenting periodic features and are appeal-
ing to the human eye. In the context of music visualization using
a radial layout aligns with the periodicity of the music. In some
cases, radial representations can be difficult to understand for the
users. However, since this layer only serves as an overview and
will be complemented with a detailed feature-view plot, it is not
considered to be a problem.

In our radial plot of Figure 3, simple glyphs (squares, circles,
and triangles) are used to differentiate between different features
(visual clutter, camera motion, and musical instruments). The ra-
dial location of the glyph encodes the time in which the feature
occurs (threshold detection). Since the visual clutter is calculated
for all the frames, the triangles look continuous and show the con-
tinuously varying clutter value per frame. In radial layouts, it is
important to clearly indicate to the user where the origin point of
time is and in which direction the time flows. To help with this is-
sue, white start and end points were added with additional icons at
the starting line to express the features visually. Furthermore, the
gap between the beginning and ending points encodes the length
of the song so that it is possible to visually compare the duration
of different songs.

Clutter

Pan

E-Guitar

Guitar

Saxophone

Drums

Tilt

Figure 3. Phonograph record like radial view of the time-dependent features

of a song.

Linear Timeline
We designed a linear timeline to enable an individual analy-

sis of all features in a comprehensive way, as shown in Figure 1(c).
The features to visualize in the timeline consist of visual clut-
ter, camera motion, musical instruments, waveform, tempogram,
and power spectrogram. The top section of the timeline view is a
straightened horizontal version of the radial overview plot, using
the same color encoding for visual clutter, camera motion, and
musical instruments to link the radial overview with the other de-
tailed views. The x-axis indicates the time when the feature has
occurred. Instead of using icons, the names of the features are
placed on the y-axis to be more expressive. The top row visual-
izes the video frames over time.

Detail Views
For the waveform (waveplot) and the tempogram (onset

plot), as shown in Figure 1(d) and Figure 1(e), the colors were
selected to be bright and distinct to catch the viewer’s attention
on the dark background. Again, the x-axis encodes the time, and
the legend and axis labels were put to make the visualization easy
to interpret. The power spectrogram as shown in Figure 1(b) is
commonly used in audio analysis. It displays the strengths of fre-
quencies (y-axis) over time (x-axis) in dB units. For color coding,
a perceptually uniform color map was chosen. Since the applica-
tion background is black, the lightest color was set to represent
the highest number because the light colors attract more attention
on dark backgrounds.

Similarity-based Overview
The aim of the similarity-based overview is to present multi-

ple songs in a single visualization to allow comparison, as shown
in Figure 4. After the calculation of pairwise song similarities, the
songs are mapped into two-dimensional locations and clustered
using MDS and K-means clustering, respectively. To present the
clusters, a simple scatter plot is used, highlighting each cluster
by connecting the data points by color-coded lines to the cluster
center.
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Used to Be

Figure 4. Similarity-based clustering and display of multiple songs (using

MDS and K-means with K = 3).

Use Cases
In this section, some exemplary scenarios are described, re-

ferring to the specific visualizations introduced before.

Figure 5. Song overview page showing the overall song lengths and feature

distribution of songs belonging to a specific concert.

Variations in Length and Musical Instruments
In this scenario, the users might want to compare the over-

all song lengths and musical instruments played during different
songs in a concert. Users can verify whether a set of musical in-
struments that are played varies during one song. For this purpose,
it is possible to use the song overview page (see Figure 5). All
songs of a concert are listed with their radial overview plots. Fig-
ure 6 shows an example of two different songs’ overviews side-
by-side. It is possible to compare the length of the songs and
the instruments played during a concert by comparing our radial
overview plots along with the color-coded legend.

Temporal Variations
Another possible use case is when a user wants to explore the

temporal variation of a song such as tempo changes or solos. For
this use case, it is possible to analyze the song using our timeline
view as shown in Figure 7. The timeline visualization helps to see
which musical instruments are playing in which parts of the song.
Moreover, the tempo changes are visible via the tempogram plot.

(a)

(b)

Figure 6. Visual comparison of two songs. The radial perimeter represents

the length of a song. Each line represents an audiovisual feature. (a) com-

pares side by side the two songs “Gimme All Lovin” and “Kiko”. (b) shows

the color palette assigned to the instruments. The color palette is the same

in all views to maintain consistency.

The waveplot and the spectrogram help to further analyze the au-
dio. To investigate a specific time, for example, a range when a
solo is suspected to be happening, the time range slider can be
used. Via the slider, a specific time range can be highlighted and
visualized which helps to see more details. Finally, the visualized
video frames can also be used during the investigation. In Fig-
ure 7 the user selected a time range where the guitar is clearly the
dominant instrument.

Dominant Instrument and Similarity
This use case explores the effect of the dominant musical

instrument on the similarity of songs. A user might want to see
how similar songs sharing the same dominant musical instrument
families are. Another question the users might ask would be to
analyze the effect of the dominant musical instrument on the data
clusters. To find the answers to these questions, the similarity-
based view can be used (see Figure 4). Users can see the colors in
the radial overview representing the dominant musical instrument
families and compare the similarities between different songs via
the distance between them in the similarity-based overview plot.
For example, in Figure 8 the blue cluster shows that in almost all
the selected songs the dominant instrument is “Guitar” (pale red).
There is only one song with a different color in that group, where
the dominant instrument is “Drums” (pale green).

Conclusions
In this paper, we presented an interactive tool for visu-

ally analyzing live performance songs and concerts based on au-
diovisual features. We incorporated essential features that de-
pend on video frames and audio to consider while analyzing
live performance song videos. We also proposed a similarity
metric to compare different songs based on the Mahalanobis
distance and provided several use cases that illustrate the us-
age of our approach. Future work includes incorporating se-
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Stairway to heaven

Selected time range

(a) (b)

Figure 7. Overview and detail of a song’s features. (a) shows a selected time range in darker grey, showing the appearance of only the “Guitar” instrument in

that section of the song. (b) shows three detailed views: the timeline exhibiting in detail the “Guitar” feature distribution over time, and below the corresponding

waveplot and the tempogram plot.

Used to Be Dominant Instrument

Figure 8. Similarity-based view of song clusters. The blue cluster shows that in almost all the selected songs the dominant instrument is “Guitar” (pale red).

There is only one song with a different color in that group, where the dominant instrument is “Drums” (pale green).

mantic segmentation of the videos into scenes, solo identifica-
tion, and a more extensive evaluation with domain experts and
the general public. The source code is available publicly at
https://github.com/alediehl/EI 2024 MusicVis
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